Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.929
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Small ; : e2310813, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700050

RESUMO

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
Small ; : e2309645, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716922

RESUMO

Nanofibrils are known to improve the cohesion of supraparticle (SP) assemblies. However, tailoring the morphology of SPs using nanofibrillar additives is not well developed. Herein, ß-lactoglobulin amyloid nanofibrils (ANFs) are investigated as means to impart morphological control over the assembly process of spray-dried SPs composed of 10-100 nm silica nanoparticles (SiNPs). Phytoglycogen (PG) and silver nanowires (AgNWs) are used to assess the influence of building block softness and aspect ratio, respectively. The results demonstrate that ANFs promote the onset of structural arrest during the particle consolidation enabling the preparation of corrugated SP morphologies. The critical ANF loading required to induce SP corrugation increases by roughly 1 vol% for every 10-nm increase in SiNP diameter, while the ensuing ANF network density decreases with SiNP volume fraction and increases with SiNP diameter. Results imply that ANF length starts to become influential when it approaches the SiNP diameter. ANFs display a reduced effectiveness in altering soft PG SP morphology compared with hard SiNPs of comparable size. In SiNP-AgNW SPs, ANFs induce a toroid-to-corrugated morphology transformation for sufficiently large SPs and small SiNPs. The results illustrate that ANFs are effective additives for the morphological engineering of spray-dried SPs important for numerous applications.

3.
Small ; : e2402819, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837885

RESUMO

Janus-micromotors, as efficient self-propelled materials, have garnered considerable attention for their potential applications in non-agitated liquids. However, the design of micromotors is still challenging and with limited approaches, especially concerning speed and mobility in complex environments. Herein, a two-step spray-drying approach encompassing symmetrical assembly and asymmetrical assembly is introduced to fabricate the metal-organic framework (MOF) Janus-micromotors with hierarchical pores. Using a spray-dryer, a symmetrical assembly is first employed to prepare macro-meso-microporous UiO-66 with intrinsic micropores (<0.5 nm) alongside mesopores (≈24 nm) and macropores (≈400 nm). Subsequent asymmetrical assembly yielded the UiO-66-Janus loaded with the reducible nanoparticles, which underwent oxidation by KMnO4 to form MnO2 micromotors. The micromotors efficiently generated O2 for self-propulsion in H2O2, exhibiting ultrahigh speeds (1135 µm s-1, in a 5% H2O2 solution) and unique anti-gravity diffusion effects. In a specially designed simulated sand-water system, the micromotors traversed from the lower water to the upper water through the sand layer. In particular, the as-prepared micromotors demonstrated optimal efficiency in pollutant removal, with an adsorption kinetic coefficient exceeding five times that of the micromotors only possessing micropores and mesopores. This novel strategy fabricating Janus-micromotors shows great potential for efficient treatment in complex environments.

4.
Small ; 20(5): e2306595, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37732373

RESUMO

Iron-based sulfate cathodes of alluaudite Na2+2 δ Fe2- δ (SO4 )3 (NFS) in sodium-ion batteries with low cost, steady cycling performance, and high voltage are promising for grid-scale energy storage systems. However, the poor electronic conductivity and the limited understanding of the phase-evolution of precursors hinder obtaining high-rate capacity and the pure phase. Distinctive NFS@C@n%CNTs (n = 1, 2, 5, 10) sphere-shell conductive networks composite cathode materials are constructed creatively, which exhibit superior reversible capacity and rate performance. In detail, the designed NFS@C@2%CNTs cathode delivers an initial discharge capacity of 95.9 mAh g-1 at 0.05 C and up to 60 mAh g-1 at a high rate of 10 C. The full NFS@C@2%CNTs//HC cell delivers a practical operating voltage of 3.5 V and mass-energy density of 140 Wh kg-1 at 0.1 C, and it can also retain 67.37 mAh g-1 with a capacity retention rate of 96.4% after 200 cycles at 2 C. On the other hand, a novel combination reaction mechanism is first revealed for forming NFS from the mixtures of Na2 Fe(SO4 )2 ·nH2 O (n = 2, 4) and FeSO4 ·H2 O during the sintering process. The inspiring results would provide a novel perspective to synthesize high-performance alluaudite sulfate and analogs by aqueous methods.

5.
Mol Pharm ; 21(3): 1309-1320, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38345459

RESUMO

Producing amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is favorable from an economic and ecological perspective but also limited to thermostable active pharmaceutical ingredients (APIs). A potential technology shift from spray-drying to hot-melt extrusion at later stages of drug product development is a desirable goal, however bearing the risk of insufficient comparability of the in vitro and in vivo performance of the final dosage form. Hot-melt extrusion was performed using API/polymer/surfactant mixtures with hydroxypropyl methylcellulose acetate succinate (HPMCAS) as the polymer and evaluated regarding the extrudability of binary and ternary amorphous solid dispersions (ASDs). Additionally, spray-dried ASDs were produced, and solid-state properties were compared to the melt-extruded ASDs. Tablets were manufactured of a ternary ASD lead candidate comparing their in vitro dissolution and in vivo performance. The extrudability of HPMCAS was improved by adding a surfactant as plasticizer, thereby lowering the high melt-viscosity. d-α-Tocopheryl polyethylene glycol succinate (TPGS) as surfactant showed the most similar solid-state properties between spray-dried and extruded ASDs compared to those of poloxamer 188 and sodium dodecyl sulfate. The addition of TPGS, however, barely affected API/polymer interactions. The in vitro dissolution experiment and in vivo dog study revealed a higher drug release of tablets manufactured from the spray-dried ASD compared to the melt-extruded ASD; this was attributed to the different particle size. We could further demonstrate that the drug release can be controlled by adjusting the particle size of melt-extruded ASDs leading to a similar release profile compared to tablets containing the spray-dried dispersion, which confirmed the feasibility of a technology shift from spray-drying to HME upon drug product development.


Assuntos
Polietilenoglicóis , Polímeros , Animais , Cães , Composição de Medicamentos , Solubilidade , Tensoativos
6.
Mol Pharm ; 21(6): 2838-2853, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38662637

RESUMO

Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.


Assuntos
Levofloxacino , Difração de Raios X , Levofloxacino/química , Difração de Raios X/métodos , Pós/química , Cinética , Composição de Medicamentos/métodos , Antibacterianos/química , Varredura Diferencial de Calorimetria/métodos , Cristalização , Química Farmacêutica/métodos
7.
Arch Microbiol ; 206(7): 320, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907882

RESUMO

The mining and metallurgical industry represents one of the leading causes of environmental pollution. In this context, the optimization of mineral waste management and the efficient extraction of metals of interest becomes an imperative priority for a sustainable future. Microorganisms such as Acidithiobacillus thiooxidans have represented a sustainable and economical alternative in recent years due to their capacity for environmental remediation in bioleaching processes because of their sulfur-oxidizing capacity and sulfuric acid generation. However, its use has been limited due to the reluctance of mine operators because of the constant reproduction of the bacterial culture in suitable media and the care that this entails. In this work, the central objective was to evaluate the functional characteristics of A. thiooxidans, microencapsulated and stored at room temperature for three years in vacuum bags, using a spray drying process with gum arabic as a wall vector. Growth kinetics showed a survival of 80 ± 0.52% after this long period of storage. Also, a qualitative fluorescence technique with a 5-cyano-2-3 ditolyl tetrazolium (CTC) marker was used to determine the respiratory activity of the microorganisms as soon as it was resuspended. On the other hand, the consumption of resuspended sulfur was evaluated to corroborate the correct metabolic functioning of the bacteria, with results of up to 50% sulfur reduction in 16 days and sulfate generation of 513.85 ± 0.4387 ppm and 524.15 ± 0.567 ppm for microencapsulated and non-microencapsulated cultures, respectively. These results demonstrate the success after three years of the microencapsulation process and give guidelines for its possible application in the mining-metallurgical industry.


Assuntos
Acidithiobacillus thiooxidans , Goma Arábica , Mineração , Acidithiobacillus thiooxidans/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Goma Arábica/química , Secagem por Atomização , Biotecnologia/métodos , Enxofre/metabolismo
8.
Pharm Res ; 41(1): 141-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040879

RESUMO

BACKGROUND & PURPOSE: Different methods have been exploited to generate amorphous solid dispersions (ASDs) of poorly water-soluble drugs. However, the impact of processing methods on drug stability and dissolution hasn't been studied extensively. The purpose of the current study is to investigate the impact of the two common ASD processing methods, hot-melt extrusion (HME) and spray drying, on the chemical/physical stability and supersaturation of Posaconazole (Posa) based ASDs. METHODS & RESULTS: ASDs with 25% drug loading in hydroxypropylmethylcellulose acetate succinate were prepared using HME, and two types of spray dryers, a Procept Sprayer (ASD-Procept) and a Nano Sprayer (ASD-Nano). The relative physical stability of these ASDs upon exposure to heat and crystalline API seeding followed the order: ASD-Nano > ASD-Procept ≈HME. ASD-Procept and ASD-Nano showed similar chemical stability, slightly less stable than HME under 40°C/75%RH. All three ASDs demonstrated similar supersaturation induction times, and de-supersaturation kinetics with or without crystalline seeds. CONCLUSIONS: Posa ASDs prepared via spray drying were chemically less stable compared with HME, which can be attributed to their smaller particle size and hollow structure allowing oxygen penetration. For ASD-Procept and HME, the detailed phase changes involving recrystallization of amorphous Posa and a solid-solid phase transition from Posa Form I to Form Ia during the seed-induced studies were proposed. Similar dissolution and supersaturation-precipitation kinetics of three Posa ASDs indicated that any residual nanocrystals in the bulk ASDs were not enough to induce crystallization to differentiate ASDs made by three processing methods.


Assuntos
Triazóis , Solubilidade , Cristalização , Transição de Fase , Composição de Medicamentos/métodos
9.
Mar Drugs ; 22(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535465

RESUMO

To improve the survivability of probiotics, Lactobacillus plantarum was microencapsulated using pufferfish skin gelatin (PSG)-based wall materials by spray-drying. This work investigated the protective effect of three different pH-dependent proteins (sodium caseinate (SC), soy protein isolate (SPI), and whey protein isolate (WPI)) combined with PSG on L. plantarum. The experimental results of spray-drying with an inlet temperature of 120 °C and an outlet temperature of 80 °C, storage at 4 °C for 6 months, simulated digestion, and turbidity indicated that PSG/SC had better stability and encapsulation effects and was more suitable to encapsulate L. plantarum than PSG/SPI and PSG/WPI. The optimum preparation conditions for L. plantarum microcapsules were a PSG/SC mass ratio of 2:1, an SC concentration of 20 g/L, and a cell concentration of 10 g/L. The encapsulation efficiency of the obtained microcapsules was 95.0%, and the survival rate was 94.2% in simulated gastric fluid for 2 h and 98.0% in simulated intestinal fluid for 2 h. Amino acid composition analysis exhibited that the imino acid and aspartic acid contents of PSG were 27.98 and 26.16 g/100 g protein, respectively, which was much higher than commercial bovine gelatin. This characteristic was favorable to the high encapsulation efficiency and stability of microcapsules. In vitro release experiments showed that the PSG/SC microcapsules did not disintegrate in simulated gastric fluid for 2 h but could completely release in simulated intestinal fluid for 2 h, which can maintain the high survivability of L. plantarum in simulated digestion. In general, this study demonstrated that microcapsules using PSG/SC as wall materials can effectively improve the survivability of probiotics and have great potential for application in probiotic products.


Assuntos
Lactobacillus plantarum , Probióticos , Tetraodontiformes , Animais , Bovinos , Gelatina , Cápsulas , Cetonas
10.
J Dairy Sci ; 107(2): 759-773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777003

RESUMO

This study investigated the influence of gas-injected nanobubbles on the morphology of particles during spray drying under various experimental conditions. The nanoparticle tracking system was used to measure the generation, size, and concentration of nanobubbles. Experiments were conducted at different temperatures (160°C-260°C) and feed rates (0.2-0.26 g/s) to examine the effect of nanobubbles on spray drying and present diverse results. The deionized (DI) water with generated nanobubbles had a particle concentration of 1.8 × 108 particles/mL and a mean particle size of 242.6 nm, which was ∼3.31 × 107 particles/mL higher untreated DI water. The maltodextrin solution containing nanobubbles also showed a significant increase in particle generation, with a concentration of 1.62 × 109 particles/mL. The viscosity of the maltodextrin solution containing nanobubbles decreased by ∼18%, from 9.3 mPa·s to 7.5 mPa·s. Overall, the size of the generated particles was similar regardless of nanobubble treatment, but there was a tendency for particle size to increase under specific temperature (260°C) and feed flow rate (0.32 g/s) conditions. Furthermore, it was observed that the Hausner ratio significantly varied with increasing temperature and feed flow rate, and these results were explained through scanning electron microscopy images. These findings confirm that the gas nanobubbles mixed in the feed can exert diverse effects on the spray drying system and powder characteristics depending on the operating conditions. This study suggests that nanobubbles can contribute to a more efficient process in spray drying and can influence the morphological characteristics of particles depending on the spray drying conditions.


Assuntos
Nanopartículas , Secagem por Atomização , Animais , Pós , Microscopia Eletrônica de Varredura/veterinária , Água , Tamanho da Partícula
11.
J Dairy Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908705

RESUMO

The production of whey protein concentrates (WPCs) from camel milk whey represents an effective approach to valorize this processing by-product. These concentrates harbor active ingredients with significant bioactive properties. Camel WPCs were spray-dried (SD) at inlet temperature of 170, 185 and 200°C, or Ultrasonicated (US) for 5, 10 and 15 min, then freeze-dried to obtain fine powder. The impact of both treatments on protein degradation was studied by sodium dodecyl sulfate-PAGE and reverse-phase ultraperformance liquid chromatography (RP-UPLC) techniques. Significantly enhanced protein degradation was observed after US treatment when compared with SD. Both SD and US treatments slightly enhanced the WPCs samples' antioxidant activities. The US exposure for 15 min exhibited highest 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (12.12 mmol TE/g). Moreover, US treatment for 10 min exhibited the highest in vitro anti-diabetic properties (α-amylase and α-glucosidase inhibition), and dipeptidyl-peptidase-IV inhibitory activity among all samples. In addition, the ultrasonication for 10 min and SD at 170°C showed the lowest IC50 values for in vitro anti-hypercholesterolemic activities in terms of pancreatic lipase and cholesteryl esterase inhibition. Conclusively, these green techniques can be adapted in the preservation and processing of camel milk whey into active ingredients with high bioactive properties.

12.
Chem Pharm Bull (Tokyo) ; 72(2): 190-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369345

RESUMO

A co-amorphous model drug was prepared by the spray-drying (SD) of probucol (PC) and atorvastatin calcium trihydrate salt (ATO) as low water solubility and co-former components, respectively. The physicochemical properties of the prepared samples were characterized by powder X-ray diffraction (PXRD) analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and dissolution tests. Stability tests were also conducted under a stress environment of 40 °C and 75% relative humidity. The results of PXRD measurements and thermal analysis suggested that PC and ATO form a co-amorphous system by SD. Thermal analysis also indicated an endothermic peak that followed an exotherm in amorphous PC and a physical mixture (PM) of amorphous PC and ATO; however, no endothermic peak was detected in the co-amorphous system. The dissolution profiles for PC in the co-amorphous sample composed of PC and ATO were improved compared to those for raw PC crystals or the PM. Stability tests indicated that the co-amorphous material formed by PC and ATO can be stored for 35 d without crystallization, whereas amorphous PC became crystallized within a day. Therefore, co-amorphization of PC and ATO prepared by SD is considered to be a useful method to improve the solubility of PC in water.


Assuntos
Probucol , Água , Atorvastatina , Probucol/química , Estabilidade de Medicamentos , Cristalografia por Raios X , Difração de Raios X , Água/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
13.
Chem Biodivers ; 21(5): e202400116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462536

RESUMO

Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química
14.
J Microencapsul ; 41(5): 360-374, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804967

RESUMO

Aim: To prepare sweet tea extract microcapsules (STEMs) via a spray-drying by applying different wall material formulations with maltodextrin (MD), inulin (IN), and gum arabic (GA). Methods: The microcapsules were characterised by yield, encapsulation efficiency (EE), particle size, sensory evaluation, morphology, attenuated total reflectance-Fourier transform infra-red spectroscopy and in vitro digestion studies. Results: The encapsulation improved the physicochemical properties and bioactivity stability of sweet tea extract (STE). MD5IN5 had the highest yield (56.33 ± 0.06% w/w) and the best EE (e.g. 88.84 ± 0.36% w/w of total flavonoids). MD9GA1 obtained the smallest particle size (642.13 ± 4.12 nm). MD9GA1 exhibited the highest retention of bioactive components, inhibition of α-glucosidase (96.85 ± 0.55%), α-amylase (57.58 ± 0.99%), angiotensin-converting enzyme (56.88 ± 2.20%), and the best antioxidant activity during in vitro gastrointestinal digestion. Conclusion: The encapsulation of STE can be an appropriate way for the valorisation of STE with improved properties.


Assuntos
Antioxidantes , Cápsulas , Goma Arábica , Inulina , Extratos Vegetais , Polissacarídeos , Chá , Polissacarídeos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inulina/química , Chá/química , Goma Arábica/química , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/administração & dosagem , alfa-Amilases/química , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Tamanho da Partícula , Humanos , alfa-Glucosidases/química
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612662

RESUMO

In this study, a new micro delivery system based on an anionic methacrylate copolymer, able to improve the biological response of myo-inositol by daily oral administration, was manufactured by spray-drying. It has an ideal dose form for oral administration, with an experimental drug loading (DL)% of 14% and a regulated particle size of less than 15 µm. The new formulation features an improvement on traditional formulations used as a chronic therapy for the treatment of polycystic ovary syndrome. The microparticles' release profile was studied and ex vivo porcine intestinal mucosa permeation experiments were performed to predict potential improvements in oral absorption. Batch n. 3, with the higher Eudragit/MI weight ratio (ratio = 6), showed the best-modified release profiles of the active ingredient, ensuring the lowest myo-inositol loss in an acidic environment. The in vivo evaluation of the myo-inositol micro delivery system was carried out in a rat animal model to demonstrate that the bioavailability of myo-inositol was increased when compared to the administration of the same dosage of the pure active ingredient. The AUC and Cmax of the loaded active molecule in the micro delivery system was improved by a minimum of 1.5 times when compared with the pure substance, administered with same dosage and route. Finally, the increase of myo-inositol levels in the ovary follicles was assessed to confirm that a daily administration of the new formulation improves myo-inositol concentration at the site of action, resulting in an improvement of about 1.25 times for the single administration and 1.66 times after 7 days of repeated administration when compared to pure MI.


Assuntos
Micropartículas Derivadas de Células , Metacrilatos , Feminino , Animais , Ratos , Suínos , Disponibilidade Biológica , Administração Oral , Comércio , Polímeros
16.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000223

RESUMO

Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.


Assuntos
Alginatos , Cápsulas , Sistemas de Liberação de Medicamentos , Gelatina , Derivados da Hipromelose , Triazóis , Alginatos/química , Gelatina/química , Derivados da Hipromelose/química , Sistemas de Liberação de Medicamentos/métodos , Triazóis/química , Triazóis/administração & dosagem , Triazóis/farmacocinética , Liberação Controlada de Fármacos , Preparações de Ação Retardada/química , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/farmacocinética , Microesferas
17.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257290

RESUMO

Lemon balm (Melissa officinalis) is an aromatic and medicinal plant, rich in bioactive ingredients and with superior antioxidant activity. The essential oil of this plant is an expensive product, so the use of the by-products of the essential oil industry is particularly useful. The aim of this research was to process Melissa officinalis distillation by-products to develop a series of polyphenol-rich formulations. In the present research, lemon balm was distilled in a laboratory-scale distiller, and the recovered by-product was used for further successive extractions with acetone and water, using a fixed-bed semi-batch extractor. Acetone extract exhibited relatively poor results as far as yield, phenolic composition and antiradical activity are concerned. However, the aqueous extract presented high yield in both total phenolic content (i.e., 111 mg gallic acid equivalents (GAE)/g, on a dry herb basis (dw)), and anti-radical capacity (205 mg trolox equivalents (TE)/g dw). On a dried extract basis, the results were also impressive, with total phenols reaching 322 mg GAE/g dry extract and antiradical capacity at 593 mg TE/g dry extract. The phenolic components of the extract were identified and quantified by HPLC-DAD. Rosmarinic acid was the major component and amounted to 73.5 mg/g dry extract, while the total identified compounds were quantified at 165.9 mg/g dry extract. Finally, formulations with two different wall materials (gum arabic-maltodextrin and maltodextrin) and two different drying methods (spray-drying and freeze-drying) were applied and evaluated to assess their performance, yield, efficiency and shelf-life of total phenolic content and rosmarinic acid concentration. From the present investigation, it is concluded that after one year of storage, rosmarinic acid does not decrease significantly, while total phenolic content shows a similar decrease for all powders. According to the yield and efficiency of microencapsulation, maltodextrin alone was chosen as the wall material and freeze-drying as the preferred drying method.


Assuntos
Melissa , Óleos Voláteis , Polifenóis , Acetona , Destilação , Fenóis , Ácido Gálico
18.
J Sci Food Agric ; 104(3): 1497-1510, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37804151

RESUMO

BACKGROUND: Sour cherry juice concentrate powder can serve as a modern, easy-to-handle, phenolics-rich merchandise; however, its transformation into powdered form requires the addition of carriers. In line with the latest trends in food technology, this study valorizes the use of dairy by-products (whey protein concentrate, whey, buttermilk, and mixes with maltodextrin) as carriers. A new multiple approach for higher drying yield, phenolics retention (phenolic acids, flavonols and anthocyanins) and antioxidant capacity of powders were tested as an effect of simultaneous decrease of drying temperature due to the drying air dehumidification and lower carrier content. RESULTS: Dairy-based carriers were effective for spray drying of sour cherry-juice concentrate. The drying yield was increased and retention of phenolics was higher when compared with maltodextrin. The application of dehumidified air, which enabled the drying temperature to be reduced, affected drying yield positively, and also affected particle morphology and retention of phenolics (the phenolic content was approximately 30% higher than with spray drying). CONCLUSIONS: The study proved that it is possible to apply dairy-based by-products to produce sour cherry juice concentrate powders profitably, lowering the spray-drying temperature and changing the carrier content. Dehumidified air spray drying can be recommended for the production of fruit juice concentrate powders with improved physicochemical properties. © 2023 Society of Chemical Industry.


Assuntos
Prunus avium , Pós/química , Antocianinas , Secagem por Atomização , Fenóis
19.
J Sci Food Agric ; 104(5): 2621-2629, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37985210

RESUMO

BACKGROUND: The uses of egg white powder (EWP) are restricted because of its odor. It is necessary to find a method to improve its flavor. In this paper, three different antioxidants - green tea extract (GTE), sodium ascorbate (SA), and glutathione (GSH) - were selected to modify the flavor. The physicochemical and structural properties of EWP were investigated to study the mechanism of the formation and release of volatile compounds. RESULTS: Antioxidants can modify the overall flavor of EWP significantly, inhibiting the generation or release of nonanal, 3-methylbutanal, heptanal, decanal, geranyl acetone, and 2-pemtylfuran. A SA-EWP combination showed the lowest concentration of 'off' flavor compounds; GTE-EWP and GSH-EWP could reduce several 'off' flavor compounds but increased the formation of geranyl acetone and furans. The changes in the carbonyl content and the amino acid composition confirmed the inhibition of antioxidants with the oxidative degradation of proteins or characteristic amino acids. The results of fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy provided structural information regarding EWP, which showed the release of volatile compounds decreased due to structural changes. For example, the surface hydrophobicity increased and the protein aggregation state changed. CONCLUSIONS: Antioxidants reduce the 'off' flavor of EWP in two ways: they inhibit protein oxidation and Maillard reactions (they inhibit formation of 3-methylbutanal and 2-pemtylfuran) and they enhance the binding ability of heat-denatured proteins (reducing the release of nonanal, decanal, and similar compounds). © 2023 Society of Chemical Industry.


Assuntos
Aldeídos , Antioxidantes , Clara de Ovo , Terpenos , Antioxidantes/química , Clara de Ovo/química , Pós , Aminoácidos
20.
J Sci Food Agric ; 104(7): 4331-4341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299439

RESUMO

BACKGROUND: Human milk fat analog emulsion (HMFAE) is an emulsion that mimics the composition and structure of human milk (HM) fat globules. The application of HMFAE in infant formula requires a series of milk powder processing steps, such as pasteurization and spray drying. However, the effect of milk powder processing on fat digestion of HMFAE is still unclear. In this study, the influence of pasteurization and spray drying on the lipolysis behavior of HMFAE was studied and compared with HM using a simulated infant in vitro digestion model. RESULTS: Pasteurization and spray drying increased the flocculation and aggregation of lipid droplets in HMFAE during digestion. Spray drying destroyed the lipid droplet structure of HMFAE, and partial milk fat globule membrane-covered lipid droplets turned into protein-covered lipid droplets, which aggravated lipid-protein aggregation during gastric digestion and hindered fat digestion in the small intestine. The final lipolysis degree was in the order HM (64.55%) > HMFAE (63.41%) > pasteurized HMFAE (61.75%) > spray-dried HMFAE (60.57%). After complete gastrointestinal digestion, there were no significant differences in free fatty acid and sn-2 monoacylglycerol profile among the HMFAE, pasteurized HMFAE, and spray-dried HMFAE. CONCLUSION: Milk powder processing can reduce lipolysis by altering the lipid droplet structure of HMFAE and the degree of lipid droplet aggregation during digestion. © 2024 Society of Chemical Industry.


Assuntos
Leite Humano , Pasteurização , Lactente , Humanos , Leite Humano/química , Emulsões/análise , Secagem por Atomização , Pós/análise , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA