Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.641
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 629(8014): 1075-1081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38811711

RESUMO

Climate warming induces shifts from snow to rain in cold regions1, altering snowpack dynamics with consequent impacts on streamflow that raise challenges to many aspects of ecosystem services2-4. A straightforward conceptual model states that as the fraction of precipitation falling as snow (snowfall fraction) declines, less solid water is stored over the winter and both snowmelt and streamflow shift earlier in season. Yet the responses of streamflow patterns to shifts in snowfall fraction remain uncertain5-9. Here we show that as snowfall fraction declines, the timing of the centre of streamflow mass may be advanced or delayed. Our results, based on analysis of 1950-2020 streamflow measurements across 3,049 snow-affected catchments over the Northern Hemisphere, show that mean snowfall fraction modulates the seasonal response to reductions in snowfall fraction. Specifically, temporal changes in streamflow timing with declining snowfall fraction reveal a gradient from earlier streamflow in snow-rich catchments to delayed streamflow in less snowy catchments. Furthermore, interannual variability of streamflow timing and seasonal variation increase as snowfall fraction decreases across both space and time. Our findings revise the 'less snow equals earlier streamflow' heuristic and instead point towards a complex evolution of seasonal streamflow regimes in a snow-dwindling world.


Assuntos
Aquecimento Global , Chuva , Estações do Ano , Neve , Ecossistema , Rios , Fatores de Tempo , Movimentos da Água , Aquecimento Global/estatística & dados numéricos , Análise Espaço-Temporal
2.
Nature ; 629(8010): 114-120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538797

RESUMO

Mountain ranges contain high concentrations of endemic species and are indispensable refugia for lowland species that are facing anthropogenic climate change1,2. Forecasting biodiversity redistribution hinges on assessing whether species can track shifting isotherms as the climate warms3,4. However, a global analysis of the velocities of isotherm shifts along elevation gradients is hindered by the scarcity of weather stations in mountainous regions5. Here we address this issue by mapping the lapse rate of temperature (LRT) across mountain regions globally, both by using satellite data (SLRT) and by using the laws of thermodynamics to account for water vapour6 (that is, the moist adiabatic lapse rate (MALRT)). By dividing the rate of surface warming from 1971 to 2020 by either the SLRT or the MALRT, we provide maps of vertical isotherm shift velocities. We identify 17 mountain regions with exceptionally high vertical isotherm shift velocities (greater than 11.67 m per year for the SLRT; greater than 8.25 m per year for the MALRT), predominantly in dry areas but also in wet regions with shallow lapse rates; for example, northern Sumatra, the Brazilian highlands and southern Africa. By linking these velocities to the velocities of species range shifts, we report instances of close tracking in mountains with lower climate velocities. However, many species lag behind, suggesting that range shift dynamics would persist even if we managed to curb climate-change trajectories. Our findings are key for devising global conservation strategies, particularly in the 17 high-velocity mountain regions that we have identified.


Assuntos
Altitude , Migração Animal , Biodiversidade , Mapeamento Geográfico , Aquecimento Global , Animais , África Austral , Brasil , Conservação dos Recursos Naturais , Aquecimento Global/estatística & dados numéricos , Umidade , Indonésia , Chuva , Refúgio de Vida Selvagem , Imagens de Satélites , Especificidade da Espécie , Temperatura , Fatores de Tempo
3.
Nature ; 634(8034): 600-608, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39322676

RESUMO

The jet stream is an important dynamic driver of climate variability in the Northern Hemisphere mid-latitudes1-3. Modern variability in the position of summer jet stream latitude in the North Atlantic-European sector (EU JSL) promotes dipole patterns in air pressure, temperature, precipitation and drought between northwestern and southeastern Europe. EU JSL variability and its impacts on regional climatic extremes and societal events are poorly understood, particularly before anthropogenic warming. Based on three temperature-sensitive European tree-ring records, we develop a reconstruction of interannual summer EU JSL variability over the period 1300-2004 CE (R2 = 38.5%) and compare it to independent historical documented climatic and societal records, such as grape harvest, grain prices, plagues and human mortality. Here we show contrasting summer climate extremes associated with EU JSL variability back to 1300 CE as well as biophysical, economic and human demographic impacts, including wildfires and epidemics. In light of projections for altered jet stream behaviour and intensified climate extremes, our findings underscore the importance of considering EU JSL variability when evaluating amplified future climate risk.


Assuntos
Altitude , Clima , Produção Agrícola , Vento , Humanos , Mudança Climática/estatística & dados numéricos , Produção Agrícola/história , Produção Agrícola/estatística & dados numéricos , Secas/história , Secas/estatística & dados numéricos , Grão Comestível/economia , Grão Comestível/história , Grão Comestível/provisão & distribuição , Epidemias/história , Epidemias/estatística & dados numéricos , Europa (Continente) , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Medieval , Mortalidade/história , Chuva , Estações do Ano , Temperatura , Árvores/crescimento & desenvolvimento , Vitis , Incêndios Florestais/história , Incêndios Florestais/estatística & dados numéricos , Pressão Atmosférica
4.
Nature ; 622(7982): 301-307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648861

RESUMO

According to twenty-first century climate-model projections, greenhouse warming will intensify rainfall variability and extremes across the globe1-4. However, verifying this prediction using observations has remained a substantial challenge owing to large natural rainfall fluctuations at regional scales3,4. Here we show that deep learning successfully detects the emerging climate-change signals in daily precipitation fields during the observed record. We trained a convolutional neural network (CNN)5 with daily precipitation fields and annual global mean surface air temperature data obtained from an ensemble of present-day and future climate-model simulations6. After applying the algorithm to the observational record, we found that the daily precipitation data represented an excellent predictor for the observed planetary warming, as they showed a clear deviation from natural variability since the mid-2010s. Furthermore, we analysed the deep-learning model with an explainable framework and observed that the precipitation variability of the weather timescale (period less than 10 days) over the tropical eastern Pacific and mid-latitude storm-track regions was most sensitive to anthropogenic warming. Our results highlight that, although the long-term shifts in annual mean precipitation remain indiscernible from the natural background variability, the impact of global warming on daily hydrological fluctuations has already emerged.


Assuntos
Modelos Climáticos , Aprendizado Profundo , Aquecimento Global , Atividades Humanas , Redes Neurais de Computação , Chuva , Temperatura , Tempo (Meteorologia) , Clima Tropical , Oceano Pacífico , Hidrologia , Aquecimento Global/estatística & dados numéricos
5.
Nature ; 622(7983): 521-527, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704729

RESUMO

The tropical Atlantic climate is characterized by prominent and correlated multidecadal variability in Atlantic sea surface temperatures (SSTs), Sahel rainfall and hurricane activity1-4. Owing to uncertainties in both the models and the observations, the origin of the physical relationships among these systems has remained controversial3-7. Here we show that the cross-equatorial gradient in tropical Atlantic SSTs-largely driven by radiative perturbations associated with anthropogenic emissions and volcanic aerosols since 19503,7-is a key determinant of Atlantic hurricane formation and Sahel rainfall. The relationship is obscured in a large ensemble of CMIP6 Earth system models, because the models overestimate long-term trends for warming in the Northern Hemisphere relative to the Southern Hemisphere from around 1950 as well as associated changes in atmospheric circulation and rainfall. When the overestimated trends are removed, correlations between SSTs and Atlantic hurricane formation and Sahel rainfall emerge as a response to radiative forcing, especially since 1950 when anthropogenic aerosol forcing has been high. Our findings establish that the tropical Atlantic SST gradient is a stronger determinant of tropical impacts than SSTs across the entire North Atlantic, because the gradient is more physically connected to tropical impacts via local atmospheric circulations8. Our findings highlight that Atlantic hurricane activity and Sahel rainfall variations can be predicted from radiative forcing driven by anthropogenic emissions and volcanism, but firmer predictions are limited by the signal-to-noise paradox9-11 and uncertainty in future climate forcings.


Assuntos
Modelos Teóricos , Temperatura , Clima Tropical , Aerossóis , Movimentos do Ar , Oceano Atlântico , Tempestades Ciclônicas , História do Século XX , Atividades Humanas , Chuva , Incerteza , Erupções Vulcânicas
6.
Nature ; 615(7951): 276-279, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859546

RESUMO

East African aridification during the past 8 million years is frequently invoked as a driver of large-scale shifts in vegetation1 and the evolution of new animal lineages, including hominins2-4. However, evidence for increasing aridity is debated5 and, crucially, the mechanisms leading to dry conditions are unclear6. Here, numerical model experiments show that valleys punctuating the 6,000-km-long East African Rift System (EARS) are central to the development of dry conditions in East Africa. These valleys, including the Turkana Basin in Kenya, cause East Africa to dry by channelling water vapour towards Central Africa, a process that simultaneously enhances rainfall in the Congo Basin rainforest. Without the valleys, the uplift of the rift system leads to a wetter climate in East Africa and a drier climate in the Congo Basin. Results from climate model experiments demonstrate that the detailed tectonic development of Africa has shaped the rainfall distribution, with profound implications for the evolution of African plant and animal lineages.


Assuntos
Evolução Biológica , Clima Desértico , Chuva , Animais , África Oriental , Congo , Hominidae , Quênia , Plantas , Volatilização , Floresta Úmida
7.
Nature ; 623(7987): 544-549, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821703

RESUMO

High Mountain Asia (HMA) has experienced a spatial imbalance in water resources in recent decades, partly because of a dipolar pattern of precipitation changes known as South Drying-North Wetting1. These changes can be influenced by both human activities and internal climate variability2,3. Although climate projections indicate a future widespread wetting trend over HMA1,4, the timing and mechanism of the transition from a dipolar to a monopolar pattern remain unknown. Here we demonstrate that the observed dipolar precipitation change in HMA during summer is primarily driven by westerly- and monsoon-associated precipitation patterns. The weakening of the Asian westerly jet, caused by the uneven emission of anthropogenic aerosols, favoured a dipolar precipitation trend from 1951 to 2020. Moreover, the phase transition of the Interdecadal Pacific Oscillation induces an out-of-phase precipitation change between the core region of the South Asian monsoon and southeastern HMA. Under medium- or high-emission scenarios, corresponding to a global warming of 0.6-1.1 °C compared with the present, the dipolar pattern is projected to shift to a monopolar wetting trend in the 2040s. This shift in precipitation patterns is mainly attributed to the intensified jet stream resulting from reduced emissions of anthropogenic aerosols. These findings underscore the importance of considering the impact of aerosol emission reduction in future social planning by policymakers.


Assuntos
Ar , Altitude , Clima , Chuva , Aerossóis/análise , Ásia , Aquecimento Global , Estações do Ano , Ar/análise , Ar/normas , Atividades Humanas , Oceano Pacífico
8.
Nature ; 615(7951): 270-275, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859548

RESUMO

Tropical forests play a critical role in the hydrological cycle and can influence local and regional precipitation1. Previous work has assessed the impacts of tropical deforestation on precipitation, but these efforts have been largely limited to case studies2. A wider analysis of interactions between deforestation and precipitation-and especially how any such interactions might vary across spatial scales-is lacking. Here we show reduced precipitation over deforested regions across the tropics. Our results arise from a pan-tropical assessment of the impacts of 2003-2017 forest loss on precipitation using satellite, station-based and reanalysis datasets. The effect of deforestation on precipitation increased at larger scales, with satellite datasets showing that forest loss caused robust reductions in precipitation at scales greater than 50 km. The greatest declines in precipitation occurred at 200 km, the largest scale we explored, for which 1 percentage point of forest loss reduced precipitation by 0.25 ± 0.1 mm per month. Reanalysis and station-based products disagree on the direction of precipitation responses to forest loss, which we attribute to sparse in situ tropical measurements. We estimate that future deforestation in the Congo will reduce local precipitation by 8-10% in 2100. Our findings provide a compelling argument for tropical forest conservation to support regional climate resilience.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Chuva , Árvores , Clima Tropical , Congo , Conservação dos Recursos Naturais/tendências , Ciclo Hidrológico
9.
Nature ; 615(7950): 100-104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792827

RESUMO

Tropical tree diversity increases with rainfall1,2. Direct physiological effects of moisture availability and indirect effects mediated by biotic interactions are hypothesized to contribute to this pantropical increase in diversity with rainfall2-6. Previous studies have demonstrated direct physiological effects of variation in moisture availability on tree survival and diversity5,7-10, but the indirect effects of variation in moisture availability on diversity mediated by biotic interactions have not been shown11. Here we evaluate the relationships between interannual variation in moisture availability, the strength of density-dependent interactions, and seedling diversity in central Panama. Diversity increased with soil moisture over the first year of life across 20 annual cohorts. These first-year changes in diversity persisted for at least 15 years. Differential survival of moisture-sensitive species did not contribute to the observed changes in diversity. Rather, negative density-dependent interactions among conspecifics were stronger and increased diversity in wetter years. This suggests that moisture availability enhances diversity indirectly through moisture-sensitive, density-dependent conspecific interactions. Pathogens and phytophagous insects mediate interactions among seedlings in tropical forests12-18, and many of these plant enemies are themselves moisture-sensitive19-27. Changes in moisture availability caused by climate change and habitat degradation may alter these interactions and tropical tree diversity.


Assuntos
Biodiversidade , Umidade , Chuva , Árvores , Clima Tropical , Florestas , Insetos , Panamá , Plântula/fisiologia , Árvores/classificação , Árvores/fisiologia , Animais
10.
Nature ; 621(7980): 773-781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612513

RESUMO

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologia
11.
Nature ; 623(7985): 83-89, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758952

RESUMO

Intense tropical cyclones (TCs), which often peak in autumn1,2, have destructive impacts on life and property3-5, making it crucial to determine whether any changes in intense TCs are likely to occur. Here, we identify a significant seasonal advance of intense TCs since the 1980s in most tropical oceans, with earlier-shifting rates of 3.7 and 3.2 days per decade for the Northern and Southern Hemispheres, respectively. This seasonal advance of intense TCs is closely related to the seasonal advance of rapid intensification events, favoured by the observed earlier onset of favourable oceanic conditions. Using simulations from multiple global climate models, large ensembles and individual forcing experiments, the earlier onset of favourable oceanic conditions is detectable and primarily driven by greenhouse gas forcing. The seasonal advance of intense TCs will increase the likelihood of intersecting with other extreme rainfall events, which usually peak in summer6,7, thereby leading to disproportionate impacts.


Assuntos
Tempestades Ciclônicas , Aquecimento Global , Oceanos e Mares , Estações do Ano , Clima Tropical , Modelos Climáticos , Tempestades Ciclônicas/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Gases de Efeito Estufa/efeitos adversos , Chuva , Fatores de Tempo
12.
Nature ; 617(7961): 529-532, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37069264

RESUMO

By accounting for most of the poleward atmospheric heat and moisture transport in the tropics, the Hadley circulation largely affects the latitudinal patterns of precipitation and temperature at low latitudes. To increase our preparednesses for human-induced climate change, it is thus critical to accurately assess the response of the Hadley circulation to anthropogenic emissions1-3. However, at present, there is a large uncertainty in recent Northern Hemisphere Hadley circulation strength changes4. Not only do climate models simulate a weakening of the circulation5, whereas atmospheric reanalyses mostly show an intensification of the circulation4-8, but atmospheric reanalyses were found to have artificial biases in the strength of the circulation5, resulting in unknown impacts of human emissions on recent Hadley circulation changes. Here we constrain the recent changes in the Hadley circulation using sea-level pressure measurements and show that, in agreement with the latest suite of climate models, the circulation has considerably weakened over recent decades. We further show that the weakening of the circulation is attributable to anthropogenic emissions, which increases our confidence in human-induced tropical climate change projections. Given the large climate impacts of the circulation at low latitudes, the recent human-induced weakening of the flow suggests wider consequences for the regional tropical-subtropical climate.


Assuntos
Atmosfera , Mudança Climática , Atividades Humanas , Clima Tropical , Vento , Humanos , Modelos Climáticos , Temperatura Alta , Chuva , Incerteza , Atmosfera/análise , Pressão Atmosférica , Viés
13.
Nature ; 624(7990): 109-114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938778

RESUMO

There are two main life cycles in plants-annual and perennial1,2. These life cycles are associated with different traits that determine ecosystem function3,4. Although life cycles are textbook examples of plant adaptation to different environments, we lack comprehensive knowledge regarding their global distributional patterns. Here we assembled an extensive database of plant life cycle assignments of 235,000 plant species coupled with millions of georeferenced datapoints to map the worldwide biogeography of these plant species. We found that annual plants are half as common as initially thought5-8, accounting for only 6% of plant species. Our analyses indicate that annuals are favoured in hot and dry regions. However, a more accurate model shows that the prevalence of annual species is driven by temperature and precipitation in the driest quarter (rather than yearly means), explaining, for example, why some Mediterranean systems have more annuals than desert systems. Furthermore, this pattern remains consistent among different families, indicating convergent evolution. Finally, we demonstrate that increasing climate variability and anthropogenic disturbance increase annual favourability. Considering future climate change, we predict an increase in annual prevalence for 69% of the world's ecoregions by 2060. Overall, our analyses raise concerns for ecosystem services provided by perennial plants, as ongoing changes are leading to a higher proportion of annual plants globally.


Assuntos
Ecossistema , Mapeamento Geográfico , Filogeografia , Fenômenos Fisiológicos Vegetais , Plantas , Aclimatação , Evolução Biológica , Mudança Climática/estatística & dados numéricos , Bases de Dados Factuais , Clima Desértico , Atividades Humanas , Região do Mediterrâneo , Plantas/classificação , Chuva , Temperatura
14.
Nature ; 615(7950): 87-93, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859582

RESUMO

Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)-known as Asia's water tower-has triggered widespread concerns because HMA protects millions of people against water stress1,2. However, the mechanisms behind the heterogeneous trends observed in terrestrial water storage (TWS) over the TP remain poorly understood. Here we use a Lagrangian particle dispersion model and satellite observations to attribute about 1 Gt of monthly TWS decline in the southern TP during 2003-2016 to westerlies-carried deficit in precipitation minus evaporation (PME) from the southeast North Atlantic. We further show that HMA blocks the propagation of PME deficit into the central TP, causing a monthly TWS increase by about 0.5 Gt. Furthermore, warming-induced snow and glacial melt as well as drying-induced TWS depletion in HMA weaken the blocking of HMA's mountains, causing persistent northward expansion of the TP's TWS deficit since 2009. Future projections under two emissions scenarios verified by satellite observations during 2020-2021 indicate that, by the end of the twenty-first century, up to 84% (for scenario SSP245) and 97% (for scenario SSP585) of the TP could be afflicted by TWS deficits. Our findings indicate a trajectory towards unsustainable water systems in HMA that could exacerbate downstream water stress.


Assuntos
Altitude , Mudança Climática , Dessecação , Previsões , Abastecimento de Água , Humanos , Ásia , Mudança Climática/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Tibet , Congelamento , Neve , Imagens de Satélites , Chuva , Oceano Atlântico , Camada de Gelo , Conservação dos Recursos Hídricos
15.
Nature ; 619(7969): 305-310, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380773

RESUMO

The intensity of extreme precipitation events is projected to increase in a warmer climate1-5, posing a great challenge to water sustainability in natural and built environments. Of particular importance are rainfall (liquid precipitation) extremes owing to their instantaneous triggering of runoff and association with floods6, landslides7-9 and soil erosion10,11. However, so far, the body of literature on intensification of precipitation extremes has not examined the extremes of precipitation phase separately, namely liquid versus solid precipitation. Here we show that the increase in rainfall extremes in high-elevation regions of the Northern Hemisphere is amplified, averaging 15 per cent per degree Celsius of warming-double the rate expected from increases in atmospheric water vapour. We utilize both a climate reanalysis dataset and future model projections to show that the amplified increase is due to a warming-induced shift from snow to rain. Furthermore, we demonstrate that intermodel uncertainty in projections of rainfall extremes can be appreciably explained by changes in snow-rain partitioning (coefficient of determination 0.47). Our findings pinpoint high-altitude regions as 'hotspots' that are vulnerable to future risk of extreme-rainfall-related hazards, thereby requiring robust climate adaptation plans to alleviate potential risk. Moreover, our results offer a pathway towards reducing model uncertainty in projections of rainfall extremes.


Assuntos
Inundações , Aquecimento Global , Chuva , Neve , Clima , Inundações/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Modelos Climáticos , Conjuntos de Dados como Assunto , Ambiente Construído/tendências , Atmosfera/química , Umidade , Recursos Hídricos/provisão & distribuição
16.
Nature ; 617(7959): 111-117, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100901

RESUMO

Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.


Assuntos
Carbono , Florestas , Árvores , Clima Tropical , Biomassa , Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Xilema/metabolismo , Chuva , Mudança Climática , Sequestro de Carbono , Estresse Fisiológico , Desidratação
17.
Nature ; 620(7973): 336-343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558848

RESUMO

Anthropogenic climate change is predicted to severely impact the global hydrological cycle1, particularly in tropical regions where agriculture-based economies depend on monsoon rainfall2. In the Horn of Africa, more frequent drought conditions in recent decades3,4 contrast with climate models projecting precipitation to increase with rising temperature5. Here we use organic geochemical climate-proxy data from the sediment record of Lake Chala (Kenya and Tanzania) to probe the stability of the link between hydroclimate and temperature over approximately the past 75,000 years, hence encompassing a sufficiently wide range of temperatures to test the 'dry gets drier, wet gets wetter' paradigm6 of anthropogenic climate change in the time domain. We show that the positive relationship between effective moisture and temperature in easternmost Africa during the cooler last glacial period shifted to negative around the onset of the Holocene 11,700 years ago, when the atmospheric carbon dioxide concentration exceeded 250 parts per million and mean annual temperature approached modern-day values. Thus, at that time, the budget between monsoonal precipitation and continental evaporation7 crossed a tipping point such that the positive influence of temperature on evaporation became greater than its positive influence on precipitation. Our results imply that under continued anthropogenic warming, the Horn of Africa will probably experience further drying, and they highlight the need for improved simulation of both dynamic and thermodynamic processes in the tropical hydrological cycle.


Assuntos
Mudança Climática , Modelos Climáticos , Secas , Chuva , Temperatura , Ciclo Hidrológico , Água , Atmosfera/química , Dióxido de Carbono/análise , Mudança Climática/história , Secas/estatística & dados numéricos , Sedimentos Geológicos/química , História Antiga , Umidade , Quênia , Lagos/química , Tanzânia , Termodinâmica , Clima Tropical , Volatilização , Água/análise
18.
Nature ; 618(7966): 755-760, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258674

RESUMO

Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO2 emissions in the past six decades1. Large uncertainties in terrestrial carbon-climate feedbacks, however, make it difficult to predict how the land carbon sink will respond to future climate change2. Interannual variations in the atmospheric CO2 growth rate (CGR) are dominated by land-atmosphere carbon fluxes in the tropics, providing an opportunity to explore land carbon-climate interactions3-6. It is thought that variations in CGR are largely controlled by temperature7-10 but there is also evidence for a tight coupling between water availability and CGR11. Here, we use a record of global atmospheric CO2, terrestrial water storage and precipitation data to investigate changes in the interannual relationship between tropical land climate conditions and CGR under a changing climate. We find that the interannual relationship between tropical water availability and CGR became increasingly negative during 1989-2018 compared to 1960-1989. This could be related to spatiotemporal changes in tropical water availability anomalies driven by shifts in El Niño/Southern Oscillation teleconnections, including declining spatial compensatory water effects9. We also demonstrate that most state-of-the-art coupled Earth System and Land Surface models do not reproduce the intensifying water-carbon coupling. Our results indicate that tropical water availability is increasingly controlling the interannual variability of the terrestrial carbon cycle and modulating tropical terrestrial carbon-climate feedbacks.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Mudança Climática , Ecossistema , Análise Espaço-Temporal , Clima Tropical , Água , Atmosfera/química , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Água/análise , Água/química , Sequestro de Carbono , Chuva , El Niño Oscilação Sul , Retroalimentação
19.
Nature ; 621(7979): 558-567, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704720

RESUMO

Sustainable Development Goal 2.2-to end malnutrition by 2030-includes the elimination of child wasting, defined as a weight-for-length z-score that is more than two standard deviations below the median of the World Health Organization standards for child growth1. Prevailing methods to measure wasting rely on cross-sectional surveys that cannot measure onset, recovery and persistence-key features that inform preventive interventions and estimates of disease burden. Here we analyse 21 longitudinal cohorts and show that wasting is a highly dynamic process of onset and recovery, with incidence peaking between birth and 3 months. Many more children experience an episode of wasting at some point during their first 24 months than prevalent cases at a single point in time suggest. For example, at the age of 24 months, 5.6% of children were wasted, but by the same age (24 months), 29.2% of children had experienced at least one wasting episode and 10.0% had experienced two or more episodes. Children who were wasted before the age of 6 months had a faster recovery and shorter episodes than did children who were wasted at older ages; however, early wasting increased the risk of later growth faltering, including concurrent wasting and stunting (low length-for-age z-score), and thus increased the risk of mortality. In diverse populations with high seasonal rainfall, the population average weight-for-length z-score varied substantially (more than 0.5 z in some cohorts), with the lowest mean z-scores occurring during the rainiest months; this indicates that seasonally targeted interventions could be considered. Our results show the importance of establishing interventions to prevent wasting from birth to the age of 6 months, probably through improved maternal nutrition, to complement current programmes that focus on children aged 6-59 months.


Assuntos
Caquexia , Países em Desenvolvimento , Transtornos do Crescimento , Desnutrição , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Caquexia/epidemiologia , Caquexia/mortalidade , Caquexia/prevenção & controle , Estudos Transversais , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/mortalidade , Transtornos do Crescimento/prevenção & controle , Incidência , Estudos Longitudinais , Desnutrição/epidemiologia , Desnutrição/mortalidade , Desnutrição/prevenção & controle , Chuva , Estações do Ano
20.
Nature ; 617(7962): 738-742, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100919

RESUMO

Cities are generally warmer than their adjacent rural land, a phenomenon known as the urban heat island (UHI). Often accompanying the UHI effect is another phenomenon called the urban dry island (UDI), whereby the humidity of urban land is lower than that of the surrounding rural land1-3. The UHI exacerbates heat stress on urban residents4,5, whereas the UDI may instead provide relief because the human body can cope with hot conditions better at lower humidity through perspiration6,7. The relative balance between the UHI and the UDI-as measured by changes in the wet-bulb temperature (Tw)-is a key yet largely unknown determinant of human heat stress in urban climates. Here we show that Tw is reduced in cities in dry and moderately wet climates, where the UDI more than offsets the UHI, but increased in wet climates (summer precipitation of more than 570 millimetres). Our results arise from analysis of urban and rural weather station data across the world and calculations with an urban climate model. In wet climates, the urban daytime Tw is 0.17 ± 0.14 degrees Celsius (mean ± 1 standard deviation) higher than rural Tw in the summer, primarily because of a weaker dynamic mixing in urban air. This Tw increment is small, but because of the high background Tw in wet climates, it is enough to cause two to six extra dangerous heat-stress days per summer for urban residents under current climate conditions. The risk of extreme humid heat is projected to increase in the future, and these urban effects may further amplify the risk.


Assuntos
Cidades , Clima , Transtornos de Estresse por Calor , Temperatura Alta , Umidade , Chuva , Humanos , Cidades/epidemiologia , Temperatura Alta/efeitos adversos , Tempo (Meteorologia) , Umidade/efeitos adversos , Fatores de Risco , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/etiologia , Transtornos de Estresse por Calor/prevenção & controle , População Rural , Modelos Climáticos , População Urbana , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA