Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 20(1): 524, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660850

RESUMO

BACKGROUND: Stable isotope tracing can follow individual atoms through metabolic transformations through the detection of the incorporation of stable isotope within metabolites. This resulting data can be interpreted in terms related to metabolic flux. However, detection of a stable isotope in metabolites by mass spectrometry produces a profile of isotopologue peaks that requires deconvolution to ascertain the localization of isotope incorporation. RESULTS: To aid the interpretation of the mass spectroscopy isotopologue profile, we have developed a moiety modeling framework for deconvoluting metabolite isotopologue profiles involving single and multiple isotope tracers. This moiety modeling framework provides facilities for moiety model representation, moiety model optimization, and moiety model selection. The moiety_modeling package was developed from the idea of metabolite decomposition into moiety units based on metabolic transformations, i.e. a moiety model. The SAGA-optimize package, solving a boundary-value inverse problem through a combined simulated annealing and genetic algorithm, was developed for model optimization. Additional optimization methods from the Python scipy library are utilized as well. Several forms of the Akaike information criterion and Bayesian information criterion are provided for selecting between moiety models. Moiety models and associated isotopologue data are defined in a JSONized format. By testing the moiety modeling framework on the timecourses of 13C isotopologue data for uridine diphosphate N-acetyl-D-glucosamine (UDP-GlcNAc) in human prostate cancer LnCaP-LN3 cells, we were able to confirm its robust performance in isotopologue deconvolution and moiety model selection. CONCLUSIONS: SAGA-optimize is a useful Python package for solving boundary-value inverse problems, and the moiety_modeling package is an easy-to-use tool for mass spectroscopy isotopologue profile deconvolution involving single and multiple isotope tracers. Both packages are freely available on GitHub and via the Python Package Index.


Assuntos
Metabolômica , Teorema de Bayes , Isótopos de Carbono/análise , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Masculino , Espectrometria de Massas/métodos , Metabolômica/métodos , Neoplasias da Próstata
2.
Arch Biochem Biophys ; 628: 123-131, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28263717

RESUMO

Metabolism is the basic activity of live cells, and monitoring the metabolic state provides a dynamic picture of the cells or tissues, and how they respond to external changes, for in disease or treatment with drugs. NMR is an extremely versatile analytical tool that can be applied to a wide range of biochemical problems. Despite its modest sensitivity its versatility make it an ideal tool for analyzing biochemical dynamics both in vitro and in vivo, especially when coupled with its isotope editing capabilities, from which isotope distributions can be readily determined. These are critical for any analyses of flux in live organisms. This review focuses on the utility of NMR spectroscopy in metabolomics, with an emphasis on NMR applications in stable isotope-enriched tracer research for elucidating biochemical pathways and networks with examples from nucleotide biochemistry. The knowledge gained from this area of research provides a ready link to genomic, epigenomic, transcriptomic, and proteomic information to achieve systems biochemical understanding of living cells and organisms.


Assuntos
Metabolômica/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Humanos , Isótopos/química , Redes e Vias Metabólicas
3.
Metabolites ; 12(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36005633

RESUMO

Glycogen is a readily deployed intracellular energy storage macromolecule composed of branched chains of glucose anchored to the protein glycogenin. Although glycogen primarily occurs in the liver and muscle, it is found in most tissues, and its metabolism has been shown to be important in cancers and immune cells. Robust analysis of glycogen turnover requires stable isotope tracing plus a reliable means of quantifying total and labeled glycogen derived from precursors such as 13C6-glucose. Current methods for analyzing glycogen are time- and sample-consuming, at best semi-quantitative, and unable to measure stable isotope enrichment. Here we describe a microscale method for quantifying both intact and acid-hydrolyzed glycogen by ultra-high-resolution Fourier transform mass spectrometric (UHR-FTMS) and/or NMR analysis in stable isotope resolved metabolomics (SIRM) studies. Polar metabolites, including intact glycogen and their 13C positional isotopomer distributions, are first measured in crude biological extracts by high resolution NMR, followed by rapid and efficient acid hydrolysis to glucose under N2 in a focused beam microwave reactor, with subsequent analysis by UHR-FTMS and/or NMR. We optimized the microwave digestion time, temperature, and oxygen purging in terms of recovery versus degradation and found 10 min at 110−115 °C to give >90% recovery. The method was applied to track the fate of 13C6-glucose in primary human lung BEAS-2B cells, human macrophages, murine liver and patient-derived tumor xenograft (PDTX) in vivo, and the fate of 2H7-glucose in ex vivo lung organotypic tissue cultures of a lung cancer patient. We measured the incorporation of 13C6-glucose into glycogen and its metabolic intermediates, UDP-Glucose and glucose-1-phosphate, to demonstrate the utility of the method in tracing glycogen turnover in cells and tissues. The method offers a quantitative, sensitive, and convenient means to analyze glycogen turnover in mg amounts of complex biological materials.

4.
Front Mol Biosci ; 9: 1004602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310598

RESUMO

The combination of high-resolution LC-MS untargeted metabolomics with stable isotope-resolved tracing is a promising approach for the global exploration of metabolic pathway activities. In our established workflow we combine targeted isotopologue feature extraction with the non-targeted X13CMS routine. Metabolites, detected by X13CMS as differentially labeled between two biological conditions are subsequently integrated into the original targeted library. This strategy enables monitoring of changes in known pathways as well as the discovery of hitherto unknown metabolic alterations. Here, we demonstrate this workflow in a PTEN (phosphatase and tensin homolog) null breast cancer cell line (MDA-MB-468) exploring metabolic pathway activities in the absence and presence of the selective PI3Kß inhibitor AZD8186. Cells were fed with [U-13C] glucose and treated for 1, 3, 6, and 24 h with 0.5 µM AZD8186 or vehicle, extracted by an optimized sample preparation protocol and analyzed by LC-QTOF-MS. Untargeted differential tracing of labels revealed 286 isotope-enriched features that were significantly altered between control and treatment conditions, of which 19 features could be attributed to known compounds from targeted pathways. Other 11 features were unambiguously identified based on data-dependent MS/MS spectra and reference substances. Notably, only a minority of the significantly altered features (11 and 16, respectively) were identified when preprocessing of the same data set (treatment vs. control in 24 h unlabeled samples) was performed with tools commonly used for label-free (i.e. w/o isotopic tracer) non-targeted metabolomics experiments (Profinder´s batch recursive feature extraction and XCMS). The structurally identified metabolites were integrated into the existing targeted isotopologue feature extraction workflow to enable natural abundance correction, evaluation of assay performance and assessment of drug-induced changes in pathway activities. Label incorporation was highly reproducible for the majority of isotopologues in technical replicates with a RSD below 10%. Furthermore, inter-day repeatability of a second label experiment showed strong correlation (Pearson R 2 > 0.99) between tracer incorporation on different days. Finally, we could identify prominent pathway activity alterations upon PI3Kß inhibition. Besides pathways in central metabolism, known to be changed our workflow revealed additional pathways, like pyrimidine metabolism or hexosamine pathway. All pathways identified represent key metabolic processes associated with cancer metabolism and therapy.

5.
Metabolites ; 10(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245221

RESUMO

Stable isotope resolved metabolomics (SIRM) experiments use stable isotope tracers to provide superior metabolomics datasets for metabolic flux analysis and metabolic modeling. Since assumptions of model correctness can seriously compromise interpretation of metabolic flux results, we have developed a metabolic modeling software package specifically designed for moiety model comparison and selection based on the metabolomics data provided. Here, we tested the effectiveness of model selection with two time-series mass spectrometry (MS) isotopologue datasets for uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc) generated from different platforms utilizing direct infusion nanoelectrospray and liquid chromatography. Analysis results demonstrate the robustness of our model selection methods by the successful selection of the optimal model from over 40 models provided. Moreover, the effects of specific optimization methods, degree of optimization, selection criteria, and specific objective functions on model selection are illustrated. Overall, these results indicate that over-optimization can lead to model selection failure, but combining multiple datasets can help control this overfitting effect. The implication is that SIRM datasets in public repositories of reasonable quality can be combined with newly acquired datasets to improve model selection. Furthermore, curation efforts of public metabolomics repositories to maintain high data quality could have a huge impact on future metabolic modeling efforts.

6.
Mol Cell Oncol ; 6(5): e1627273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528698

RESUMO

We uncovered the neurotransmitter N-acetyl-aspartyl-glutamate (NAAG) as a reservoir providing glutamate to promote cancer growth, and demonstrated that inhibition of NAAG hydrolysis by targeting glutamate carboxypeptidase II is a viable strategy for cancer therapy. Our study also suggests that NAAG concentration in plasma could be a non-invasive measurement to monitor cancer progression.

7.
Anal Chim Acta ; 1080: 104-115, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31409459

RESUMO

We have implemented a linear ion trap (LIT)-based SIM-stitching method for ultra-high-resolution Fourier transform mass spectrometry (FTMS) that increases the S/N over a wide m/z range compared to non-segmented wide full-scan (WFS) spectra. Here we described an improved segmented spectral scan stitching method that was based on quadrupole mass filter (QMF)-SIM, which overcame previous limitations of ion signal loss in LIT. This allowed for accurate representation of isotopologue distributions, both at natural abundance and in stable isotope-resolved metabolomics (SIRM)-based experiments. We also introduced a new spectral binning method that provided more precise and resolution-independent bins for irreversibly noise-suppressed FTMS spectra. We demonstrated a substantial improvement in S/N and sensitivity (typically > 10-fold) for 13C labeled lipid extracts of human macrophages grown as three-dimensional (3D) cell culture, with detection of an increased number of 13C isotopologue ions. The method also enabled analysis of extracts from very limited biological samples.


Assuntos
Lipídeos/análise , Macrófagos/química , Isótopos de Carbono/química , Análise de Fourier , Glucose/química , Glucose/metabolismo , Humanos , Marcação por Isótopo , Macrófagos/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Esferoides Celulares/química , Esferoides Celulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA