Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2308724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229571

RESUMO

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4. This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

2.
Small ; 19(21): e2207293, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811236

RESUMO

Direct focused-ion-beam writing is presented as an enabling technology for realizing functional spin-wave devices of high complexity, and demonstrate its potential by optically-inspired designs. It is shown that ion-beam irradiation changes the characteristics of yttrium iron garnet films on a submicron scale in a highly controlled way, allowing one to engineer the magnonic index of refraction adapted to desired applications. This technique does not physically remove material, and allows rapid fabrication of high-quality architectures of modified magnetization in magnonic media with minimal edge damage (compared to more common removal techniques such as etching or milling). By experimentally showing magnonic versions of a number of optical devices (lenses, gratings, Fourier-domain processors) this technology is envisioned as the gateway to building magnonic computing devices that rival their optical counterparts in their complexity and computational power.

3.
Nano Lett ; 22(13): 5294-5300, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35729708

RESUMO

Long-distance transport and control of spin waves through nanochannels is essential for integrated magnonic technology. Current strategies relying on the patterning of single-layer nano-waveguides suffer from a decline of the spin-wave decay length upon downscaling or require large magnetic bias field. Here, we introduce a new waveguiding structure based on low-damping continuous yttrium iron garnet (YIG) films. Rather than patterning the YIG film, we define nanoscopic spin-wave transporting channels within YIG by dipolar coupling to ferromagnetic metal nanostripes. The hybrid material structure offers long-distance transport of spin waves with a decay length of ∼20 µm in 160 nm wide waveguides over a broad frequency range at small bias field. We further evidence that spin waves can be redirected easily by stray-field-induced bends in continuous YIG films. The combination of low-loss spin-wave guiding and straightforward nanofabrication highlights a new approach toward the implementation of magnonic integrated circuits for spin-wave computing.

4.
Nano Lett ; 22(22): 9198-9204, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36270006

RESUMO

Nitrogen-vacancy (NV) magnetometry is a new technique for imaging spin waves in magnetic materials. It detects spin waves by their microwave magnetic stray fields, which decay evanescently on the scale of the spin-wavelength. Here, we use nanoscale control of a single-NV sensor as a wavelength filter to characterize frequency-degenerate spin waves excited by a microstrip in a thin-film magnetic insulator. With the NV probe in contact with the magnet, we observe an incoherent mixture of thermal and microwave-driven spin waves. By retracting the tip, we progressively suppress the small-wavelength modes until a single coherent mode emerges from the mixture. In-contact scans at low drive power surprisingly show occupation of the entire isofrequency contour of the two-dimensional spin-wave dispersion despite our one-dimensional microstrip geometry. Our distance-tunable filter sheds light on the spin-wave band occupation under microwave excitation and opens opportunities for imaging magnon condensates and other coherent spin-wave modes.

5.
Nano Lett ; 21(19): 8213-8219, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597058

RESUMO

Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent multimagnon scattering. We image both the coherent spin waves and the resulting incoherent magnon gas using scanning-probe magnetometry based on electron spins in diamond. We find that the gas extends unidirectionally over hundreds of micrometers from the excitation stripline. Surprisingly, the gas density far exceeds that expected for a boson system following a Bose-Einstein distribution with a maximum value of the chemical potential. We characterize the momentum distribution of the gas by measuring the nanoscale spatial decay of the magnetic stray fields. Our results show that driving coherent spin waves leads to a strong out-of-equilibrium occupation of the spin-wave band, opening new possibilities for controlling spin transport and magnetic dynamics in target directions.

6.
Hum Brain Mapp ; 42(15): 4844-4856, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34327772

RESUMO

In the current article, we present the first solid-state sensor feasible for magnetoencephalography (MEG) that works at room temperature. The sensor is a fluxgate magnetometer based on yttrium-iron garnet films (YIGM). In this feasibility study, we prove the concept of usage of the YIGM in terms of MEG by registering a simple brain induced field-the human alpha rhythm. All the experiments and results are validated with usage of another kind of high-sensitive magnetometers-optically pumped magnetometer, which currently appears to be well-established in terms of MEG.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Adulto , Estudos de Viabilidade , Humanos
7.
Nano Lett ; 20(6): 4220-4227, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32329620

RESUMO

Modern-day CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different devices have been demonstrated recently on the macro- and microscale, but the feasibility of the magnonics approach essentially relies on the scalability of the structure feature size down to the extent of a few 10 nm, which are typical sizes for the established CMOS technology. Here, we present a study of propagating spin-wave packets in individual yttrium iron garnet (YIG) conduits with lateral dimensions down to 50 nm. Space and time-resolved microfocused Brillouin-light-scattering (BLS) spectroscopy is used to characterize the YIG nanostructures and measure the spin-wave decay length and group velocity directly. The revealed magnon transport at the scale comparable to the scale of CMOS proves the general feasibility of magnon-based data processing.

8.
Nano Lett ; 18(9): 5633-5639, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130408

RESUMO

We report a novel mechanism for the electrical injection and detection of out-of-plane spin accumulation via the anomalous spin Hall effect (ASHE), where the direction of the spin accumulation can be controlled by manipulating the magnetization of the ferromagnet. This mechanism is distinct from the spin Hall effect (SHE), where the spin accumulation is created along a fixed direction parallel to an interface. We demonstrate this unique property of the ASHE in nanowires made of permalloy (Py) to inject and detect out-of-plane spin accumulation in a magnetic insulator, yttrium iron garnet (YIG). We show that the efficiency for the injection/detection of out-of-plane spins can be up to 50% of that of in-plane spins. We further report the possibility to detect spin currents parallel to the Py/YIG interface for spins fully oriented in the out-of-plane direction, resulting in a sign reversal of the nonlocal magnon spin signal. The new mechanisms that we have demonstrated are highly relevant for spin torque devices and applications.


Assuntos
Ferro/química , Imãs/química , Nanofios/química , Ítrio/química , Eletricidade , Desenho de Equipamento , Magnetismo/instrumentação
9.
IEEE Trans Magn ; 55(2)2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38486836

RESUMO

We report here on the reproducibility of measurements on a second-order gradiometer superconducting quantum interference device magnetometer of two different yttrium iron garnet spheres, both having a diameter of 1 mm: 1) the National Institute of Standards and Technology magnetic moment standard reference material (SRM) and 2) a commercial sample. It has been suggested that rotating the sample rod around its axis can move the sample center toward the center of the second-order gradiometer coil. The observed value of the magnetic moment will be theoretically a minimum when the radial offset is 0, and this value will increase in a "quadratic" manner with the radial offset. When the magnetic moment of the SRM was repeatedly measured as a function of rotation angle φ from 0° to 360°, we observed a sinusoidal variation in the measured values. The radial offset dependence of the observed magnetic moment was experimentally confirmed by the measurements of the commercial sphere placed in a hole in several cylindrical containers, wherein the distance between the center of the hole and the center of the container was r. The r-dependence of the minimum from each φ-dependent measurement series is qualitatively consistent with the theoretical curve. When the φ-dependent measurements for the SRM in a capsule were repeated 12× over 21 months, the relative standard deviation of the minimums improved up to 0.1%. Knowledge of these facts will be necessary for the accurate measurement of the magnetic moment of other sample forms (e.g., powders).

10.
Nano Lett ; 17(1): 8-14, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073261

RESUMO

Magnetic insulators, such as yttrium iron garnet (Y3Fe5O12), are ideal materials for ultralow power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y3Fe5O12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y3Fe5O12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd3Ga5O12 substrates and lift-off. We observe field-like and antidamping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y3Fe5O12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. These heating effects are much more pronounced in the investigated nanostructures than in comparable micron-sized samples. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident: quantized spin-wave modes across the width of the wires are observed in the spectra. Our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.


Assuntos
Ferro/química , Imãs/química , Nanofios/química , Óxidos/química , Ítrio/química , Cinética , Micro-Ondas , Tamanho da Partícula , Platina/química , Torque
11.
Chemphyschem ; 18(9): 1125-1132, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28032953

RESUMO

Pulsed laser ablation of pressed yttrium iron garnet powders in water is studied and compared to the ablation of a single-crystal target. We find that target porosity is a crucial factor, which has far-reaching implications on nanoparticle productivity. Although nanoparticle size distributions obtained by analytical disc centrifugation and transmission electron microscopy (TEM) are in agreement, X-ray diffraction and energy dispersive X-ray analysis show that only nanoparticles obtained from targets with densities close to that of a bulk target lead to comparable properties. Our findings also show why the gravimetrical measurement of nanoparticle productivity is often flawed and needs to be complemented by colloidal productivity measurements. The synthesized YIG nanoparticles are further reduced in size by laser fragmentation to obtain sizes smaller than 3 nm. Since the particle diameters are close to the YIG lattice constant, these ultrasmall nanoparticles reveal an immense change of the magnetic properties, exhibiting huge coercivity (0.11 T) and irreversibility fields (8 T) at low temperatures.

12.
Sci Rep ; 14(1): 17474, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079954

RESUMO

In this paper, we present a new type of isolator based on one-way surface magnetoplasmons (SMPs) at microwave frequencies, and it is the first time that an experimental prototype of isolator with wideband and ultra-high isolation is realized using SMP waveguide. The proposed model with gyromagnetic and dielectric layers is systematically analyzed to obtain the dispersion properties of all the possible modes, and a one-way SMP mode is found to have the unidirectional transmission property. In simulation and experiment with metallic waveguide loaded with yttrium-iron-garnet (YIG) ferrite, the scattering parameters and the field distributions agree well with the analysis and verify the one-way transmission property. The isolation is found to be as high as 80 dB and the typical value of insertion loss is 1 dB. Besides, the one-way transmission band can be controlled by changing the magnetic bias. From theoretical analysis and simulation, it is found that with a tiny value of 10 Oe of the magnetic bias, the relative bandwidth can be tuned to be greater than 50%. Compared with conventional isolators, this one-way SMP isolator has the advantages of ultra-high isolation, wide relative frequency band, and requires much smaller bias field, which has promising potential in non-reciprocal applications.

13.
ACS Appl Mater Interfaces ; 16(8): 10953-10959, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38350012

RESUMO

Flexible quantum spin electronic devices based on ferromagnetic insulators have attracted wide attention due to their outstanding advantages of low-power dissipation and noncontact sensing. However, ferromagnetic insulators, such as monocrystalline yttrium iron garnet (Y3Fe5O12, YIG), hve weak stress effects with a small magnetostrictive coefficient (λ110, 10 ppm), making it difficult to achieve a large magnetic tunable amplitude. In this paper, large-scale (with a diameter of 40 mm), flexible Pt/YIG heterojunctions were obtained by double-cavity magnetron sputtering technology, indicating typical soft magnetism and good bending fatigue characteristics. Here, the 3 nm thickness of the Pt layer triggers an obvious magnetic proximity effect, in which the in-plane ferromagnetic resonance field is decreased by 70 Oe compared to flexible Cu/YIG heterojunctions. Meanwhile, it shows a wide tunable amplitude of 110 Oe under the flexible bending stresses, which is induced by the sensitive interface effect of Pt (3 nm)/YIG heterojunctions. The saturation magnetization of Pt/YIG heterojunctions is negatively correlated with Pt thickness rather than the relative stability of Cu/YIG heterojunctions, depending on the magnetic proximity effect. It brings greater application possibilities for flexible stress-sensitive magnetic oxides in spin logic electronic devices.

14.
J Phys Condens Matter ; 36(36)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38759676

RESUMO

All-optical schemes for switching magnetization offer a pathway towards the creation of more advanced data-storage technologies, both in terms of recording speed and energy-efficiency. It has previously been shown that picosecond-long optical pulses with central frequencies ranging between 12 and 30 THz are capable of driving magnetic switching in yttrium-iron-garnet films, provided that the excitation frequency matches the characteristic frequency of longitudinal optical phonons. Here, we explore how the phononic mechanism of magnetic switching in three distinct ferrimagnetic iron-garnet films evolves at optical frequencies below 10 THz, within the so-called terahertz gap. We find that at long wavelengths the magnetic switching rather correlates with phonon modes associated with the substrate. Our results show that the process of phononic switching of magnetization, previously discovered in the mid- to far-infrared spectral range, becomes much more complex at frequencies within the terahertz gap.

15.
Adv Mater ; 35(31): e2301087, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207319

RESUMO

Magnons, quanta of spin waves, are known to enable information processing with low power consumption at the nanoscale. So far, however, experimentally realized half-adders, wave-logic, and binary output operations are based on few µm-long spin waves and restricted to one spatial direction. Here, magnons with wavelengths λ down to 50 nm in ferrimagnetic Y3 Fe5 O12 below 2D lattices of periodic and aperiodic ferromagnetic nanopillars are explored. Due to their high rotational symmetries and engineered magnetic resonances, the lattices allow short-wave magnons to propagate in arbitrarily chosen on-chip directions when excited by conventional coplanar waveguides. Performing interferometry with magnons over macroscopic distances of 350 × λ without loss of coherency, unprecedentedly high extinction ratios of up to 26 (±8) dB [31 (±2) dB] for a binary 1/0 output operation at λ = 69 nm (λ = 154 nm) are achieved in this work. The reported findings and design criteria for 2D magnon interferometry are particularly important in view of the realization of complex neuronal networks recently proposed for interfering spin waves underneath nanomagnets.

16.
Nanomaterials (Basel) ; 12(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35564228

RESUMO

Here, we report on the experimental study of spin-wave propagation and interaction in the double-branched Mach-Zehnder interferometer (MZI) scheme. We show that the use of a piezoelectric plate (PP) with separated electrodes connected to each branch of the MZI leads to the tunable interference of the spin-wave signal at the output section. Using a finite element method, we carry out a physical investigation of the mechanisms of the impact of distributed deformations on the magnetic properties of YIG film. Micromagnetic simulations and finite-element modelling can explain the evolution of spin-wave interference patterns under strain induced via the application of an electric field to PP electrodes. We show how the multimode regime of spin-wave propagation is used in the interferometry scheme and how scaling to the nanometer size represents an important step towards a single-mode regime. Our findings provide a simple solution for the creation of tunable spin-wave interferometers for the magnonic logic paradigm.

17.
Materials (Basel) ; 15(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454506

RESUMO

In this work, we investigate the structural and dynamic magnetic properties of yttrium iron garnet (YIG) films grown onto gadolinium gallium garnet (GGG) substrates with thin platinum, iridium, and gold spacer layers. Separation of the YIG film from the GGG substrate by a metal film strongly affects the crystalline structure of YIG and its magnetic damping. Despite the presence of structural defects, however, the YIG films exhibit a clear ferromagnetic resonance response. The ability to tune the magnetic damping without substantial changes to magnetization offers attractive prospects for the design of complex spin-wave conduits. We show that the insertion of a 1-nm-thick metal layer between YIG and GGG already increases the effective damping parameter enough to efficiently absorb spin waves. This bilayer structure can therefore be utilized for magnonic waveguide termination. Investigating the dispersionless propagation of spin-wave packets, we demonstrate that a damping unit consisting of the YIG/metal bilayers can dissipate incident spin-wave signals with reflection coefficient R < 0.1 at a distance comparable to the spatial width of the wave packet.

18.
Materials (Basel) ; 14(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885470

RESUMO

Yttrium iron garnet was obtained using four methods of synthesis. A modified citrate method and a modified citrate method with YIG (yttrium iron garnet, Y3Fe5O12) nucleation were used. In two subsequent methods, YIP (yttrium iron perovskite, YFeO3) and α-Fe2O3 obtained in the first case by the citrate method and in the second by precipitation of precursors with an ammonia solution were used as the input precursors for reaction sintering. Differential scanning calorimetry (DSC) measurements of the output powders obtained by all methods allowed to identify the effects observed during the temperature increase. Dilatometric measurements allowed to determine the changes in linear dimensions at individual stages of reaction sintering. In the case of materials obtained by the citrate method, two effects occur with the increasing temperature, the first of which corresponds to the reaction of the formation of yttrium iron perovskite (YIP), and the second is responsible for the reaction of the garnet (YIG) formation. However, in the case of heat treatment of the mixture of YIP and α-Fe2O3, we observe only the effect responsible for the solid state reaction leading to the formation of yttrium iron garnet. The obtained materials were reaction sintered at temperatures of 1300 and 1400 °C. Only in the case of material obtained from a mixture of perovskite and iron(III) oxide obtained by ammonia precipitation at temperature of 1400 °C were densities achieved higher than 98% of the theoretical density. The use of Hot Isostatic Pressing (HIP) in the case of this material allowed to eliminate the remaining porosity and to obtain full density.

19.
ACS Appl Mater Interfaces ; 13(4): 5228-5234, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470108

RESUMO

5d metals are used in electronics because of their high spin-orbit coupling (SOC) leading to efficient spin-electric conversion. When C60 is grown on a metal, the electronic structure is altered due to hybridization and charge transfer. In this work, we measure the spin Hall magnetoresistance for Pt/C60 and Ta/C60, finding that they are up to a factor of 6 higher than those for pristine metals, indicating a 20-60% increase in the spin Hall angle. At low fields of 1-30 mT, the presence of C60 increased the anisotropic magnetoresistance by up to 700%. Our measurements are supported by noncollinear density functional theory calculations, which predict a significant SOC enhancement by C60 that penetrates through the Pt layer, concomitant with trends in the magnetic moment of transport electrons acquired via SOC and symmetry breaking. The charge transfer and hybridization between the metal and C60 can be controlled by gating, so our results indicate the possibility of dynamically modifying the SOC of thin metals using molecular layers. This could be exploited in spin-transfer torque memories and pure spin current circuits.

20.
Appl Radiat Isot ; 160: 109121, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32174465

RESUMO

The change in the Curie temperature of single crystalline garnet Y3Fe5O12 (YIG) sample due to lattice damage induced by ion implantation has been investigated in 57Fe emission Mössbauer Spectroscopy (eMS) following implantation of 57Mn (T½ = 1.5 min). The Mössbauer spectra analysis reveal high spin Fe3+ ions substituted on both the octahedral and the tetrahedral sites. Measurements in the temperature range 298 K-798 K show that average values of the magnetic hyperfine field are decreased by the implantation-induced damage on the local lattice structure of the YIG. The Curie temperature, however, is determined to be 651 ± 5 K, considerably higher than the value of bulk YIG (559 K). This is most likely due to lattice damage-induced changes on the spin configurations of YIG through a FeA-O-FeD distortion scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA