Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 656
Filtrar
1.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503283

RESUMO

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Assuntos
RNA , Grânulos de Estresse , Citoplasma , RNA Mensageiro/genética , Estresse Fisiológico , Humanos , Células HeLa
2.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38942013

RESUMO

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Concentração de Íons de Hidrogênio , Grânulos de Estresse/metabolismo
3.
Cell ; 186(15): 3307-3324.e30, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385249

RESUMO

The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.


Assuntos
Mitocôndrias , Proteoma , Proteoma/metabolismo , Mitocôndrias/metabolismo , Nucléolo Celular/metabolismo , Espectrometria de Massas/métodos , Regulação da Expressão Gênica
4.
Cell ; 183(7): 1801-1812.e13, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33308477

RESUMO

Cellular stress leads to reprogramming of mRNA translation and formation of stress granules (SGs), membraneless organelles consisting of mRNA and RNA-binding proteins. Although the function of SGs remains largely unknown, it is widely assumed they contain exclusively non-translating mRNA. Here, we re-examine this hypothesis using single-molecule imaging of mRNA translation in living cells. Although we observe non-translating mRNAs are preferentially recruited to SGs, we find unequivocal evidence that mRNAs localized to SGs can undergo translation. Our data indicate that SG-associated translation is not rare, and the entire translation cycle (initiation, elongation, and termination) can occur on SG-localized transcripts. Furthermore, translating mRNAs can be observed transitioning between the cytosol and SGs without changing their translational status. Together, these results demonstrate that mRNA localization to SGs is compatible with translation and argue against a direct role for SGs in inhibition of protein synthesis.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Biossíntese de Proteínas/genética , Transporte de RNA/genética , Imagem Individual de Molécula , Estresse Fisiológico , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302572

RESUMO

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Conformação de Ácido Nucleico , Organelas/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
6.
Cell ; 181(2): 306-324.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302570

RESUMO

Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Estruturas Citoplasmáticas/fisiologia , Mapas de Interação de Proteínas/fisiologia , Fenômenos Biofísicos , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Extração Líquido-Líquido/métodos , Organelas/química , RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/fisiologia
7.
Cell ; 173(3): 706-719.e13, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677514

RESUMO

Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.


Assuntos
Arginina/química , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Citoplasma/metabolismo , Metilação de DNA , DNA Complementar/metabolismo , Densitometria , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Homeostase , Humanos , Carioferinas/química , Espectroscopia de Ressonância Magnética , Metilação , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/metabolismo , Ligação Proteica , Domínios Proteicos
8.
Cell ; 168(6): 1028-1040.e19, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283059

RESUMO

In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1's LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Grânulos Citoplasmáticos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Mutagênese , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Prolina/análise , Prolina/metabolismo , Domínios Proteicos , Ribonucleases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Estresse Fisiológico
9.
Mol Cell ; 84(19): 3692-3705, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39366355

RESUMO

RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.


Assuntos
Condensados Biomoleculares , Transição de Fase , Proteínas de Ligação a RNA , RNA , Ribonucleoproteínas , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Humanos , RNA/metabolismo , RNA/química , RNA/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Animais
10.
Mol Cell ; 84(14): 2698-2716.e9, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059370

RESUMO

The cell interior is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cellular physiology. Cellular stress responses almost universally lead to inhibition of translation, resulting in polysome collapse and release of mRNA. The released mRNA molecules condense with RNA-binding proteins to form ribonucleoprotein (RNP) condensates known as processing bodies and stress granules. Here, we show that polysome collapse and condensation of RNA transiently fluidize the cytoplasm, and coarse-grained molecular dynamic simulations support this as a minimal mechanism for the observed biophysical changes. Increased mesoscale diffusivity correlates with the efficient formation of quality control bodies (Q-bodies), membraneless organelles that compartmentalize misfolded peptides during stress. Synthetic, light-induced RNA condensation also fluidizes the cytoplasm. Together, our study reveals a functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to enable efficient response of cells to stress conditions.


Assuntos
Citoplasma , Polirribossomos , Ribonucleoproteínas , Polirribossomos/metabolismo , Citoplasma/metabolismo , Humanos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Simulação de Dinâmica Molecular , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Condensados Biomoleculares/metabolismo , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética
11.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547866

RESUMO

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Assuntos
Fator de Iniciação 4F em Eucariotos , Fator de Iniciação Eucariótico 4G , Resposta ao Choque Térmico , Proteínas de Ligação a Poli(A) , Biossíntese de Proteínas , RNA Mensageiro , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Resposta ao Choque Térmico/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Ligação Proteica , RNA Fúngico/metabolismo , RNA Fúngico/genética
12.
Cell ; 167(7): 1803-1813.e12, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984728

RESUMO

There is growing evidence that stress-coping mechanisms represent tumor cell vulnerabilities that may function as therapeutically beneficial targets. Recent work has delineated an integrated stress adaptation mechanism that is characterized by the formation of cytoplasmic mRNA and protein foci, termed stress granules (SGs). Here, we demonstrate that SGs are markedly elevated in mutant KRAS cells following exposure to stress-inducing stimuli. The upregulation of SGs by mutant KRAS is dependent on the production of the signaling lipid molecule 15-deoxy-delta 12,14 prostaglandin J2 (15-d-PGJ2) and confers cytoprotection against stress stimuli and chemotherapeutic agents. The secretion of 15-d-PGJ2 by mutant KRAS cells is sufficient to enhance SG formation and stress resistance in cancer cells that are wild-type for KRAS. Our findings identify a mutant KRAS-dependent cell non-autonomous mechanism that may afford the establishment of a stress-resistant niche that encompasses different tumor subclones. These results should inform the design of strategies to eradicate tumor cell communities.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/metabolismo , Grânulos Citoplasmáticos/metabolismo , Neoplasias Pancreáticas/patologia , Prostaglandina D2/análogos & derivados , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Mutação , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Prostaglandina D2/biossíntese , Prostaglandina D2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Regulação para Cima
13.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295429

RESUMO

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Ligação a Poli(A) , Doenças Neurodegenerativas/metabolismo , Condensados Biomoleculares
14.
Mol Cell ; 82(14): 2544-2556, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35662398

RESUMO

Stress-induced condensation of mRNA and protein into massive cytosolic clusters is conserved across eukaryotes. Known as stress granules when visible by imaging, these structures remarkably have no broadly accepted biological function, mechanism of formation or dispersal, or even molecular composition. As part of a larger surge of interest in biomolecular condensation, studies of stress granules and related RNA/protein condensates have increasingly probed the biochemical underpinnings of condensation. Here, we review open questions and recent advances, including the stages from initial condensate formation to accumulation in mature stress granules, mechanisms by which stress-induced condensates form and dissolve, and surprising twists in understanding the RNA components of stress granules and their role in condensation. We outline grand challenges in understanding stress-induced RNA condensation, centering on the unique and substantial barriers in the molecular study of cellular structures, such as stress granules, for which no biological function has been firmly established.


Assuntos
RNA , Grânulos de Estresse , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Mol Cell ; 82(6): 1107-1122.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303483

RESUMO

Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Fator de Processamento U2AF , Grânulos de Estresse , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Sítios de Splice de RNA , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Grânulos de Estresse/metabolismo
16.
Mol Cell ; 82(19): 3712-3728.e10, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36150385

RESUMO

Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.


Assuntos
Interferon Tipo I , RNA de Cadeia Dupla , Antivirais , Doenças Autoimunes do Sistema Nervoso , Exonucleases/genética , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Malformações do Sistema Nervoso , RNA de Cadeia Dupla/genética , Proteína 1 com Domínio SAM e Domínio HD/genética
17.
Mol Cell ; 81(20): 4209-4227.e12, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34453888

RESUMO

The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.


Assuntos
Adenosina/análogos & derivados , Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Proteínas tau/metabolismo , Adenosina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Agregados Proteicos , Agregação Patológica de Proteínas , RNA/genética , Índice de Gravidade de Doença , Proteínas tau/genética
18.
Mol Cell ; 79(6): 991-1007.e4, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32780990

RESUMO

Stress granules (SGs) are condensates of mRNPs that form in response to stress. SGs arise by multivalent protein-protein, protein-RNA, and RNA-RNA interactions. However, the role of RNA-RNA interactions in SG assembly remains understudied. Here, we describe a yeast SG reconstitution system that faithfully recapitulates SG assembly in response to trigger RNAs. SGs assembled by stem-loop RNA triggers are ATP-sensitive, regulated by helicase/chaperone activity, and exhibit the hallmarks of maturation observed for SG proteins that phase-separate in vitro. Additionally, the fraction of total RNA that phase-separates in vitro is sufficient to trigger SG formation. However, condensation of NFT1 mRNA, an enriched transcript in this population, can only assemble an incomplete SG. These results suggest that networks of distinct transcripts are required to form a canonical SG and provide a platform for dissecting the interplay between the transcriptome and ATP-dependent remodeling in SG formation.


Assuntos
Grânulos Citoplasmáticos/genética , Ribonucleoproteínas/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Trifosfato de Adenosina/genética , Linhagem Celular , Regulação Fúngica da Expressão Gênica/genética , Humanos , RNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
19.
Mol Cell ; 79(3): 443-458.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32649883

RESUMO

Despite the prominent role of TDP-43 in neurodegeneration, its physiological and pathological functions are not fully understood. Here, we report an unexpected role of TDP-43 in the formation of dynamic, reversible, liquid droplet-like nuclear bodies (NBs) in response to stress. Formation of NBs alleviates TDP-43-mediated cytotoxicity in mammalian cells and fly neurons. Super-resolution microscopy reveals distinct functions of the two RRMs in TDP-43 NB formation. TDP-43 NBs are partially colocalized with nuclear paraspeckles, whose scaffolding lncRNA NEAT1 is dramatically upregulated in stressed neurons. Moreover, increase of NEAT1 promotes TDP-43 liquid-liquid phase separation (LLPS) in vitro. Finally, we discover that the ALS-associated mutation D169G impairs the NEAT1-mediated TDP-43 LLPS and NB assembly, causing excessive cytoplasmic translocation of TDP-43 to form stress granules, which become phosphorylated TDP-43 cytoplasmic foci upon prolonged stress. Together, our findings suggest a stress-mitigating role and mechanism of TDP-43 NBs, whose dysfunction may be involved in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Corpos de Inclusão Intranuclear/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Arsenitos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Corpos de Inclusão Intranuclear/efeitos dos fármacos , Corpos de Inclusão Intranuclear/ultraestrutura , Camundongos , Mutação , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Cultura Primária de Células , Transporte Proteico/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Estresse Fisiológico
20.
Mol Cell ; 79(1): 54-67.e7, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32521226

RESUMO

Exposure of cells to heat or oxidative stress causes misfolding of proteins. To avoid toxic protein aggregation, cells have evolved nuclear and cytosolic protein quality control (PQC) systems. In response to proteotoxic stress, cells also limit protein synthesis by triggering transient storage of mRNAs and RNA-binding proteins (RBPs) in cytosolic stress granules (SGs). We demonstrate that the SUMO-targeted ubiquitin ligase (StUbL) pathway, which is part of the nuclear proteostasis network, regulates SG dynamics. We provide evidence that inactivation of SUMO deconjugases under proteotoxic stress initiates SUMO-primed, RNF4-dependent ubiquitylation of RBPs that typically condense into SGs. Impairment of SUMO-primed ubiquitylation drastically delays SG resolution upon stress release. Importantly, the StUbL system regulates compartmentalization of an amyotrophic lateral sclerosis (ALS)-associated FUS mutant in SGs. We propose that the StUbL system functions as surveillance pathway for aggregation-prone RBPs in the nucleus, thereby linking the nuclear and cytosolic axis of proteotoxic stress response.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Núcleo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína SUMO-1/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Esclerose Lateral Amiotrófica/genética , Núcleo Celular/genética , Células HeLa , Resposta ao Choque Térmico , Humanos , Mutação , Proteínas Nucleares/genética , Proteólise , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Proteína SUMO-1/genética , Sumoilação , Fatores de Transcrição/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA