Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38631317

RESUMO

Introduction. The currently available dosimetry techniques in computed tomography can be inaccurate which overestimate the absorbed dose. Therefore, we aimed to provide an automated and fast methodology to more accurately calculate the SSDE usingDwobtained by using CNN from thorax and abdominal CT study images.Methods. The SSDE was determined from the 200 records files. For that purpose, patients' size was measured in two ways: (a) by developing an algorithm following the AAPM Report No. 204 methodology; and (b) using a CNN according to AAPM Report No. 220.Results. The patient's size measured by the in-house software in the region of thorax and abdomen was 27.63 ± 3.23 cm and 28.66 ± 3.37 cm, while CNN was 18.90 ± 2.6 cm and 21.77 ± 2.45 cm. The SSDE in thorax according to 204 and 220 reports were 17.26 ± 2.81 mGy and 23.70 ± 2.96 mGy for women and 17.08 ± 2.09 mGy and 23.47 ± 2.34 mGy for men. In abdomen was 18.54 ± 2.25 mGy and 23.40 ± 1.88 mGy in women and 18.37 ± 2.31 mGy and 23.84 ± 2.36 mGy in men.Conclusions. Implementing CNN-based automated methodologies can contribute to fast and accurate dose calculations, thereby improving patient-specific radiation safety in clinical practice.


Assuntos
Algoritmos , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Masculino , Feminino , Tamanho Corporal , Redes Neurais de Computação , Software , Automação , Tórax/diagnóstico por imagem , Adulto , Abdome/diagnóstico por imagem , Radiometria/métodos , Radiografia Torácica/métodos , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Radiografia Abdominal/métodos , Idoso
2.
J Clin Imaging Sci ; 10: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874751

RESUMO

OBJECTIVES: This study aims to first measure patient doses during computed tomography (CT) chest, abdomen, and extremities procedures for evaluation lymphedema, and second to estimate the radiation dose-related risks during the procedures. MATERIAL AND METHODS: Radiation effective doses from CT lymphography procedures quantified using CT machines from different vendors. After the calibration of CT systems, the data collected for a total of 28 CT lymphography procedures. Effective and organ doses extrapolated using national radiological protection software based on Monte Carlo simulation. RESULTS: The mean patient doses for chest and abdomen procedures in term of CTDIvol (mGy) and DLP (mGy.cm) are 10.0 ± 3 and 425 ± 222 and 24 ± 12 and 1118 ± 812 for CT 128 and CT 16 slice, respectively. The mean DLP (mGy.cm) for extremities was 320 ± 140 and 424 ± 212 for CT 128 and CT 16 slice, in that order. CONCLUSION: Patients' dose showed significant differences due to variation in the scan length and clinical indication. Organs lay in the primary beam received high radiation doses especially in the chest region which increases the probability of radiation-induced cancer. The current patient's doses are higher compared to the previous studies.

3.
Appl Radiat Isot ; 153: 108810, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31351374

RESUMO

For a range of doses familiarly incurred in computed tomography (CT), study is made of the performance of Germanium (Ge)-doped fibre dosimeters formed into cylindrical and flat shapes. Indigenously fabricated 2.3 mol% and 6 mol% Ge-dopant concentration preforms have been used to produce flat- and cylindrical-fibres (FF and CF) of various size and diameters; an additional 4 mol% Ge-doped commercial fibre with a core diameter of 50 µm has also been used. The key characteristics examined include the linearity index f(d), dose sensitivity and minimum detectable dose (MDD), the performance of the fibres being compared against that of lithium-fluoride based TLD-100 thermoluminescence (TL) dosimeters. For doses in the range 2-40 milligray (mGy), delivered at constant potential of 120 kilovoltage (kV), both the fabricated and commercial fibres demonstrate supralinear behaviours at doses < 2 mGy, while a value of close to f(D) = 1 (linear) has been obtained for all dosimeters for doses > 4 mGy. In terms of dose sensitivity, all of the fibres show superior TL sensitivity when compared against TLD-100, the 2.3 mol% and 6 mol% Ge-doped FF demonstrating the greatest TL sensitivity at 84 and 87 times that of TLD-100. The TL yields for the novel Ge-doped silica glass render them appealing for use within the present medical imaging dose range, offering linearity at high sensitivity down to less than 2 mGy.


Assuntos
Germânio/química , Dosímetros de Radiação , Tomografia Computadorizada por Raios X/métodos , Limite de Detecção
4.
J Med Phys ; 43(2): 85-92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962685

RESUMO

PURPOSE: The purpose of this study is to compare computed tomography (CT) radiation dose measurement methods proposed by TG111, International Electrotechnical Commission (IEC), and a direct dose profile integral (DPI) measurement method. METHODS: Pencil and Farmer ion chambers are used for integrating dose profiles at different beam widths in a 60 cm long body phantom. Resulting DPI is used to calculate CT dose index (CTDI) at each beam width. Measurements are also done for a pencil chamber inserted into a 15 cm body phantom at the reference beam width. The reference measurement is scaled with pencil chamber measurements in air at different beam widths, according to the IEC approach. Finally, point dose measurements are done with a Farmer chamber under equilibrium conditions according to the TG111 method. All CTDIs calculated from measured data are compared to the scanner displayed CTDIs. RESULTS: Calculated CTDIs, at different beam widths, using the IEC approach are within 20% of CTDIs calculated from DPI measurements in a 60 cm long body phantom. Dose Length Integral (DLI) obtained from TG111 method is close to the results obtained from DPI measurements. Scanner displayed CTDIs are lower than all measured values by up to 38% at the techniques used. CONCLUSION: Although the IEC method is the easiest to use compared to the TG111 and direct DPI measurement method, it underestimates dose indices by about 20%. CTDIs displayed on the GE scanner are lower than those measured in this study by up to 38%.

5.
J Med Phys ; 42(4): 266-272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29296042

RESUMO

INTRODUCTION: Values for the CTDIvol, which is displayed on scanner consoles, give doses relative to a phantom much larger than most Thai patients, and the CTDIvol does not take account of differences in patient size, which affect organ doses. OBJECTIVE: The purpose of this study was to evaluate relationships for size specific dose estimate (SSDE) and volume weighted computed tomography (CT) dose index (CTDIvol) with patient size for CT scanners operating under automatic tube current modulation (ATCM). METHODS: Retrospective data from 244 patients who had undergone abdomen and pelvis examination on GE and Siemens CT scanners were included in this study. The combination of anteroposterior (AP) and lateral dimensions at the level of the first lumbar vertebra (L1) was used to represent patient size. Image noise within the liver was measured, and values of the absorbed dose for organs covered by the primary beam such as the liver, stomach and kidney were calculated using methods described in the literature. Values of CTDIvol were recorded and SSDE calculated according to the American Association of Physics in Medicine (AAPM) Report No.204. Linear regression models were used to evaluate the relationship between SSDE, CTDIvol, image noise and patient size. RESULTS: SSDE is 20%-50% larger than the CTDIvol, with values for larger patients being more representative. Both the CTDIvol and image noise decreased with patient size for Siemens scanners, but the decline in SSDE was less significant. For the GE scanner, the CTDIvol was a factor of 3-4 lower in small patients compared to larger ones, while the SSDE only decreased by a factor of two. Noise actually decreased slightly with patient size. CONCLUSION: Values of SSDE were similar to the doses calculated for the liver, stomach and kidney, which are covered by the primary beam, confirming that it provides a good estimate of organ-absorbed dose.

6.
J Med Phys ; 41(1): 45-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27051170

RESUMO

The use of computed tomography (CT) scanning has been growing steadily. Therefore, CT dose measurement is becoming increasingly important for patient protection and optimization. A phantom is an important tool for dose measurement. This paper focuses on the evaluation of a CT dosimetry phantom made from nylon, instead of the standard polymethyl methacrylate (PMMA), which is not readily available or is too expensive in some countries. Comparison between phantoms made from the two materials is made in terms of measurements of the CT dose indices (CTDI). These were measured for four different beam widths and kVp settings at the center and periphery in head and body phantoms made from both materials and weighted CTDIs (CTDIw) were calculated. CT numbers along the z-axis of the phantom were also measured at the center and four peripheral positions of each scanned slice to check phantom homogeneity. Results showed that values for the CTDIw measured in the nylon phantoms were slightly higher than those from the PMMA while CT numbers for nylon were lower than those of PMMA. This is because the mass attenuation coefficient of the nylon is higher. Nylon could be used as a substitute material for CT dosimetry phantom to enable measurements and adjustment factors are given which could be used to estimate PMMA values for making comparisons with displayed values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA