Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Plant Cell Physiol ; 64(1): 107-116, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36222367

RESUMO

Cardenolides are steroidal metabolites in Digitalis lanata with potent cardioactive effects on animals. In plants, cardenolides are likely involved in various stress responses. However, the molecular mechanism of cardenolide increase during stresses is mostly unknown. Additionally, cardenolides are proposed to arise from cholesterol, but indirect results show that phytosterols may also be substrates for cardenolide biosynthesis. Here, we show that cardenolides increased after methyl jasmonate (MJ), sorbitol, potassium chloride (KCl) and salicylic acid analog [2,1,3-benzothiadiazole (BTH)] treatments. However, the expression of three known genes for cardenolide biosynthesis did not correlate well with these increases. Specifically, the expression of progesterone-5ß-reductases (P5ßR and P5ßR2) did not correlate with the cardenolide increase. The expression of 3ß-hydroxysteroid dehydrogenase (3ßHSD) correlated with changes in cardenolide levels only during the BTH treatment. Mining the D. lanata transcriptome identified genes involved in cholesterol and phytosterol biosynthesis: C24 sterol sidechain reductase 1 (SSR1), C4 sterol methyl oxidase 1, and 3 (SMO1 and SMO3). Surprisingly, the expression of all three genes correlated well with the cardenolide increase after the BTH treatment. Phylogenetic analysis showed that SSR1 is likely involved in both cholesterol and phytosterol biosynthesis. In addition, SMO1 is likely specific to phytosterol biosynthesis, and SMO3 is specific to cholesterol biosynthesis. These results suggest that stress-induced increase of cardenolides in foxglove may correlate with cholesterol and phytosterol biosynthesis. In summary, this work shows that cardenolides are important for stress responses in D. lanata and reveals a potential link between phytosterol and cardenolide biosynthesis.


Assuntos
Digitalis , Fitosteróis , Animais , Digitalis/química , Digitalis/genética , Digitalis/metabolismo , Cardenolídeos/análise , Cardenolídeos/metabolismo , Filogenia , Oxirredutases/metabolismo
2.
Bioorg Chem ; 122: 105697, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255342

RESUMO

The phytochemical investigations of the seeds of Digitalis purpurea have revealed their richness in cardenolide and pregnane glycosides exhibiting potent cytotoxicity; further chemical examinations of the D. purpurea seeds have achieved the isolation of six triterpene glycosides (1-6), six spirostanol glycosides (7-12), and three furostanol glycosides (13-15), including seven previously unidentified compounds (1-3, 10-12, and 14). Here, the structures of 1-3, 10-12, and 14 were determined via extensive spectroscopic analyses, including two-dimensional (2D) NMR; hydrolysis, followed by chromatographic and spectroscopic analyses; and X-ray crystallographic analysis. The cytotoxic activities of the isolated compounds (1-15) against SBC-3 small cell lung carcinoma and TIG-3 normal human diploid fibroblast cells were evaluated. Triterpene glycoside 3 and spirostanol glycoside 9 exhibited considerable cytotoxicity with IC50 values of 1.0 and 1.7 µM, respectively; they induced apoptotic cell death, which was accompanied by the activation of caspase-3 in SBC-3 cells. Spirostanol glycoside 7 exhibited cytotoxicity toward the SBC-3 cells (IC50 1.3 µM). Additionally, 7 at 0.1 and 1.0 µM synergistically enhanced the cytotoxicity of etoposide against SBC-3 cells; compound 7 induced the release of DAMPs; the release of HMGB1, the secretion of ATP, and the exposure of CALR in the SBC-3 cells. Furthermore, the combination of 7 and etoposide resulted in increasing the extracellular release of DAMPs. These data indicated that 7, as well as its combination with etoposide, might potentially cause immunogenic cell death.


Assuntos
Digitalis , Triterpenos , Digitalis/química , Etoposídeo/farmacologia , Glicosídeos/química , Humanos , Sementes/química , Triterpenos/metabolismo , Triterpenos/farmacologia
3.
Chem Biodivers ; 19(10): e202200411, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085355

RESUMO

There is growing interest in exploring Digitalis cardenolides as potential antiviral agents. Hence, we herein investigated the influence of structural features and lipophilicity on the antiherpes activity of 65 natural and semisynthetic cardenolides assayed in vitro against HSV-1. The presence of an α,ß-unsaturated lactone ring at C-17, a ß-hydroxy group at C-14 and C-3ß-OR substituents were considered essential requirements for this biological activity. Glycosides were more active than their genins, especially monoglycosides containing a rhamnose residue. The activity enhanced in derivatives bearing an aldehyde group at C-19 instead of a methyl group, whereas inserting a C-5ß-OH improved the antiherpes effect significantly. The cardenolides lipophilicity was accessed by measuring experimentally their log P values (n-octanol-water partition coefficient) and disclosed a range of lipophilicity (log P 0.75±0.25) associated with the optimal antiherpes activity. In silico studies were carried out and resulted in the establishment of two predictive models potentially useful to identify and/or optimize novel antiherpes cardenolides. The effectiveness of the models was confirmed by retrospective analysis of the studied compounds. This is the first SAR study addressing the antiherpes activity of cardenolides. The developed computational models were able to predict the active cardenolides and their log P values.


Assuntos
Digitalis , Digitalis/química , Cardenolídeos/farmacologia , 1-Octanol , Ramnose , Estudos Retrospectivos , Extratos Vegetais/química , Antivirais/farmacologia , Glicosídeos , Lactonas , Aldeídos , Água
4.
J Biochem Mol Toxicol ; 34(5): e22462, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32045083

RESUMO

Heart failure (HF) is a medical condition inability of the heart to pump sufficient blood to meet the metabolic demand of the body to take place. The number of hospitalized patients with cardiovascular diseases is estimated to be more than 1 million each year, of which 80% to 90% of patients ultimately progress to decompensated HF. Digitalis glycosides exert modest inotropic actions when administered to patients with decompensated HF. Although its efficacy in patients with HF and atrial fibrillation is clear, its value in patients with HF and sinus rhythm has often been questioned. A series of recent studies have cast serious doubt on the benefit of digoxin when added to contemporary HF treatment. We are hypothesizing the role and mechanism of exosome and its biological constituents responsible for worsening the disease state and mortality in decompensated HF patients on digitalis.


Assuntos
Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Cardiotônicos/uso terapêutico , Digitalis/química , Digoxina/uso terapêutico , Exossomos/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Antiarrítmicos/farmacologia , Cardiotônicos/farmacologia , Digoxina/farmacologia , Humanos , Extratos Vegetais/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
5.
Int J Cancer ; 141(10): 1981-1986, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28748555

RESUMO

Lung cancer risk and tumor characteristics differ between sexes. Estrogen has been suggested to counteract lung cancer development. We aimed to test the hypothesis that digitalis use decreases lung cancer risk due to its estrogenic and other anticancer properties in men. This was a nationwide Swedish population-based cohort study between July 1, 2005 and December 31, 2013. Data on the use of digitalis and organic nitrates in all male individuals were derived from the Swedish Prescribed Drug Registry. New lung cancer diagnoses among cohort participants were identified from the Swedish Cancer Registry. Cox proportional hazards regression was employed to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) of lung cancer in digitalis users (exposed participants) compared to users of organic nitrates without digitalis medication (unexposed participants). The study cohort contained 74,437 digitalis users and 297,301 organic nitrates users. Long-term use (≥2 years) of digitalis was associated with decreased HRs of total lung cancer (HR 0.55, 95% CI 0.39-0.79) and squamous cell carcinoma (HR 0.40, 95% CI 0.19-0.87). This large and population-based study suggests decreased risks of lung cancer overall and squamous cell carcinoma associated with long-term use of digitalis in men.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Digitalis/química , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Adenocarcinoma/epidemiologia , Adenocarcinoma/patologia , Idoso , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Sistema de Registros , Medição de Risco , Carcinoma de Pequenas Células do Pulmão/epidemiologia , Carcinoma de Pequenas Células do Pulmão/patologia , Taxa de Sobrevida , Suécia/epidemiologia
6.
Planta Med ; 83(12-13): 962-976, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28561136

RESUMO

This review provides a renewed look at the genus Digitalis. Emphasis will be put on those issues that attracted the most attention or even went through paradigmatic changes since the turn of the millennium. PubMed and Google Scholar were used ("Digitalis" and "Foxglove" were the key words) to identify research from 2000 till 2017 containing data relevant enough to be presented here. Intriguing new results emerged from studies related to the phylogeny and taxonomy of the genus as well as to the biosynthesis and potential medicinal uses of the key active compounds, the cardiac glycosides. Several Eastern and Western Foxgloves were studied with respect to their propagation in vitro. In this context, molecular biology tools were applied and phytochemical analyses were conducted. Structure elucidation and analytical methods, which have experienced less exciting progress, will not be considered here in great detail.


Assuntos
Glicosídeos Cardíacos/análise , Digitalis/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Glicosídeos Cardíacos/química , Digitalis/classificação , Digitalis/genética , Digitalis/metabolismo , Compostos Fitoquímicos/química , Plantas Medicinais
7.
Planta Med ; 83(12-13): 977-984, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28297727

RESUMO

In the 19th century, cardio-active steroid glycosides, shortly cardiac glycosides, were scientifically established as drugs against heart failure. Their in vivo, cellular, and molecular actions as well as their predominant target, Na+-K+-ATPase, have been comprehensively investigated in the 20th century and the discovery of endogenous cardiac glycosides has fostered this research field. In the last years, however, results from clinical trials and meta-analyses have questioned their therapeutic value due to efficacy and safety issues. This has led to a considerable decline of their usage. Beyond the cardiovascular system, cardiac glycosides have been increasingly recognized as antitumor compounds and Na+-K+-ATPase has evolved into a promising drug target in oncology. A wealth of review articles exists that intensively discuss these topics. Surprisingly, the anti-inflammatory actions of cardiac glycosides, which were discovered in the 1960s, have so far hardly been perceived and have not yet been summarized. This review provides an overview of the in vivo and in vitro actions of cardiac glycosides on inflammatory processes and of the signaling mechanisms responsible for these effects: cardiac glycosides have been found to decrease inflammatory symptoms in different animal models of acute and chronic inflammation. Regarding the underlying mechanisms most research has focused on leukocytes. In these cells, cardiac glycosides primarily inhibit cell proliferation and the secretion of proinflammatory cytokines.


Assuntos
Anti-Inflamatórios/farmacologia , Glicosídeos Cardíacos/farmacologia , Digitalis/química , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Anti-Inflamatórios/química , Glicosídeos Cardíacos/química , Proliferação de Células/efeitos dos fármacos , Coração/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Miocárdio/imunologia , Transdução de Sinais/efeitos dos fármacos
8.
Planta Med ; 83(12-13): 1035-1043, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28486743

RESUMO

Recent studies demonstrate that cardiac glycosides, known to inhibit Na+/K+-ATPase in humans, have increased susceptibility to cancer cells that can be used in tumor therapy. One of the most promising candidates identified so far is glucoevatromonoside, which can be isolated from the endangered species Digitalis mariana ssp. heywoodii. Due to its complex structure, glucoevatromonoside cannot be obtained economically by total chemical synthesis. Here we describe two methods for glucoevatromonoside production, both using evatromonoside obtained by chemical degradation of digitoxin as the precursor. 1) Catalyst-controlled, regioselective glycosylation of evatromonoside to glucoevatromonoside using 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide as the sugar donor and 2-aminoethyldiphenylborinate as the catalyst resulted in an overall 30 % yield. 2) Biotransformation of evatromonoside using Digitalis lanata plant cell suspension cultures was less efficient and resulted only in overall 18 % pure product. Structural proof of products has been provided by extensive NMR data. Glucoevatromonoside and its non-natural 1-3 linked isomer neo-glucoevatromonoside obtained by semisynthesis were evaluated against renal cell carcinoma and prostate cancer cell lines.


Assuntos
Antineoplásicos/metabolismo , Cardenolídeos/metabolismo , Glicosídeos Cardíacos/metabolismo , Digitalis/metabolismo , Digitoxina/química , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Biotransformação , Cardenolídeos/síntese química , Cardenolídeos/isolamento & purificação , Cardenolídeos/farmacologia , Glicosídeos Cardíacos/síntese química , Glicosídeos Cardíacos/isolamento & purificação , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Digitalis/química , Digitoxina/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Glicosilação , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Biosci Biotechnol Biochem ; 79(2): 177-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25345317

RESUMO

Four cardenolide glycosides, glucodigifucoside (2), 3'-O-acetylglucoevatromonoside (9), digitoxigenin 3-O-ß-D-glucopyranosyl-(1 → 4)-ß-D-glucopyranosyl-(1 → 4)-3-O-acetyl-ß-D-digitoxopyranoside (11), and purpureaglycoside A (12), isolated from the seeds of Digitalis purpurea, exhibited potent cytotoxicity against human renal adenocarcinoma cell line ACHN. These compounds exhibited significantly lower IC50 values against ACHN than that against normal human renal proximal tubule-derived cell line HK-2. In particular, 2 exhibited the most potent and carcinoma-specific cytotoxicity, with a sixfold lower IC50 value against ACHN than that against HK-2. Measurement of cyclin-dependent kinase inhibitor levels revealed that upregulation of p21/Cip1 expression was involved in the carcinoma-specific cytotoxicity of 2. Further, compound 2 also exhibited the carcinoma-specific cytotoxicity toward hepatocellular carcinoma cell line.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Cardenolídeos/química , Digitalis/química , Glicosídeos/química , Glicosídeos/farmacologia , Sementes/química , Adenocarcinoma/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Neoplasias Renais/patologia , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Recenti Prog Med ; 106(7): 308-15, 2015 Jul.
Artigo em Italiano | MEDLINE | ID: mdl-26228721

RESUMO

This is an essay dealing with the 1785 cohort study by William Withering (the "account"), in which he reported the results of the treatment with foxglove (Digitalis purpurea) in 163 patients suffering from various forms of hydropsy (water retention). Withering reported the results of all patients, and classified them into responders and non-responders. He identified the responders as suffering from heart failure. In the 18th century, medical treatments were judged as successful if they complied with the criteria a priori of the theory of the four humors, and not on the patient's response to the treatment. Withering was the first not only to compare the patient's conditions before and after treatment, but also to identify the individual clinical characteristics of the patients who responded. In modern medicine, drugs are released on the market and approved for use after what is known as "population-derived clinical research", principally randomized controlled trials, and guidelines. More than 200 years ago, Withering anticipated the current and growing trend towards individual responses to treatment, and personalized medicine.


Assuntos
Digitalis/química , Insuficiência Cardíaca/história , Medicina de Precisão/história , Edema/tratamento farmacológico , Edema/história , Insuficiência Cardíaca/tratamento farmacológico , História do Século XVIII , Humanos , Medicina de Precisão/métodos , Resultado do Tratamento
11.
Biochem Biophys Res Commun ; 446(4): 1151-4, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24667596

RESUMO

In addition to performing its essential transport function, the sodium pump also activates multiple cell signaling pathways in response to digitalis drugs such as ouabain. Based mainly on cell-free studies with mixtures of purified Src kinase and Na(+)/K(+)-ATPase, a well-advocated hypothesis on how ouabain initiates the activation of signaling pathways is that there is a preexisting physiological complex of inactive Src bound to the α-subunit of Na(+)/K(+)-ATPase, and that ouabain binding to this subunit disrupts the bound Src and activates it. Because of the published disagreements of the results of such cell-free experiments of two other laboratories, our aim was to attempt the resolution of these discrepancies. We reexamined the effects of ouabain, vanadate, and oligomycin on mixtures of Src, Na(+)/K(+)-ATPase, Mg(2+), and ATP as specified in prior studies; and assayed for Src-418 autophosphorylation as the measure of Src activation. In contrast to the findings of the proponents of the above hypothesis, our results showed similar effects of the three inhibitors of Na(+)/K(+)-ATPase; indicating that Src activation in such experiments is primarily due to the ATP-sparing effect of the ATPase inhibitor on the mixture of two enzymes competing for ATP. We conclude that there is no solid evidence for direct molecular interaction of Src with Na(+)/K(+)-ATPase under physiological conditions.


Assuntos
Inibidores Enzimáticos/farmacologia , Oligomicinas/farmacologia , Ouabaína/farmacologia , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Vanadatos/farmacologia , Quinases da Família src/metabolismo , Animais , Digitalis/química , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Suínos
12.
Phytother Res ; 28(4): 534-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23722601

RESUMO

The phytochemical investigation of Digitalis trojana led to the isolation of two cardiac glycosides (1, 2), one pregnane glycoside (3), three furostanol type saponins (4-6), along with three cleroindicins (7-9), four phenylethanoid glycosides (10-13), two flavonoids (14, 15) and two phenolic acid derivatives (16, 17). The structure elucidation of the isolates was carried out by NMR experiments as well as ESI-MS. The cytotoxic activity of compounds 1-13 against a small panel of cancer cell lines, namely MCF-7, T98G, HT-29, PC-3, A375 and SH-SY5Y, was investigated. Compounds 1-6 showed antiproliferative activity against human breast MCF-7 and colon HT-29 cancer cell lines with IC50 values ranging from 8.3 to 50 µM. In order to understand the mechanism involved in the cell death, the active compounds were tested as pro-apoptotic agents using propidium iodide staining by flow cytometry method. No significant increase was observed in the apoptosis of the MCF-7 and HT-29 cancer cells. Moreover, the effects of the active compounds on cell proliferation were assessed on the same cancer cell lines by cell cycle analysis of DNA content using flow cytometry. No significative changes were observed in the cell cycle of MCF-7, while significant changes in G2 /M cell cycle phase of HT-29 cells were observed after treatment with digitalin (1), cariensoside (3) and 22-O-methylparvispinoside B (6) at 10 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Digitalis/química , Glicosídeos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Glicosídeos/isolamento & purificação , Células HT29 , Humanos , Células MCF-7 , Componentes Aéreos da Planta/química , Saponinas/isolamento & purificação , Saponinas/farmacologia , Turquia
13.
Nat Plants ; 9(10): 1607-1617, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723202

RESUMO

Cardenolides are specialized, steroidal metabolites produced in a wide array of plant families1,2. Cardenolides play protective roles in plants, but these molecules, including digoxin from foxglove (Digitalis spp.), are better known for treatment of congenital heart failure, atrial arrhythmia, various cancers and other chronic diseases3-9. However, it is still unknown how plants synthesize 'high-value', complex cardenolide structures from, presumably, a sterol precursor. Here we identify two cytochrome P450, family 87, subfamily A (CYP87A) enzymes that act on both cholesterol and phytosterols (campesterol and ß-sitosterol) to form pregnenolone, the first committed step in cardenolide biosynthesis in the two phylogenetically distant plants Digitalis purpurea and Calotropis procera. Arabidopsis plants overexpressing these CYP87A enzymes ectopically accumulated pregnenolone, whereas silencing of CYP87A in D. purpurea leaves by RNA interference resulted in substantial reduction of pregnenolone and cardenolides. Our work uncovers the key entry point to the cardenolide pathway, and expands the toolbox for sustainable production of high-value plant steroids via synthetic biology.


Assuntos
Cardenolídeos , Digitalis , Cardenolídeos/metabolismo , Plantas/metabolismo , Digitalis/química , Digitalis/metabolismo , Pregnenolona
14.
Chemistry ; 18(11): 3092-120, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22354477

RESUMO

The active components from the extracts of Digitalis, cardiotonic steroid glycosides, have been ingested by humans for more than 200 years as a medicinal therapy for heart failure and abnormal heart rhythms. The positive inotropic activity of the cardiotonic steroids that mediates clinically useful physiological effects in patients has been attributed largely to a high affinity inhibitory interaction with the extracellular surface of the membrane-bound sodium pump (Na(+)/K(+)-ATPase). However, previously unrecognized intracellular signaling pathways continue to be uncovered. This Review examines both partial and de novo synthetic approaches to the medicinally important and structurally captivating cardenolide and bufadienolide steroid families, with an emphasis on the stereocontrolled construction of the pharmacophoric aglycone (genin) framework.


Assuntos
Produtos Biológicos/síntese química , Glicosídeos Cardíacos/síntese química , Glicosídeos Digitálicos/síntese química , Produtos Biológicos/química , Glicosídeos Cardíacos/química , Digitalis/química , Glicosídeos Digitálicos/química , Humanos , Estrutura Molecular
15.
Pharmazie ; 66(6): 458-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21699088

RESUMO

The biotransformation of digitoxin and some of its derivatives extracted from Digitalis lanata by Streptomyces isolated species was investigated. Cultures of a Streptomyces strain designated EUSA2003B, isolated from an Egyptian soil sample, efficiently induced selective 12beta-hydroxylation of the steroid aglycone of digitoxin (DT) and its alpha-acetyl and beta-methyl derivatives. The transformation reaction was performed within a 5-day fermentation process, products were isolated and their aglycone moiety was obtained by acid hydrolysis and their structures were elucidated by 13C and 1H NMR. The biotransformation resulted mainly digoxin (DG, approximately 87%), meanwhile, digoxigenone (DGON, approximately 7.0%) was also afforded as a side product. The present study revealed that: 1-Streptomyces isolate EUSA2003B harbors its specific 12beta-hydroxlase and has the capability to transform DT and it's alpha-acetyl and beta-methyl derivatives into their corresponding digoxins at reasonable yields. 2-The minor structural differences in the trisaccharide side chain seemed ineffective on the transformational capability of this organism. 3-The Streptomyces might also possess a specific glycosidase that splits the saccharidic side chain beside another dehydrogenase that oxidizes C3 at the steroid nucleus into its ketone form (DGON).


Assuntos
Cardiotônicos/metabolismo , Digitalis/química , Digitoxina/metabolismo , Streptomyces/metabolismo , Biotransformação , Cardenolídeos/química , Cardenolídeos/metabolismo , Cardiotônicos/química , Digitoxina/química , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia Eletrônica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Streptomyces/ultraestrutura
16.
Indian J Biochem Biophys ; 48(3): 158-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21793306

RESUMO

Among the cardiotonics (agents against congestive heart failure), the most important group is of the digitalis cardiac glycosides, but since these compounds suffer from a low therapeutic index, attention has been paid to investigating safer cardiotonic agents through the inhibition of Na+,K(+)-ATPase, the mechanism by which the digitalis cardiac glycosides elicit their action. Recently, a series of perhydroindenes were studied for their Na+,K(+)-ATPase inhibition activity. We report here a QSAR study on them to investigate the physicochemical and structural properties of the molecules that govern their activity in order to rationalize the structural modification to have more potent drugs. A multiple regression analysis reveals a significant correlation between the Na+,K(+)-ATPase inhibition activity of the compounds and Kier's first order valence molecular connectivity index of their R5-substituents and some indicator parameters, suggesting that the R5-substituents of the compounds containing atoms with low valence and high saturation and the R1-substituents having =N-O- moiety will be conducive to the activity.


Assuntos
Cardiotônicos/química , Cardiotônicos/síntese química , Digitalis/química , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Glicosídeos Digitálicos/antagonistas & inibidores , Glicosídeos Digitálicos/química , Inibidores Enzimáticos/química , Relação Quantitativa Estrutura-Atividade , Análise de Regressão
17.
J Chromatogr A ; 1618: 460903, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32035664

RESUMO

Plants of the Digitalis genus contain a cocktail of cardenolides commonly prescribed to treat heart failure. Cardenolides in Digitalis extracts have been conventionally quantified by high-performance liquid chromatography yet the lack of structural information compounded with possible co-eluents renders this method insufficient for analyzing cardenolides in plants. The goal of this work is to structurally characterize cardiac glycosides in fresh-leaf extracts using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) that provides measured accurate mass. Fragmentation of cardenolides is featured by sequential loss of sugar units while the steroid aglycone moieties undergo stepwise elimination of hydroxyl groups, which distinguishes different aglycones. Using a reverse-phase LC column, the sequence of elution follows: diginatigenin→digoxigenin→gitoxigenin→gitaloxigenin→digitoxigenin for cardenolides with the same sugar units but different aglycones. A linear range of 0.8-500 ng ml-1 has been achieved for digoxigenin, ß-acetyldigoxin, and digitoxigenin with limits of detection ranging from 0.09 to 0.45 ngml-1. A total of seventeen cardenolides have been detected with lanatoside A, C, and E as major cardenolides in Digitalis lanata while seven have been found in Digitalis purpurea including purpurea glycoside A, B, and E. Surprisingly, glucodigifucoside in D. lanata and verodoxin and digitoxigenin fucoside in D. purpurea have also been found as major cardenolides. As the first MS/MS-based method developed for analyzing cardenolides in plant extracts, this method serves as a foundation for complete identification and accurate quantification of cardiac glycosides, a necessary step towards understanding the biosynthesis of cardenolide in plants.


Assuntos
Cardenolídeos/análise , Digitalis/química , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa , Glicosídeos Digitálicos/análise , Extratos Vegetais/química
18.
Indian J Exp Biol ; 47(3): 218-21, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19405389

RESUMO

Antimicrobial activity of the methanolic extracts of leaves and flowers of D. lamarckii Ivan, (Scophulariaceae), an endemic plant species of Turkey, was tested on ten bacterial and four yeast strains. Effective antibacterial activity was observed in four bacterial strains. Minimum inhibitory concentration (MIC) was calculated by use of liquid culture tests and in all the four effective bacterial strains, the MIC was found to be > or = 199.5 mg/ml. The minimum bactericidal concentration (MBC) of B. subtilis, S. aureus, and L. monocytogenes was calculated to be > or = 199.5 mg/ml, and MBC value for Shigella was calculated as > or = 399 mg/ml.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Digitalis/química , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Digitalis/crescimento & desenvolvimento , Metanol , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Turquia
20.
Fitoterapia ; 134: 73-80, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30735707

RESUMO

Phytochemical investigation of the aerial parts of Digitalis grandiflora Miller (Plantaginaceae) led to the isolation of an undescribed cardenolide type glycoside digigrandifloroside (1) along with five known compounds, rengyoside A (2), rengyoside B (3), cleroindicin A (4), salidroside (5), and cornoside (6), from its aqueous fraction of methanolic extract. Structures of the isolated compounds were determined by means of spectroscopic techniques. 1-6 were isolated for the first time from D. grandiflora. 2 and 3 are being reported for the first time from Digitalis genus and Plantaginaceae family with this study. This is the second report for occurrence of 4 from a Digitalis species. Cytotoxic activity of the aqueous fraction was also tested against HEp-2 (Human larynx epidermoid carcinoma) and HepG2 (Human hepatocellular carcinoma) cancer cell lines and L929 (Mouse fibroblast cell) non-cancerous cell line. Aqueous fraction showed stronger cytotoxicity on HEp-2 cells than HepG2. Therefore, the cytotoxic activity of 1, 2, 4, and 6 were tested against HEp-2 and L929 cell lines. 3 and 5 couldn't be tested due to their insufficient amount. 1 showed the highest cytotoxicity against HEp-2 cells with IC50 value 10.1 µM when compared with the positive control, etoposide and 2-6 (IC50 of etoposide; 39.5 µM).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cardenolídeos/farmacologia , Digitalis/química , Glicosídeos/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Cardenolídeos/isolamento & purificação , Linhagem Celular Tumoral , Glicosídeos/isolamento & purificação , Humanos , Camundongos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Componentes Aéreos da Planta/química , Metabolismo Secundário , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA