Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.704
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193961

RESUMO

Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub-5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 µs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.


Assuntos
Técnicas Biossensoriais/métodos , Diamante/química , Nanotecnologia/métodos , Técnicas Biossensoriais/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/química , Nitrogênio/química
2.
Nano Lett ; 24(6): 2094-2101, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315573

RESUMO

Prelithiation plays a crucial role in advancing the development of high-energy-density batteries, and ultrathin lithium (UTL) has been proven to be a promising anode prelithiation reagent. However, there remains a need to explore an adjustable, efficient, and cost-effective method for manufacturing UTL. In this study, we introduce a method for producing UTL with adjustable thicknesses ranging from 1.5 to 10 µm through blade coating of molten lithium on poly(vinylidene fluoride)-modified copper current collectors. By employing the transfer-printing method, prelithiated graphite and Si-C composite electrodes are prepared, which exhibit significantly improved initial Coulombic efficiencies of 99.60% and 99.32% in half-cells, respectively. Moreover, the energy densities of Li(NiCoMn)1/3O2 and LiFePO4 full cells assembled with the prelithiated graphite electrodes increase by 13.1% and 23.6%, respectively.

3.
Nano Lett ; 24(15): 4588-4594, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587406

RESUMO

Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.


Assuntos
Calefação , Magnetismo , Suínos , Animais , Criopreservação , Óxido Ferroso-Férrico , Campos Magnéticos
4.
Semin Cancer Biol ; 96: 64-81, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820858

RESUMO

Ovarian Cancer (OC) is the most common gynecological malignancy and the eighth most diagnosed cancer in females worldwide. Presently, it ranks as the fifth leading cause of cancer-related mortality among patients globally. Major factors contributing to the lethality of OC worldwide include delayed diagnosis, chemotherapy resistance, high metastatic rates, and the heterogeneity of subtypes. Despite continuous efforts to develop novel targeted therapies and chemotherapeutic agents, challenges persist in the form of OC resistance and recurrence. In the last decade, CRISPR-Cas-based genome editing has emerged as a powerful tool for modifying genetic and epigenetic mechanisms, holding potential for treating numerous diseases. However, a significant challenge for therapeutic applications of CRISPR-Cas technology is the absence of an optimal vehicle for delivering CRISPR molecular machinery into targeted cells or tissues. Recently, extracellular vesicles (EVs) have gained traction as potential delivery vehicles for various therapeutic agents. These heterogeneous, membrane-derived vesicles are released by nearly all cells into extracellular spaces. They carry a molecular cargo of proteins and nucleic acids within their intraluminal space, encased by a cholesterol-rich phospholipid bilayer membrane. EVs actively engage in cell-to-cell communication by delivering cargo to both neighboring and distant cells. Their inherent ability to shield molecular cargo from degradation and cross biological barriers positions them ideally for delivering CRISPR-Cas ribonucleoproteins (RNP) to target cells. Furthermore, they exhibit higher biocompatibility, lower immunogenicity, and reduced toxicity compared to classical delivery platforms such as adeno-associated virus, lentiviruses, and synthetic nanoparticles. This review explores the potential of employing different CRISPR-Cas systems to target specific genes in OC, while also discussing various methods for engineering EVs to load CRISPR components and enhance their targeting capabilities.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Sistemas CRISPR-Cas/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/terapia , Carcinoma Epitelial do Ovário/metabolismo , Edição de Genes , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
5.
Small ; : e2312215, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497820

RESUMO

The systematic structure modification of metal oxides is becoming more attractive, and effective strategies for structural tunning are highly desirable for improving their practical color-modulating energy storage performances. Here, the ability of a stoichiometrically tuned oxide-hydroxide complex of porous vanadium oxide, namely [V2 O2+ξ (OH)3-ξ ]ξ = 0:3 for multifunctional electrochromic supercapacitor application is demonstrated. Theoretically, the pre-optimized oxide complex is synthesized using a simple wet chemical etching technique in its optimized stoichiometry [V2 O2+ξ (OH)3-ξ ] with ξ = 0, providing more electroactive surface sites. The multifunctional electrode shows a high charge storage property of 610 Fg-1 at 1A g-1 , as well as good electrochromic properties with high color contrast of 70% and 50% at 428 and 640 nm wavelengths, faster switching, and high coloration efficiency. When assembled in a solid-state symmetric electrochromic supercapacitor device, it exhibits an ultrahigh power density of 1066 mWcm-2 , high energy density of 246 mWhcm-2 , and high specific capacitance of 290 mFcm-2 at 0.2 mAcm-2 . A prepared prototype device displays red when fully charged, green when half charged, and blue when fully discharged. A clear evidence of optimizing the multifunctional performance of electrochromic supercapacitor by stoichiometrical tuning is presented along with demonstrating a device prototype of a 25 cm2 large device for real-life applications.

6.
Small ; 20(13): e2306137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963826

RESUMO

Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.


Assuntos
Infecções Bacterianas , Hipertermia Induzida , Nanoestruturas , Neoplasias , Animais , Humanos , Hipertermia Induzida/métodos , Fototerapia/métodos , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Infecções Bacterianas/terapia , Fenômenos Magnéticos , Mamíferos
7.
Small ; 20(5): e2305618, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37753872

RESUMO

Planar gliding along with anisotropic lattice strain of single-crystalline nickel-rich cathodes (SCNRC) at highly delithiated states will induce severe delamination cracking that seriously deteriorates LIBs' cyclability. To address these issues, a novel lattice-matched MgTiO3 (MTO) layer, which exhibits same lattice structure as Ni-rich cathodes, is rationally constructed on single-crystalline LiNi0.9 Co0.05 Mn0.05 O2 (SC90) for ultrastable mechanical integrity. Intensive in/ex situ characterizations combined with theoretical calculations and finite element analysis suggest that the uniform MTO coating layer prevents direct contact between SC90 and organic electrolytes and enables rapid Li-ion diffusion with depressed Li-deficiency, thereby stabilizing the interfacial structure and accommodating the mechanical stress of SC90. More importantly, a superstructure is simultaneously formed in SC90, which can effectively alleviate the anisotropic lattice changes and decrease cation mobility during successive high-voltage de/intercalation processes. Therefore, the as-acquired MTO-modified SC90 cathode displays desirable capacity retention and high-voltage stability. When paired with commercial graphite anodes, the pouch-type cells with the MTO-modified SC90 can deliver a high capacity of 175.2 mAh g-1 with 89.8% capacity retention after 500 cycles. This lattice-matching coating strategy demonstrate a highly effective pathway to maintain the structural and interfacial stability in electrode materials, which can be a pioneering breakthrough in commercialization of Ni-rich cathodes.

8.
Small ; 20(26): e2309035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234137

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) hold promise for single-molecule imaging owing to their excellent photostability and minimal autofluorescence. However, their limited water dispersibility, often from the hydrophobic oleic acid ligand during synthesis, is a challenge. To address this, various surface modification strategies' impact on single-particle upconversion luminescence are studied. UCNPs are made hydrophilic through methods like ligand exchange with dye IR806, HCl or NOBF4 treatment, silica coating (SiO2 or mesoporous mSiO2), and self-assembly with polymer of DSPE-PEG or F127. The studies revealed that UCNPs modified with NOBF4 and DSPE-PEG exhibited notably higher single-particle brightness with minimal quenching (3% and 8%, respectively), followed by SiO2, F127, IR806, mSiO2, and HCl (84% quenching). HCl disrupted UCNPs's crystal lattice, weakening luminescence, while mSiO2 absorbed solvent molecules, causing luminescence quenching. Energy transfer to IR806 also reduced the brightness. Additionally, a prevalence of upconversion red emission over green is observed, with the red-to-green ratio increasing with irradiance. UCNPs coated with DSPE-PEG exhibited the brightest single-particle luminescence in water, retaining 48% of its original emission due to a lower critical micelle concentration and superior water protection. In summary, the investigation provides valuable insights into the role of surface chemistry on UCNPs at the single-particle level.

9.
Small ; : e2401990, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004869

RESUMO

This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.

10.
Small ; 20(27): e2310756, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361223

RESUMO

P2-phase layered cathodes play a pivotal role in sodium-ion batteries due to their efficient Na+ intercalation chemistry. However, limited by crystal disintegration and interfacial instability, bulk and interfacial failure plague their electrochemical performance. To address these challenges, a structural enhancement combined with surface modification is achieved through trace Y doping. Based on a synergistic combination of experimental results and density functional theory (DFT) calculations, the introduction of partial Y ions at the Na site (2d) acts as a stabilizing pillar, mitigating the electrostatic repulsions between adjacent TMO2 slabs and thereby relieving internal structural stress. Furthermore, the presence of Y effectively optimizes the Ni 3d-O 2p hybridization, resulting in enhanced electronic conductivity and a notable rapid charging ability, with a capacity of 77.3 mA h g-1 at 40 C. Concurrently, the introduction of Y also induces the formation of perovskite nano-islands, which serve to minimize side reactions and modulate interfacial diffusion. As a result, the refined P2-Na0.65 Y0.025[Ni0.33Mn0.67]O2 cathode material exhibits an exceptionally low volume variation (≈1.99%), an impressive capacity retention of 83.3% even at -40 °C after1500 cycles at 1 C.

11.
Small ; : e2402213, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881352

RESUMO

The intrinsic reactivity of lithium (Li) toward ambient air, combined with insufficient cycling stability in conventional electrolytes, hinders the practical adoption of Li metal anodes in rechargeable batteries. Here, a bilayer interphase for Li metal is introduced to address both its susceptibility to corrosion in ambient air and its deterioration during cycling in carbonate electrolytes. Initially, the Li metal anode is coated with a conformal bottom layer of polysiloxane bearing methacrylate, followed by further grafting with poly(vinyl ethylene carbonate) (PVEC) to enhance anti-corrosion capability and electrochemical stability. In contrast to single-layer applications of polysiloxane or PVEC, the bilayer design offers a highly uniform coating that effectively resists humid air and prevents dendritic Li growth. Consequently, it demonstrates stable plating/stripping behavior with only a marginal increase in overpotential over 200 cycles in carbonate electrolytes, even after exposure to ambient air with 46% relative humidity. The design concept paves the way for scalable production of high-voltage, long-cycling Li metal batteries.

12.
Small ; : e2310712, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733222

RESUMO

Extracellular vesicles (EVs) are recognized as potential candidates for next-generation drug delivery systems. However, the inherent cancer-targeting efficiency is unsatisfactory, necessitating surface modification to attach cell-binding ligands. By utilizing phospholipase D from Streptomyces in combination with maleimide-containing primary alcohol, the authors successfully anchored ligands onto milk-derived EVs (mEVs), overcoming the issues of ligand leakage or functional alteration seen in traditional methods. Quantitative nano-flow cytometry demonstrated that over 90% of mEVs are effectively modified with hundreds to thousands of ligands. The resulting mEV formulations exhibited remarkable long-term stability in conjugation proportion, ligand number, size distribution, and particle concentration, even after months of storage. It is further shown that conjugating transferrin onto mEVs significantly enhanced cellular uptake and induced pronounced cytotoxic effects when loaded with paclitaxel. Overall, this study presents a highly efficient, stable, cost-effective, and scalable ligand conjugation approach, offering a promising strategy for targeted drug delivery of EVs.

13.
Small ; 20(21): e2308320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105422

RESUMO

The urgent need for the development of micro-thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm-thick MXene films, gaseous transformations of oxygen-containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat-treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high-performance, non-metallic EMI shielding materials.

14.
Chemistry ; : e202401380, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987889

RESUMO

Photocatalytic ozonation is considered to be a promising approach for the treatment of refractory organic pollutants, but the design of efficient catalyst remains a challenge. Surface modification provides a potential strategy to improve the activity of photocatalytic ozonation. In this work, density functional theory (DFT) calculations were first performed to check the interaction between O3 and TiO2-OH (surface hydroxylated TiO2) or TiO2-F (surface fluorinated TiO2), and the results suggest that TiO2-OH displays better O3 adsorption and activation than does TiO2-F, which is confirmed by experimental results. The surface hydroxyl groups greatly promote the O3 activation, which is beneficial for the generation of reactive oxygen species (ROS). Importantly, TiO2-OH displays better performance towards pollutants (such as berberine hydrochloride) removal than does TiO2-F and most reported ozonation photocatalysts. The total organic carbon (TOC) removal efficiency reaches 84.4% within two hours. This work highlights the effect of surface hydroxylation on photocatalytic ozonation and provides ideas for the design of efficient photocatalytic ozonation catalysts.

15.
Anal Biochem ; 689: 115502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453047

RESUMO

Myoglobin (Myo), creatine kinase-MB (CKMB), and cardiac troponin I (cTnI) are crucial biomarkers for diagnosing acute myocardial infarction (AMI) The accurate and rapid detection of these three targets can greatly improve the prognosis of AMI patients. Herein, this study developed a microfluidic immunofluorescence method that can detect all three targets in 10-15 min. Ultrasonic atomization and spray technology are used to modify the surface of the injection-molded microfluidic chip (MFC), which effectively solves the problem of biological cross-linking and antibody immobilization on the MFC surface. In addition, it improves the hydrophilicity of the chip surface, thus enhancing fluid self-driving effect. The linear response towards Myo, CKMB and cTnI range from 5 ng/mL to 500 ng/mL, 1 ng/mL to 70 ng/mL, and 0.05 ng/mL to 30 ng/mL, respectively. The intra-batch precision is ≤ 10%, and the inter-batch precision is ≤ 15%. Furthermore, this method shows good consistency compared with the BECKMAN ACCESS2 chemiluminescent immunoanalyzer. The present work provides an AMI diagnostic method with high sensitivity, good repeatability, high accuracy and simple operation, which can satisfy the needs of clinical diagnosis, and shows promising application prospects.


Assuntos
Microfluídica , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/diagnóstico , Creatina Quinase Forma MB , Prognóstico , Troponina I , Biomarcadores , Mioglobina , Sensibilidade e Especificidade
16.
Chem Rec ; 24(4): e202400010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501833

RESUMO

Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.


Assuntos
Nanocompostos , Neoplasias , Humanos , Hidróxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Nanocompostos/química
17.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38806016

RESUMO

In this work, composite materials were formed based on various matrices (polymer and porous cellulose matrix) and carbon dots (CDs) with intense room-temperature phosphorescence (RTP). The effect of post-synthesis chemical treatment with citric acid or urea on the optical properties of composites was studied: the increase in carboxy and carbonyl groups led to an increase of RTP signals that could be seen with the naked eye over several seconds. The fabricated composites demonstrated good stability and reversibility of RTP signals by mild heating. Based on the developed CDs, luminescent inks were used for a simple demonstration of the data encryption on paper.

18.
Nanotechnology ; 35(31)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640911

RESUMO

The polar channels formed by the curing of waterborne anticorrosive coatings compromise their water resistance, leading to coating degradation and metal corrosion. To enhance the anticorrosive performance of waterborne coatings, this study proposed a novel method of depositing ultrathin Al2O3films on the surface of waterborne epoxy coatings by atomic layer deposition, a technique that can modify the surface properties of polymer materials by depositing functional films. The Al2O3-modified coatings exhibited improved sealing and barrier properties by closing the polar channels and surface defects and cracks. The surface structure and morphology of the modified coatings were characterized by x-ray photoelectron spectroscopy and scanning electron microscopy. The hydrophilicity and corrosion resistance of the modified coatings were evaluated by water contact angle measurement, Tafel polarization curve, and electrochemical impedance spectroscopy. The results indicated that the water contact angle of the Al2O3-modified coating increased by 48° compared to the unmodified coating, and the protection efficiency of the modified coating reached 99.81%. The Al2O3-modified coating demonstrated high anticorrosive efficiency and potential applications for metal anticorrosion in harsh marine environments.

19.
Nanotechnology ; 35(21)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38382120

RESUMO

Thermal effect remains a thorny issue for femtosecond-laser surface engineering and nanostructuring on metallic targets with high pulse energies or high repetition rates, which needs to be paid adequate attentions. Herein, we have experimentally investigated the heat diffusion and accumulations during single-shot and multi-shot femtosecond laser ablation on metallic surfaces. We have for the first time observed a novel phenomenon that the thermal effect was intensified abruptly when the laser-pulse number goes over a threshold (approximately between 10 and 20 for aluminum alloy with laser fluence of 6 J cm-2), accompanied with a dramatic reduction of ablated depth and complicated plasma dynamics. Based on both optical and thermodynamic analysis, we introduced a defocusing-dominated plasma-assistant model for this abnormal thermal effect. This work explored the critical experimental parameters for femtosecond-laser surface modification and processing in micro-scale engineering applications.

20.
Environ Res ; 257: 119314, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824988

RESUMO

This study synthesized novel, green, and easily recoverable surface-modified economical catalysts via hydrothermal treatment (HT) successfully, utilizing biogas residue biochar (BRB), a food waste product from anaerobic fermentation, pyrolyzed at 500 °C for 50 min. Using autoclaves, a total of six solutions were prepared, each having 1 g fine-grinded BRB, surficial modified by adding glycerol (GL) (10 or 20 mL) and SDI water (70 or 60 mL), and heated in an oven at 240 °C, 180 °C, and 120 °C for 24 h. Afterward, the catalysts showed the potential for degradation of widely used emerging pollutants like ciprofloxacin. Taking advantage of catalytic surface modification, the catalytic ozonation degradation was more effective than that of a single ozonation. However, under similar conditions, catalyst amount 0.20 g, ozone dose 15 mg L-1, and ciprofloxacin 80 mg L-1, the performance of the 10 mL GL-180 °C catalyst was excellent. It showed a 92.45%-94.41% optimum removal rate in the 8-10 min interval. After five continuous cycles, the 10 mL GL-180 °C catalyst exhibited excellent stability and reusability. XPS, FT-IR, BET, XRD, and SEM before and after the reaction confirmed the successful synthesis and degradation mechanism. A possible degradation pathway was unrevealed based on a liquid chromatography-mass spectrometer (LC-MS) and scavenger test, proving the significant roles of superoxide radicals (O2•-), hydroxyl radicals (•OH), and singlet oxygen (1O2). Further, Electron paramagnetic resonance (EPR) analysis confirmed the presence of active oxygen species. Subsequently, 10 mL GL-180 °C showed promising degradation for the actual water environment, such as groundwater (73.55%) and river water (64.74%). This work provides a valuable economic strategy to convert biogas residue biochar into a low-cost catalyst for organic pollutant decomposition.


Assuntos
Biocombustíveis , Carvão Vegetal , Ciprofloxacina , Ozônio , Poluentes Químicos da Água , Ozônio/química , Carvão Vegetal/química , Ciprofloxacina/química , Catálise , Poluentes Químicos da Água/química , Biocombustíveis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA