Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Phytoremediation ; 24(7): 763-777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34579603

RESUMO

This study aims to investigate the potentiality of selenium in modulating arsenic stress in rice seedlings. Arsenate accumulation along with its transformation to arsenite was enhanced in arsenate exposed seedlings. Arsenite induced oxidative stress and severely affected the growth of the seedlings. Arsenate exposure caused an elevation in ascorbate and glutathione levels along with the activities of their metabolizing enzymes viz., ascorbate peroxidase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase. Phytochelatins content was increased under arsenic stress to subdue the toxic effects in the test seedlings. Co-application of arsenate and selenate in rice seedlings manifested pronounced alteration of oxidative stress, antioxidant defense, and thiol metabolism as compared to arsenate treatment only. ANOVA analysis (Tukey's HSD test) demonstrated the relevance of using selenate along with arsenate to maintain the normal growth and development of rice seedlings. Thus, exogenous supplementation of selenium will be a beneficial approach to cultivate rice seedlings in arsenic polluted soil.


Arsenic toxicity in the environment is a global concern, causes chronic signs of poisoning to plants and humans, leads to ecological imbalance. Selenium is known for its antagonistic characteristics and has been found to be effective in combating the adversities of arsenic at low concentrations (5 µM). The present study was performed to explore the comparative responses of rice seedlings during the joint application of selenium and arsenic in terms of growth, generation of oxidative stress, antioxidant defense, and thiol metabolism. Although the molecular basis of arsenic­selenium interaction is widely known a small number of reports were listed about the physio-chemical role of selenium against arsenic stress. Thus, we investigated the influence of selenium to alleviate arsenic-induced toxic effects by modulating the activities of antioxidant enzymes and reducing the levels of oxidative stress markers. It has been noted that selenium regulates thiol metabolism which is known to play a key role in growth preservation by restriction of arsenic translocation. The outcome from the study would be useful in field trials for sustainable agriculture in arsenic-contaminated soil.


Assuntos
Arsênio , Arsenitos , Oryza , Selênio , Antioxidantes/metabolismo , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/metabolismo , Arsênio/toxicidade , Arsenitos/metabolismo , Arsenitos/toxicidade , Biodegradação Ambiental , Glutationa/metabolismo , Glutationa/farmacologia , Oryza/metabolismo , Estresse Oxidativo , Plântula , Ácido Selênico/metabolismo , Ácido Selênico/farmacologia , Selênio/metabolismo , Selênio/farmacologia , Compostos de Sulfidrila/metabolismo
2.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500339

RESUMO

Selenium (Se) biofortification of aromatic plants is a promising strategy to produce valuable functional food with high biological activity and enhanced essential oil yield. The experiment carried out in 2021 and 2022 on A. annua treated with sodium selenate or nano-Se sprayed on foliar apparatus demonstrated a significant increase in photosynthetic pigments, pectin, waxes, macro- and microelements and a decrease in malonic dialdehyde (MDA) accumulation. Contrary to literature reports, neither selenate nor nano-Se showed a beneficial effect on essential oil accumulation; the oil yield did not differ between the selenate treated and control plants but was halved by the nano-Se application. Extremely high variations in the number of essential oil components, as well as in the eucalyptol, artemisia ketone, camphor and germacrene D ratio in the 2021 and 2022 experiments were recorded. The analysis of the 2016-2022 data for oil yield and composition in the control plants revealed a direct correlation between the number of components and of solar flares, and a negative correlation between oil yield and the percentage of spotless days. Both control plants and plants fortified with selenium showed higher levels of germacrene D and lower levels of artemisia ketone in 2022, characterized by more remarkable solar activity compared to 2021. Nano-Se supply resulted in the highest percentage of germacrene D accumulation. The results of the present research highlight the importance of the solar activity effect on the essential oil yield and quality of aromatic plants.


Assuntos
Artemisia annua , Óleos Voláteis , Selênio , Ácido Selênico/farmacologia , Selênio/farmacologia , Selênio/análise , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Folhas de Planta/química
3.
World J Microbiol Biotechnol ; 38(1): 5, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837115

RESUMO

Herbaspirillum camelliae WT00C is a gram-negative endophyte isolated from the tea plant. It has an intact selenate metabolism pathway but poor selenate tolerability. In this study, microbiological properties of the strain WT00C were examined and compared with other three strains CT00C, NCT00C and NT00C, which were obtained respectively from four, six and eight rounds of 24-h exposures to 200 mM selenate. The selenate tolerability and the ability to generate red elemental selenium (Se0) and selenoproteins in H. camelliae WT00C has significantly improved by the forced evolution via 4-6 rounds of multiple exposures a high concentration of selenate. The original strain WT00C grew in 200 mM selenate with the lag phase of 12 h and 400 mM selenate with the lag phase of 60 h, whereas the strains CT00C and NCT00C grew in 800 mM selenate and showed a relatively short lag phase when they grew in 50-400 mM selenate. Besides selenate tolerance, the strains CT00C and NCT00C significantly improved the biosynthesis of red elemental selenium (Se0) and selenoproteins. Two strains exhibited more than 30% selenium conversion efficiency and 40% selenoprotein biosynthesis, compared to the original strain WT00C. These characteristics of the strains CT00C and NCT00C make them applicable in pharmaceuticals and feed industries. The strain NT00C obtained from eight rounds of 24-h exposures to 200 mM selenate was unable to grow in ≥ 400 mM selenate. Its selenium conversion efficiency and selenoprotein biosynthesis were similar to the strain WT00C, indicating that too many exposures may cause gene inactivation of some critical enzymes involving selenate metabolism and antioxidative stress. In addition, bacterial cells underwent obviously physiological and morphological changes, including gene activity, cell enlargement and surface-roughness alterations during the process of multiple exposures to high concentrations of selenate.


Assuntos
Herbaspirillum/crescimento & desenvolvimento , Ácido Selênico/farmacologia , Selênio/metabolismo , Selenoproteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Camellia sinensis/microbiologia , Relação Dose-Resposta a Droga , Fermentação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Herbaspirillum/classificação , Herbaspirillum/isolamento & purificação , Herbaspirillum/metabolismo
4.
Arch Insect Biochem Physiol ; 103(3): e21644, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31702082

RESUMO

Nilaparvata lugens is one of the most notorious pest insects of cultured rice, and outbreaks of N. lugens cause high economic losses each year. While pest control by chemical pesticides is still the standard procedure for treating N. lugens infections, excessive use of these insecticides has led to the emergence of resistant strains and high pesticide residues in plants for human consumption and the environment. Therefore, novel and environment-friendly pest control strategies are needed. In previous studies, selenium was shown to protect selenium-accumulating plants from biotic stress. However, studies on nonaccumulator (crop) plants are lacking. In this study, rice plants (Oryza sativa, Nipponbare) were treated with sodium selenate by seed priming and foliar spray and then infested with N. lugens. Brown planthoppers feeding on these plants showed increased mortality compared to those feeding on control plants. Treatment of the plants with sodium selenate did not affect the enzymes involved in the biosynthesis of the plant stress hormones jasmonic acid and salicylic acid, suggesting that the observed insect mortality cannot be attributed to the activation of these hormonal plant defenses. Feeding assays using an artificial diet supplemented with sodium selenate revealed direct toxicity toward N. lugens. With a low concentration of 6.5 ± 1.5 µM sodium selenate, half of the insects were killed after 3 days. In summary, sodium selenate treatment of plants can be used as a potential alternative pest management strategy to protect rice against N. lugens infestation through direct toxicity.


Assuntos
Antioxidantes/farmacologia , Hemípteros/efeitos dos fármacos , Oryza/parasitologia , Ácido Selênico/farmacologia , Animais , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Inseticidas/farmacologia , Oxilipinas , Ácido Salicílico
5.
Biosci Biotechnol Biochem ; 84(11): 2281-2292, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32729395

RESUMO

Selenium (Se) causes oxidative damage to plants. Proline is accumulated as a compatible solute in plants under stress conditions and mitigates stresses. Selenate at 250 µM increased cell death and inhibited the growth of tobacco BY-2 cells while exogenous proline at 10 mM did not mitigate the inhibition by selenate. Selenate increased accumulation of Se and ROS and activities of antioxidant enzymes but not lipid peroxidation in the BY-2 cells. Proline increased Se accumulation and antioxidant enzyme activities but not either ROS accumulation or lipid peroxidation in the selenate-stressed cells. Glutathione (GSH) rather than ascorbic acid (AsA) mitigated the growth inhibition although both reduced the accumulation of ROS induced by selenate. These results indicate that proline increases both antioxidant enzyme activities and Se accumulation, which overall fails to ameliorate the growth inhibition by selenate and that the growth inhibition is not accounted for only by ROS accumulation. Abbreviations: APX: ascorbate peroxidase; AsA: ascorbic acid; BY-2: Bright Yellow-2; CAT: catalase; DAI: days after inoculation; DW: dry weight; FW: fresh weight; GSH: glutathione; ROS: reactive oxygen species.


Assuntos
Antioxidantes/metabolismo , Nicotiana/citologia , Estresse Oxidativo/efeitos dos fármacos , Prolina/farmacologia , Ácido Selênico/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo
6.
BMC Genomics ; 20(1): 377, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088374

RESUMO

BACKGROUND: Sulforaphane is a natural isothiocyanate available from cruciferous vegetables with multiple characteristics including antioxidant, antitumor and anti-inflammatory effect. Single-molecule real-time (SMRT) sequencing has been used for long-read de novo assembly of plant genome. Here, we investigated the molecular mechanism related to glucosinolates biosynthesis in Chinese kale using combined NGS and SMRT sequencing. RESULTS: SMRT sequencing produced 185,134 unigenes, higher than 129,325 in next-generation sequencing (NGS). NaCl (75 mM), methyl jasmonate (MeJA, 40 µM), selenate (Se, sodium selenite 100 µM), and brassinolide (BR, 1.5 µM) treatment induced 6893, 13,287, 13,659 and 11,041 differentially expressed genes (DEGs) in Chinese kale seedlings comparing with control. These genes were associated with pathways of glucosinolates biosynthesis, including phenylalanine, tyrosine and tryptophan biosynthesis, cysteine and methionine metabolism, and glucosinolate biosynthesis. We found NaCl decreased sulforaphane and glucosinolates (indolic and aliphatic) contents and downregulated expression of cytochrome P45083b1 (CYP83b1), S-alkyl-thiohydroximatelyase or carbon-sulfur lyase (SUR1) and UDP-glycosyltransferase 74B1 (UGT74b1). MeJA increased sulforaphane and glucosinolates contents and upregulated the expression of CYP83b1, SUR1 and UGT74b1; Se increased sulforaphane; BR increased expression of CYP83b1, SUR1 and UGT74b1, and increased glucosinolates contents. The desulfoglucosinolate sulfotransferases ST5a_b_c were decreased by all treatments. CONCLUSIONS: We confirmed that NaCl inhibited the biosynthesis of both indolic and aliphatic glucosinolates, while MeJA and BR increased them. MeJA and BR treatments, conferred the biosynthesis of glucosinolates, and Se and MeJA contributed to sulforaphane in Chinese kale via regulating the expression of CYP83b1, SUR1 and UGT74b1.


Assuntos
Brassica/metabolismo , Perfilação da Expressão Gênica/métodos , Isotiocianatos/metabolismo , Proteínas de Plantas/genética , Acetatos/farmacologia , Brassica/genética , Brassinosteroides/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oxilipinas/farmacologia , Ácido Selênico/farmacologia , Análise de Sequência de RNA/métodos , Análise de Célula Única , Cloreto de Sódio/farmacologia , Esteroides Heterocíclicos/farmacologia , Sulfóxidos , Sequenciamento do Exoma/métodos
7.
J Exp Bot ; 70(21): 6401-6416, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504785

RESUMO

Organic selenium (Se), specifically Se-methylselenocysteine (MeSeCys), has demonstrated potential effects in human disease prevention including cancer and the emerging ameliorating effect on Alzheimer's disease. In plants, selenocysteine methyltransferase (SMT) is the key enzyme responsible for MeSeCys formation. In this study, we first isolated a novel SMT gene, designated as BjSMT, from the genome of a known Se accumulator, Brassica juncea L. BjSMT shows high sequence (amino acid) similarity with its orthologues from Brassica napus and Brassica oleracea var. oleracea, which can use homocysteine (HoCys) and selenocysteine (SeCys) as substrates. Similar to its closest homologues, BjSMT also possesses a conserved Thr187 which is involved in transferring a methyl group to HoCys by donating a hydrogen bond, suggesting that BjSMT can methylate both HoCys and SeCys substrates. Using quantitative real-time PCR (qRT-PCR) technology and BjSMT-transformed tobacco (Nicotiana tabacum) plants, we observed how BjSMT responds to selenite [Se(IV)] and selenate [Se(VI)] stress in B. juncea, and how the phenotypes of BjSMT-overexpressing tobacco cultured under selenite stress are affected. BjSMT expression was nearly undetectable in the B. juncea plant without Se exposure, but in the plant leaves it can be rapidly and significantly up-regulated upon a low level of selenite stress, and enormously up-regulated upon selenate treatment. Overexpression of BjSMT in tobacco substantially enhanced tolerance to selenite stress manifested as significantly higher fresh weight, plant height, and chlorophyll content than control plants. In addition, transgenic plants exhibited low glutathione peroxidase activity in response to a lower dose of selenite stress (with a higher dose of selenite stress resulting in a high activity response) compared with the controls. Importantly, the BjSMT-transformed tobacco plants accumulated a high level of Se upon selenite stress, and the plants also had significantly increased MeSeCys production potential in their leaves. This first study of B. juncea SMT demonstrates its potential applications in crop MeSeCys biofortification and phytoremediation of Se pollution.


Assuntos
Metiltransferases/metabolismo , Mostardeira/enzimologia , Sequência de Aminoácidos , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa Peroxidase/metabolismo , Metiltransferases/química , Mostardeira/genética , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Selênico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/genética , Regulação para Cima/efeitos dos fármacos
8.
Ecotoxicol Environ Saf ; 186: 109747, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31634660

RESUMO

Cadmium (Cd) contamination has generated an environmental problem worldwide, leading to harmful effects on human health and damages to plant metabolism. Selenium (Se) is non essential for plants, however it can improve plant growth and reduce the adverse effects of abiotic stress. In addition, ethylene may interplay the positive effects of Se in plants. In order to investigate the role of ethylene in Se-modulation of antioxidant defence system in response to Cd-stress, we tested the hormonal mutant Epinastic (epi) with a subset of constitutive activation of the ethylene response and Micro-Tom (MT) plants. For this purpose, Se mineral uptake, Cd and Se concentrations, pigments, malondialdeyde (MDA) and hydrogen peroxide (H2O2) contents, ethylene production, glutathione (GSH) compound, and superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) activities were analysed in MT and epi plants submitted to 0.5 mM CdCl2 and 1 µM of selenate or selenite. MT plants treated with both Se forms increased growth in the presence or not of 0.5 mM CdCl2, but not change epi growth. Both Se forms reduced Cd uptake in MT plants and cause reverse effect in epi plants. P, Mg, S, K and Zn uptake increased in epi plants with Se application, irrespective to Cd exposure. Chlorophylls and carotenoids contents decreased in both genotypes under Cd exposure, in contrast to what was observed in epi leaves in the presence of Se. When antioxidant enzymes activities were concerned, Se application increased Mn-SOD, Fe-SOD and APX activities. In the presence of Cd, MT and epi plants exhibited decreased SOD activity and increased CAT, APX and GR activities. MT and epi plants with Se supply exhibited increased APX and GR activities in the presence of Cd. Overall, these results suggest that ethylene may be involved in Se induced-defence responses, that triggers a positive response of the antioxidant system and improve growth under Cd stress. These results showed integrative roles of ethylene and Se in regulating the cell responses to stressful-conditions and, the cross-tolerance to stress could be used to manipulate ethylene regulated gene expression to induce heavy metal tolerance.


Assuntos
Antioxidantes/metabolismo , Cádmio/efeitos adversos , Etilenos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Adaptação Fisiológica , Ascorbato Peroxidases/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Exposição Ambiental , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Mutação , Oxirredução , Folhas de Planta/metabolismo , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Selênio/metabolismo , Superóxido Dismutase/metabolismo
9.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781361

RESUMO

Selenium application as sodium selenate was repeatedly shown to have anti-carcinogenic properties by increasing levels of the serine/ threonine protein phosphatase 2A (PP2A) in cancer cells. PP2A has a prominent role in cell development, homeostasis, and in neurons regulates excitability. PP2A, GSK3ß and Tau reside together in a complex, which facilitates their interaction and (dys)-function as has been reported for several neurological disorders. In this study we recorded maximum increase in total PP2A at 3 µM sodium selenate in a neuron cell line. In conjunction with these data, whole-cell electrophysiological studies revealed that this concentration had maximum effect on membrane potentials, conductance and currents. Somewhat surprisingly, the catalytically active form, methylated PP2A (mePP2A) was significantly decreased. In close correlation to these data, the phosphorylation state of two substrate proteins, sensitive to PP2A activity, GSK3ß and Tau were found to be increased. In summary, our data reveal that sodium selenate enhances PP2A levels, but reduces catalytic activity of PP2A in a dose dependent manner, which fails to reduce Tau and GSK3ß phosphorylation under physiological conditions, indicating an alternative route in the rescue of cell pathology in neurological disorders.


Assuntos
Epitopos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/metabolismo , Fosfotirosina/metabolismo , Proteína Fosfatase 2/metabolismo , Ácido Selênico/farmacologia , Proteínas tau/metabolismo , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Metilação , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
10.
Appl Microbiol Biotechnol ; 102(14): 6191-6205, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29806064

RESUMO

Rahnella aquatilis HX2 (proteobacteria) shows tolerance to selenium (Se). The minimum inhibitory concentrations of selenomethionine (Se-Met), selenite [Se (IV)], and selenate [Se (VI)] to HX2 are 4.0, 85.0, and 590.0 mM, respectively. HX2 shows the ability to reduce Se (IV) and Se (VI) to elemental Se nanoparticles (SeNPs). The maximum production of SeNPs by HX2 strain is 1.99 and 3.85 mM in Luria-Bertani (LB) broth with 5 mM Se (IV) and 10 mM Se (VI), respectively. The morphology of SeNPs and cells were observed by transmission electron microscope, environmental scanning electron microscope, and selected area electric diffraction detector. Spherical SeNPs with amorphous structure were found in the cytoplasm, membrane, and exterior of cells. Morphological variations of the cell membrane were further confirmed by the release of cellular materials absorbed at 260 nm. Flagella were inhibited and cell sizes were 1.8-, 1.6-, and 1.2-fold increases with the Se-Met, Se (VI), and Se (IV) treatments, respectively. The real-time quantitative PCR analysis indicated that some of the genes controlling Se metabolism or cell morphology, including cysA, cysP, rodA, ZntA, and ada, were significantly upregulated, while grxA, fliO, flgE, and fliC genes were significantly downregulated in those Se treatments. This study provided novel valuable information concerning the cell morphology along with biological synthesis process of SeNPs in R. aquatilis and demonstrated that the strain HX2 could be applied in both biosynthesis of SeNPs and in management of environmental Se pollution.


Assuntos
Nanopartículas , Rahnella/efeitos dos fármacos , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Selênio/química , Selenometionina/farmacologia , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Rahnella/citologia , Rahnella/crescimento & desenvolvimento
11.
Ecotoxicol Environ Saf ; 147: 897-904, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28968942

RESUMO

Selenite (Se (IV)) and selenate (Se (IV)) have recently been demonstrated to be equally effective in inhibiting mercury (Hg) phytotoxicity to plants. This assertion is still unclear. In this study, we aimed to explore the potential effects of Se species (Se4+ and Se6+) on the inhibition of the mercury (Hg) bioavailability to pak choi in dry land. Pot experiments with exposure to different dosages of mercuric chloride (HgCl2) and selenite (Na2SeO3) or selenate (Na2SeO4) were treated. To compare the influence of Se (IV) and Se (VI) on the bioaccumulation and bioavailability of Hg, the levels of total Hg in different pak choi (Brassica chinensis L.) tissues (roots and shoots) and the distribution changes of Hg fractions in soil before planting and after harvest were determined as well as the Hg IR values in soils (relative binding intensity) were analyzed. Results showed that application Se (IV) reduced the concentrations of Hg in pak choi roots more than Se (VI). Hg concentrations were also decreased in pak choi shoots in Se (IV) treatments, while which notably increased in Se (VI) treatments. Thus, Se (IV) plays a more important role than Se (VI) in limiting the absorption and bioaccumulation of Hg in pak choi. Moreover, this inhibition may only significantly occur when Se (IV) is at an appropriate level (2.5mg/kg). In addition, the good correlations between the proportions of mobile Hg fractions (soluble and exchangeable fractions), IR values with the Hg concentrations in plants were observed. This affirmed the importance of the Hg fractions transformation and the IR indicator of Hg in the assessment of their bioavailability. Our findings regarding the importance of Se (IV) influence in reducing Hg bioaccumulation not only provided the correct appraisal about the effect of Se species on the inhibition of the Hg phytotoxicity to pak choi in dry land, but also be a good reference for selecting Se fertilizer forms (Se4+ or Se6+).


Assuntos
Brassica/efeitos dos fármacos , Mercúrio/toxicidade , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Poluentes do Solo/toxicidade , Solo/química , Disponibilidade Biológica , Brassica/metabolismo , China , Fertilizantes , Mercúrio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
12.
Molecules ; 23(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400605

RESUMO

The conversion of preadipocytes to adipocytes (adipogenesis) is a potential target to treat or prevent obesity. Selenate, an inorganic form of selenium, elicits diverse health benefits, mainly through its incorporation into selenoproteins. The individual roles of selenium and certain selenoproteins have been reported. However, the effects of selenate treatment on selenoproteins in adipocytes are unclear. In this study, the effects of selenate pretreatment on selenoprotein and endoplasmic reticulum (ER) stress during adipogenesis were examined in vitro. The selenate pretreatment dose-dependently suppressed the adipogenesis of 3T3-L1 preadipocytes. The selenate pretreatment at 50 µM for 24 h almost completely suppressed adipogenesis without cytotoxic effects. The expression of the adipogenic genes peroxisome proliferator-activated receptor gamma, CCAAT-enhancer binding protein alpha, and leptin was suppressed by selenate. This pretreatment also upregulated selenoprotein S (SEPS1), an ER resident selenoprotein that reduces ER stress, and prevented dexamethasone-induced SEPS1 degradation during the early stage of adipogenesis. The selenate-inhibited adipogenesis was associated with an attenuation of ER stress. The expression of the ER stress marker genes was upregulated during the early stage of differentiation, whereas the selenate pretreatment suppressed the mRNA expression of the XBP1 and C/EBP homologous protein. The collective data suggest a preventive role of selenate and SEPS1 in adipogenesis, and support a novel dietary approach to prevent obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Selênico/farmacologia , Selenoproteínas/biossíntese , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/genética , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Selenoproteínas/metabolismo
13.
J Sci Food Agric ; 98(15): 5700-5710, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29736998

RESUMO

BACKGROUND: Selenium (Se) induced oxidative stress as well as synthesis of non-specific selenoproteins has been attributed to its toxicity in plants. Selenium toxicity can affect growth, chlorophyll and protein synthesis and crop yield. This study reveals the effects of different sources (sodium selenite and sodium selenate) and levels (2 and 4 mg Se kg-1 soil) of Se on its uptake, leaf physiology, antioxidant defense system, isoenzymic patterns and mitochondrial activity in wheat cultivar PBW621 at tillering and ear-initiation stages. RESULTS: Higher Se accumulation in leaves of wheat plants was observed in selenate than control and selenite treatments. Selenium tolerance index, chlorophyll, photosynthetic efficiency, mitochondrial reduction test, electron transport system activity, lipid peroxidation, proline and glutathione in Se-treated wheat plants decreased significantly as compared to control. Significant increase in hydrogen peroxide and activities of antioxidant enzymes, namely catalase, peroxidase, superoxide dismutase, glutathione reductase in leaves was due to the presence of Se-induced oxidative stress in wheat plants. CONCLUSION: Wheat cultivar PBW621 could adapt to applied selenite concentrations by developing antioxidant defense system but selenate treated plants could exhibit toxicity tolerance up to 2 mg kg-1 and died at high concentrations due to damage to tissue development and function. © 2018 Society of Chemical Industry.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Triticum/efeitos dos fármacos , Catalase/metabolismo , Clorofila/metabolismo , Glutationa Redutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Superóxido Dismutase , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
14.
Brain ; 139(Pt 7): 1919-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27289302

RESUMO

There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in neurodegenerative diseases commonly associated with epilepsy, such as Alzheimer's disease and traumatic brain injury. Here we used the protein phosphatase 2A activator sodium selenate to investigate the role of protein phosphatase 2A in three different rat models of epileptogenesis: amygdala kindling, post-kainic acid status epilepticus, and post-traumatic epilepsy. Protein phosphatase 2A activity was decreased, and tau phosphorylation increased, in epileptogenic brain regions in all three models. Continuous sodium selenate treatment mitigated epileptogenesis and prevented the biochemical abnormalities, effects which persisted after drug withdrawal. Our studies indicate that limbic epileptogenesis is associated with downregulation of protein phosphatase 2A and the hyperphosphorylation of tau, and that targeting this mechanism with sodium selenate is a potential anti-epileptogenic therapy.


Assuntos
Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Epilepsia/metabolismo , Proteína Fosfatase 2/metabolismo , Ácido Selênico/farmacologia , Proteínas tau/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Eletroencefalografia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Excitação Neurológica , Imageamento por Ressonância Magnética , Masculino , Fosforilação , Proteína Fosfatase 2/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas tau/efeitos dos fármacos
15.
Acta Biol Hung ; 68(1): 60-72, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28322089

RESUMO

Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg-1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg-1 selenite and 1 mg kg-1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg-1) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (ФPSII) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.


Assuntos
Fertilizantes , Pisum sativum/metabolismo , Ácido Selênico/metabolismo , Selenito de Sódio/metabolismo , Ração Animal/análise , Animais , Humanos , Magnésio/metabolismo , Malondialdeído/metabolismo , Pisum sativum/química , Pisum sativum/efeitos dos fármacos , Peroxidase/metabolismo , Fósforo/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/metabolismo , Ácido Selênico/farmacologia , Selenito de Sódio/farmacologia , Verduras/química , Verduras/efeitos dos fármacos , Verduras/metabolismo
16.
Biol Chem ; 397(6): 541-54, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26894577

RESUMO

Mutations in the gene coding for the multi-domain protein leucine-rich repeat kinase 2 (LRRK2) are the leading cause of genetically inherited Parkinson's disease (PD). Two of the common found mutations are the R1441C and G2019S. In this study we identified protein phosphatase 2A (PP2A) as an interacting partner of LRRK2. We were able to demonstrate that the Ras of complex protein (ROC) domain is sufficient to interact with the three subunits of PP2A in human neuroblastoma SH-SY5Y cells and in HeLa cells. The alpha subunit of PP2A is interacting with LRRK2 in the perinuclear region of HeLa cells. Silencing the catalytic subunit of PP2A by shRNA aggravated cellular degeneration induced by the pathogenic R1441C-LRRK2 mutant expressed in neuroblastoma SH-SY5Y cells. A similar enhancement of apoptotic nuclei was observed by downregulation of the catalytic subunit of PP2A in cultured cortical cells derived from neurons overexpressing the pathogenic mutant G2019S-LRRK2. Conversely, pharmacological activation of PP2A by sodium selenate showed a partial neuroprotection from R1441C-LRRK2-induced cellular degeneration. All these data suggest that PP2A is a new interacting partner of LRRK2 and reveal the importance of PP2A as a potential therapeutic target in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 2/metabolismo , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ligação Proteica , Proteína Fosfatase 2/química , Proteína Fosfatase 2/deficiência , Proteína Fosfatase 2/genética , Ácido Selênico/farmacologia
17.
J Pineal Res ; 61(3): 291-302, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27264631

RESUMO

Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification.


Assuntos
Cádmio/farmacologia , Melatonina/metabolismo , Ácido Selênico/farmacologia , Selenocisteína/farmacocinética , Selenito de Sódio/farmacologia , Solanum lycopersicum/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Descarboxilases de Aminoácido-L-Aromático/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Proteínas de Plantas/biossíntese , Selênio/farmacologia
18.
Brain ; 138(Pt 5): 1297-313, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771151

RESUMO

Traumatic brain injury is a common and serious neurodegenerative condition that lacks a pharmaceutical intervention to improve long-term outcome. Hyperphosphorylated tau is implicated in some of the consequences of traumatic brain injury and is a potential pharmacological target. Protein phosphatase 2A is a heterotrimeric protein that regulates key signalling pathways, and protein phosphatase 2A heterotrimers consisting of the PR55 B-subunit represent the major tau phosphatase in the brain. Here we investigated whether traumatic brain injury in rats and humans would induce changes in protein phosphatase 2A and phosphorylated tau, and whether treatment with sodium selenate-a potent PR55 activator-would reduce phosphorylated tau and improve traumatic brain injury outcomes in rats. Ninety young adult male Long-Evans rats were administered either a fluid percussion injury or sham-injury. A proportion of rats were killed at 2, 24, and 72 h post-injury to assess acute changes in protein phosphatase 2A and tau. Other rats were given either sodium selenate or saline-vehicle treatment that was continuously administered via subcutaneous osmotic pump for 12 weeks. Serial magnetic resonance imaging was acquired prior to, and at 1, 4, and 12 weeks post-injury to assess evolving structural brain damage and axonal injury. Behavioural impairments were assessed at 12 weeks post-injury. The results showed that traumatic brain injury in rats acutely reduced PR55 expression and protein phosphatase 2A activity, and increased the expression of phosphorylated tau and the ratio of phosphorylated tau to total tau. Similar findings were seen in post-mortem brain samples from acute human traumatic brain injury patients, although many did not reach statistical significance. Continuous sodium selenate treatment for 12 weeks after sham or fluid percussion injury in rats increased protein phosphatase 2A activity and PR55 expression, and reduced the ratio of phosphorylated tau to total tau, attenuated brain damage, and improved behavioural outcomes in rats given a fluid percussion injury. Notably, total tau levels were decreased in rats 12 weeks after fluid percussion injury, and several other factors, including the use of anaesthetic, the length of recovery time, and that some brain injury and behavioural dysfunction still occurred in rats treated with sodium selenate must be considered in the interpretation of this study. However, taken together these data suggest protein phosphatase 2A and hyperphosphorylated tau may be involved in the neurodegenerative cascade of traumatic brain injury, and support the potential use of sodium selenate as a novel traumatic brain injury therapy.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Ácido Selênico/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Ratos Long-Evans
19.
J Musculoskelet Neuronal Interact ; 16(4): 369-376, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27973389

RESUMO

OBJECTIVES: Administration of sodium selenate to rats given traumatic brain injury (TBI) attenuates brain damage and improves long-term behavioural outcomes. We have previously provided evidence that TBI causes bone loss in rats, however the effect of sodium selenate treatment on bone quantity following TBI is unknown. METHODS: Rats were randomly assigned into sham injury or fluid percussion injury (FPI) groups and administered saline or sodium selenate for 12 weeks post-injury. Femora were analysed using histomorphometry, peripheral quantitative computed tomography (pQCT) and biomechanical testing. RESULTS: Distal metaphyseal trabecular bone volume fraction of FPI-selenate rats was higher than FPI-vehicle rats (41.8%; p<0.01), however, femora from selenate-treated groups were shorter in length (4.3%; p<0.01) and had increased growth plate width (22.1%; p<0.01), indicating that selenate impaired long bone growth. pQCT analysis demonstrated that distal metaphyseal cortical thickness was decreased in TBI rats compared to shams (11.7%; p<0.05), however selenate treatment to TBI animals offset this reduction (p<0.05). At the midshaft we observed no differences in biomechanical measures. CONCLUSION: These are the first findings to indicate that mitigating TBI-induced neuropathology may have the added benefit of preventing osteoporosis and associated fracture risk following TBI.


Assuntos
Antioxidantes/farmacologia , Osso e Ossos/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Ácido Selênico/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans , Tomografia Computadorizada por Raios X
20.
Ecotoxicol Environ Saf ; 133: 350-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27497079

RESUMO

Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25µM+Se(VI) 25µM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.


Assuntos
Aminoácidos/metabolismo , Arsênio/toxicidade , Arsenitos/toxicidade , Oryza/efeitos dos fármacos , Ácido Selênico/farmacologia , Antioxidantes/metabolismo , Arsênio/metabolismo , Arsenitos/metabolismo , Glutationa/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Selênio/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA