Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Neurocase ; 30(2): 77-82, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38795053

RESUMO

L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare autosomal recessive disease characterized by elevated levels of hydroxyglutaric acid in the body fluids and brain with abnormal white matter. We present two siblings with psychomotor retardation and quadriparesis. Their brain imaging showed diffuse bilateral symmetrical involvement of the cerebral cortex, white matter, basal ganglia and cerebellum. The whole exome sequence studies revealed a homozygous likely pathogenic variant on chromosome 14q22.1 (NM_024884.2: c.178G > A; pGly60Arg) in the gene encoding for L-2-hydroxyglutarate dehydrogenase (L2HGDH) (OMIM #236792). Therefore, using the L2HGDH gene study is beneficial for L2HGA diagnosis.


Assuntos
Oxirredutases do Álcool , Irmãos , Criança , Humanos , Oxirredutases do Álcool/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/diagnóstico por imagem , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/diagnóstico por imagem , Egito , Imageamento por Ressonância Magnética
2.
Mol Genet Metab ; 138(4): 107549, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36913764

RESUMO

GA1 (OMIM# 231670) is an organic aciduria caused by defective Glutaryl-CoA dehydrogenase (GCDH), encoded by GCDH. Early detection of GA1 is crucial to prevent patients from developing acute encephalopathic crisis and subsequent neurologic sequelae. Diagnosis of GA1 relies on elevated glutarylcarnitine (C5DC) in plasma acylcarnitine analysis and hyperexcretion of glutaric acid (GA) and 3-hydroxyglutaric acid (3HG) in urine organic acid (UOA) analysis. Low excretors (LE), however, exhibit subtly elevated or even normal plasma C5DC and urinary GA levels, leading to screening and diagnostic challenges. The measurement of 3HG in UOA is thus often used as the 1st tier test for GA1. We described a case of LE detected via newborn screen with normal excretion of GA, absent of 3HG and increased 2-methylglutaconic acid (2MGA), which was detected at 3 mg/g creatinine (reference interval <1 mg/g creatinine) without appreciable ketones. We retrospectively examined UOA of 8 other GA1 patients and the 2MGA level ranged from 2.5 to 27.39 mg/g creatinine, which is significantly higher than normal controls (0.05-1.61 mg/g creatinine). Although the underlying mechanism of 2MGA formation in GA1 is unclear, our study suggests 2MGA is a biomarker for GA1 and should be monitored by routine UOA to evaluate its diagnostic and prognostic value.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Recém-Nascido , Humanos , Glutaril-CoA Desidrogenase , Creatinina , Estudos Retrospectivos , Encefalopatias Metabólicas/diagnóstico , Biomarcadores , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Glutaratos
3.
J Inherit Metab Dis ; 46(3): 520-535, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36591944

RESUMO

Organic acidurias, such as glutaric aciduria type 1 (GA1), methylmalonic (MMA), and propionic aciduria (PA) are a prominent group of inherited metabolic diseases involving accumulation of eponymous metabolites causing endogenous intoxication. For all three conditions, guidelines for diagnosis and management have been developed and revised over the last years, resulting in three revisions for GA1 and one revision for MMA/PA. The process of clinical guideline development in rare metabolic disorders is challenged by the scarcity and limited quality of evidence available. The body of literature is often fragmentary and where information is present, it is usually derived from small sample sizes. Therefore, the development of guidelines for GA1 and MMA/PA was initially confronted with a poor evidence foundation that hindered formulation of concrete recommendations in certain contexts, triggering specific research projects and initiation of longitudinal, prospective observational studies using patient registries. Reversely, these observational studies contributed to evaluate the value of newborn screening, phenotypic diversities, and treatment effects, thus significantly improving the quality of evidence and directly influencing formulation and evidence levels of guideline recommendations. Here, we present insights into interactions between guideline development and (pre)clinical research for GA1 and MMA/PA, and demonstrate how guidelines gradually improved from revision to revision. We describe how clinical studies help to unravel the relative impact of therapeutic interventions on outcome and conclude that despite new and better quality of research data over the last decades, significant shortcomings of evidence regarding prognosis and treatment remain. It appears that development of clinical guidelines can directly help to guide research, and vice versa.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Doenças Metabólicas , Acidemia Propiônica , Recém-Nascido , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/diagnóstico , Acidemia Propiônica/diagnóstico
4.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36221165

RESUMO

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Humanos , Glutaril-CoA Desidrogenase , Lisina/metabolismo , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/terapia , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Glutaratos/metabolismo
5.
J Intern Med ; 292(6): 846-857, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35809045

RESUMO

Metabolic derangements, when acute and severe, affect brain function. This presents mostly with a marked decline in the level of consciousness, resulting in impaired responsiveness, abnormal receptivity, impaired content, and loss of memory retention. The term metabolic encephalopathy has been used but is conjecture that can be challenged in the age of modern neuroimaging. We now recognize that many metabolic encephalopathies may involve structural lesions and at an early stage. Common clinical conundrums are the evaluation of the degree of brain injury and its recoverability. This review discusses the appropriate terminology for these conditions, the diagnostic approach, therapy recommendations, and prediction of recovery potential. In evaluating a presumed metabolic cause for encephalopathy, we must (1) search for and rule out structural injury to the brain despite an obvious explanatory metabolic derangement, (2) recognize that several confounding conditions often co-exist, and (3) acknowledge that resolution of brain dysfunction may be protracted despite normalization of laboratory values.


Assuntos
Encefalopatias Metabólicas , Encefalopatias , Humanos , Encefalopatias/diagnóstico , Encefalopatias/complicações , Encefalopatias/metabolismo , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/etiologia , Encefalopatias Metabólicas/metabolismo , Encéfalo/patologia , Neuroimagem/efeitos adversos , Imageamento por Ressonância Magnética/métodos
6.
Rev Neurol (Paris) ; 178(1-2): 93-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34996631

RESUMO

Toxic-metabolic encephalopathy (TME) results from an acute cerebral dysfunction due to different metabolic disturbances including medications or illicit-drugs. It can lead to altered consciousness, going from delirium to coma, which may require intensive care and invasive mechanical ventilation. Even if it is a life-threatening condition, TME might have an excellent prognosis if its etiology is rapidly identified and treated adequately. This review summarizes the main etiologies, their differential diagnosis, and diagnostic strategy and management of TME with a critical discussion on the definition of TME.


Assuntos
Encefalopatias Metabólicas , Encefalopatias , Encefalopatias/diagnóstico , Encefalopatias/etiologia , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/etiologia , Coma/diagnóstico , Coma/etiologia , Cuidados Críticos , Humanos , Unidades de Terapia Intensiva , Respiração Artificial
7.
Hum Mol Genet ; 28(18): 3126-3136, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31261385

RESUMO

Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.


Assuntos
Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/genética , Mutação , Fenótipo , Piridoxaminafosfato Oxidase/deficiência , Convulsões/diagnóstico , Convulsões/genética , Ração Animal , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encefalopatias Metabólicas/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Epilepsia , Técnicas de Silenciamento de Genes , Genes Letais , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Redes e Vias Metabólicas , Piridoxaminafosfato Oxidase/genética , Piridoxaminafosfato Oxidase/metabolismo , Interferência de RNA , Convulsões/metabolismo
8.
Genet Med ; 23(1): 13-21, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32981931

RESUMO

PURPOSE: Glutaric aciduria type 1 (GA1), a rare inherited neurometabolic disorder, results in a complex movement disorder (MD) with predominant dystonia if untreated. Implementation into newborn screening (NBS) programs and adherence to recommended therapy are thought to improve the neurological outcome. METHODS: Systematic literature search for articles published from 2000 to 2019 was performed using the PRISMA protocol. Studies reporting on more than one individual identified by NBS were included. We investigated effects of interventional and noninterventional variables on neurological outcome. RESULTS: Fifteen publications reporting on 647 GA1 patients were included. In the NBS group (n = 261 patients), 195 patients remained asymptomatic (74.7%), while 66 patients (25.3%) developed a MD. Compared with the NBS group, a much higher proportion of patients (349/386; 90.4%; p < 0.0001) diagnosed after the manifestation of neurologic symptoms had a MD and an abnormal motor development (285/349; 81.7%; p < 0.0001). For NBS patients, deviations from the recommended diet increased the risk of insidious onset MD, while delayed start of emergency treatment increased the risk of acute onset MD. CONCLUSIONS: This meta-analysis demonstrates that NBS programs for GA1 have an overall positive effect on the neurological outcome of affected individuals but their success critically depends on the quality of therapy.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/terapia , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Humanos , Recém-Nascido , Triagem Neonatal
9.
J Inherit Metab Dis ; 44(3): 629-638, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33274439

RESUMO

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder, caused by inherited deficiency of glutaryl-CoA dehydrogenase, mostly affecting the brain. Early identification by newborn screening (NBS) significantly improves neurologic outcome. It has remained unclear whether recommended therapy, particular low lysine diet, is safe or negatively affects anthropometric long-term outcome. This national prospective, observational, multi-centre study included 79 patients identified by NBS and investigated effects of interventional and non-interventional parameters on body weight, body length, body mass index (BMI) and head circumference as well as neurological parameters. Adherence to recommended maintenance and emergency treatment (ET) had a positive impact on neurologic outcome and allowed normal anthropometric development until adulthood. In contrast, non-adherence to ET, resulting in increased risk of dystonia, had a negative impact on body weight (mean SDS -1.07; P = .023) and body length (mean SDS -1.34; P = -.016). Consistently, longitudinal analysis showed a negative influence of severe dystonia on weight and length development over time (P < .001). Macrocephaly was more often found in female (mean SDS 0.56) than in male patients (mean SDS -0.20; P = .049), and also in individuals with high excreter phenotype (mean SDS 0.44) compared to low excreter patients (mean SDS -0.68; P = .016). In GA1, recommended long-term treatment is effective and allows for normal anthropometric long-term development up to adolescence, with gender- and excreter type-specific variations. Delayed ET and severe movement disorder result in poor anthropometric outcome.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/terapia , Glutaril-CoA Desidrogenase/deficiência , Adolescente , Antropometria , Estatura , Índice de Massa Corporal , Peso Corporal , Criança , Pré-Escolar , Distonia/patologia , Tratamento de Emergência , Feminino , Alemanha , Humanos , Lactente , Recém-Nascido , Masculino , Megalencefalia/patologia , Triagem Neonatal , Estudos Prospectivos , Fatores Sexuais , Adulto Jovem
10.
J Inherit Metab Dis ; 44(6): 1343-1352, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34515344

RESUMO

Subdural hematoma (SDH) was initially reported in 20% to 30% of patients with glutaric aciduria type 1 (GA1). A recent retrospective study found SDH in 4% of patients, but not in patients identified by newborn screening (NBS). 168 MRIs of 69 patients with GA1 (age at MRI 9 days - 73.8 years, median 3.2 years) were systematically reviewed for presence of SDH, additional MR and clinical findings in order to investigate the frequency of SDH and potential risk factors. SDH was observed in eight high-excreting patients imaged between 5.8 and 24.4 months, namely space-occupying SDH in two patients after minor accidental trauma and SDH as an incidental finding in six patients without trauma. In patients without trauma imaged at 3 to 30 months (n = 36, 25 NBS, 27/9 high/low excreters), incidence of SDH was 16.7% (16% in NBS). SDH was more common after acute (33.3%) than insidious onset of dystonia (14.3%) or in asymptomatic patients (5.9%). It was only seen in patients with wide frontoparietal CSF spaces and frontotemporal hypoplasia. High excreters were over-represented among patients with SDH (6/27 vs 0/9 low excreters), acute onset (10/12), and wide frontoparietal CSF spaces (16/19). Incidental SDH occurs despite NBS and early treatment in approximately one in six patients with GA1 imaged during late infancy and early childhood. Greater risk of high excreters is morphologically associated with more frequent enlargement of external CSF spaces including frontotemporal hypoplasia, and may be furthered aggravated by more pronounced alterations of cerebral blood volume and venous pressure.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Encefalopatias Metabólicas/complicações , Encéfalo/patologia , Glutaril-CoA Desidrogenase/deficiência , Hematoma Subdural/etiologia , Adolescente , Adulto , Idoso , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Criança , Pré-Escolar , Feminino , Alemanha , Hematoma Subdural/diagnóstico por imagem , Humanos , Incidência , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
11.
Metab Brain Dis ; 36(2): 205-212, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064266

RESUMO

Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mutação , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Brasil , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(1): 1-6, 2021 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-33423247

RESUMO

Glutaricacidemia type 1(GA1) is an autosomal recessive disease caused by reduced or missing glutaryl-CoA dehydrogenase activity which hamps metabolism of lysine, hydroxylysine and tryptophan. The catabolic products of glutarylcarnitine and glutaric acid are abnormally accumulated in the body, resulting in metabolic disorders which primarily lead to damage to the nervous system. Clinical manifestations of patients include macrocephaly, dystonia, dyskinesia, and developmental retardation. Acute encephalopathy may be induced in infants and young children due to infection, vaccination and surgery. For GA1 is a rare disease and its clinical manifestations are similar to other neurological diseases, it may be easily missed or misdiagnosed. To facilitate early diagnosis and treatment and improve the prognosis, this consensus was formulated by pediatric experts from the fields of endocrinology and genetic metabolism through full discussion and reference to the latest literature and guidelines home and abroad.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Prova Pericial , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/terapia , Criança , Pré-Escolar , Consenso , Glutaril-CoA Desidrogenase/genética , Humanos , Lactente
13.
Neurogenetics ; 21(3): 179-186, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306145

RESUMO

Glutaric aciduria type I (GA1; OMIM #231670) is an autosomal recessively inherited and treatable disorder characterized by the accumulation and irregular excretion of glutaric acid due to a defect in the glutaryl-CoA dehydrogenase enzyme involved in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. Glutaryl-CoA dehydrogenase is encoded by the GCDH gene (OMIM #608801), and several mutations in this gene are known to result in GA1. GA1 usually presents in the first 18-36 months of life with mild or severe acute encephalopathy, movement disorders, and striatal degeneration. Few cases of adult-onset GA1 have been described so far in the literature, often with non-specific and sometimes longstanding neurological symptoms. Since a preventive metabolic treatment is available, neurologists must be aware of this rare but likely underdiagnosed presentation, especially when typical neuroimaging features are identified. Here, we describe 35-year-old presenting with headache and subjective memory problems. There was no history of dystonic movement disorders. Neurological examination and neurocognitive tests were normal. Brain MRI scan revealed white matter abnormalities associated with subependymal nodules and mild frontotemporal hypoplasia suggestive of glutaric aciduria type 1 (GA1). Genetic testing confirmed the presence of homozygous c.1204C > T (p.R402W) variant in the GCDH gene, inherited from heterozygous parents.


Assuntos
Idade de Início , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Glutaratos/metabolismo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Estilo de Vida , Imageamento por Ressonância Magnética , Mutagênese , Mutação , Linhagem , Fenótipo , Prognóstico , Medição de Risco
14.
J Inherit Metab Dis ; 43(2): 297-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31339582

RESUMO

Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations. Two carried the reported deletion of exons 3 to 9, one homozygous, one heterozygous with a 22q11.21 microdeletion inherited in trans. The other subjects carried three novel homozygous (c.262C>T/p.Arg88*; c.220A>C/p.Thr74Pro; c.380+1G>A), and two further novel heterozygous (c.6_9del/p.Phe6del); c.11-13delTCT/p.Phe5del mutations. Immunoblot analysis detected a significant decrease of TANGO2 protein. Muscle histology showed mild variation of fiber diameter, no ragged-red/cytochrome c oxidase-negative fibers and a defect of multiple respiratory chain enzymes and coenzyme Q10 (CoQ10 ) in two cases, suggesting a possible secondary defect of oxidative phosphorylation. Proteomic analysis in fibroblasts revealed significant changes in components of the mitochondrial fatty acid oxidation, plasma membrane, endoplasmic reticulum-Golgi network and secretory pathways. Clinical presentation of TANGO2 mutations is homogeneous and clinically recognizable. The hemizygous mutations in two patients suggest that some mutations leading to allele loss are difficult to detect. A combined defect of the respiratory chain enzymes and CoQ10 with altered levels of several membrane proteins provides molecular insights into the underlying pathophysiology and may guide rational new therapeutic interventions.


Assuntos
Encefalopatias Metabólicas/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação , Proteômica/métodos , Rabdomiólise/genética , Encefalopatias Metabólicas/diagnóstico , Ácidos Graxos/metabolismo , Feminino , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Homozigoto , Humanos , Lactente , Masculino , Doenças Mitocondriais/diagnóstico , Fosforilação Oxidativa , Fenótipo , Rabdomiólise/diagnóstico , Sequenciamento Completo do Genoma
15.
Metab Brain Dis ; 35(6): 1009-1016, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240488

RESUMO

Glutaric aciduria type 1 (GA1, deficiency of glutaryl CoA dehydrogenase, glutaric acidemia type 1) (ICD-10 code: E72.3; MIM 231670) is an autosomal recessive disease caused by mutations in the gene encoding the enzyme glutaryl CoA dehydrogenase (GCDH). Herein, we present the biochemical and molecular genetic characteristics of 51 patients diagnosed with GA1 from 49 unrelated families in Russia. We identified a total of 21 variants, 9 of which were novel: c.127 + 1G > T, с.471_473delCGA, c.161 T > C (p.Leu54Pro), c.531C > A (р.Phe177Leu), c.647C > T (p.Ser216Leu), c.705G > A (р.Gly235Asp), c.898 G > A (р.Gly300Ser), c.1205G > C (р.Arg402Pro), c.1178G > A (р.Gly393Glu). The most commonly detected missense variants were c.1204C > T (p.Arg402Trp) and с.1262C > T (р.Ala421Val), which were identified in 56.38% and 11.7% of mutated alleles. A heterozygous microdeletion of the short arm (p) of chromosome 19 from position 12,994,984-13,003,217 (8233 b.p.) and from position 12,991,506-13,003,217 (11,711 b.p.) were detected in two patients. Genes located in the area of imbalance were KLF1, DNASE2, and GCDH. Patients presented typical GA1 biochemical changes in the biological fluids, except one patient with the homozygous mutation p.Val400Met. No correlation was found between the GCDH genotype and glutaric acid (GA) concentration in the cohort of our patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/epidemiologia , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mutação de Sentido Incorreto/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estrutura Secundária de Proteína , Federação Russa/epidemiologia
16.
Mov Disord ; 34(5): 598-613, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30557456

RESUMO

There are several hundred single-gene disorders that we classify as inborn errors of metabolism. Inborn errors of metabolism are often rare and highly heterogeneous multisystem diseases with non-neurological and neurological manifestations, commonly with onset during childhood. Movement disorders are among the most common neurological problems in inborn errors of metabolism, but, in many cases, remain poorly defined. Although movement disorders are usually not the only and often not the presenting symptom, their recognition can facilitate a diagnosis. Movement disorders contribute substantially to the morbidity in inborn errors of metabolism and can have a significant impact on quality of life. Common metabolic movement disorders include the monoamine neurotransmitter disorders, disorders of amino and organic acid metabolism, metal storage disorders, lysosomal storage disorders, congenital disorders of autophagy, disorders of creatine metabolism, vitamin-responsive disorders, and disorders of energy metabolism. Importantly, disease-modifying therapies exist for a number of inborn errors of metabolism, and early recognition and treatment can prevent irreversible CNS damage and reduce morbidity and mortality. A phenomenology-based approach, based on the predominant movement disorder, can facilitate a differential diagnosis and can guide biochemical, molecular, and imaging testing. The complexity of metabolic movement disorders demands an interdisciplinary approach and close collaboration of pediatric neurologists, neurologists, geneticists, and experts in metabolism. In this review, we develop a general framework for a phenomenology-based approach to movement disorders in inborn errors of metabolism and discuss an approach to identifying the "top ten" of treatable inborn errors of metabolism that present with movement disorders-diagnoses that should never be missed. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Erros Inatos do Metabolismo/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Ataxia/complicações , Ataxia/diagnóstico , Ataxia/etiologia , Ataxia/fisiopatologia , Ataxia/terapia , Doenças dos Gânglios da Base/complicações , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/fisiopatologia , Doenças dos Gânglios da Base/terapia , Encefalopatias Metabólicas/complicações , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/fisiopatologia , Encefalopatias Metabólicas/terapia , Erros Inatos do Metabolismo dos Carboidratos/complicações , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Coreia/etiologia , Coreia/fisiopatologia , Distonia/etiologia , Distonia/fisiopatologia , Distúrbios Distônicos/complicações , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/etiologia , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/terapia , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/diagnóstico , Deficiência de Ácido Fólico/fisiopatologia , Deficiência de Ácido Fólico/terapia , Glutaril-CoA Desidrogenase/deficiência , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/fisiopatologia , Degeneração Hepatolenticular/terapia , Humanos , Doenças Metabólicas/complicações , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/terapia , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/terapia , Proteínas de Transporte de Monossacarídeos/deficiência , Transtornos dos Movimentos/etiologia , Espasticidade Muscular/etiologia
17.
BMC Endocr Disord ; 19(1): 71, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266485

RESUMO

INTRODUCTION: Metabolic encephalopathy is a rare but potentially devastating complication of diabetic ketoacidosis (DKA). This case highlights the dramatic cognitive decline of a young man due to metabolic encephalopathy complicating DKA. The aims of this case report are to highlight metabolic encephalopathy as a complication of DKA and to explore the current research in diabetic related brain injury. The importance of investigation and treatment of reversible causes of encephalopathy is also demonstrated. CASE PRESENTATION: A 35-year-old man with a background of type 1 diabetes mellitus (T1DM) and relapsing remitting multiple sclerosis (RRMS) presented to the emergency department (ED) in a confused and agitated state. Prior to admission he worked as a caretaker in a school, smoked ten cigarettes per day, took excess alcohol and smoked cannabis twice per week. Following initial investigations, he was found to be in DKA. Despite timely and appropriate management his neurological symptoms and behavioural disturbance persisted. Neuroimaging revealed temporal lobe abnormalities consistent with an encephalopathic process. The patient underwent extensive investigation looking for evidence of autoimmune, infective, metabolic, toxic and paraneoplastic encephalopathy, with no obvious cause demonstrated. Due to persistent radiological abnormalities a temporal lobe biopsy was performed which showed marked astrocytic gliosis without evidence of vasculitis, inflammation, infarction or neoplasia. A diagnosis of metabolic encephalopathy secondary to DKA was reached. The patient's cognitive function remained impaired up to 18 months post presentation and he ultimately required residential care. CONCLUSIONS: Metabolic encephalopathy has been associated with acute insults such as DKA, but importantly, the risk of cerebral injury is also related to chronic hyperglycaemia. Mechanisms of cerebral injury in diabetes mellitus continue to be investigated. DKA poses a serious and significant neurological risk to patients with diabetes mellitus. To our knowledge this is the second case report describing this acute complication.


Assuntos
Encefalopatias Metabólicas/diagnóstico , Disfunção Cognitiva/etiologia , Diabetes Mellitus Tipo 1/complicações , Cetoacidose Diabética/complicações , Adulto , Encefalopatias Metabólicas/etiologia , Diagnóstico Diferencial , Humanos , Masculino , Lobo Temporal/diagnóstico por imagem
18.
Metab Brain Dis ; 34(2): 641-649, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570710

RESUMO

Glutaric aciduria type 1 is a neurometabolic disorder, caused by riboflavin-dependent glutaryl-CoA dehydrogenase deficiency. As its consequence, accumulation of the putatively neurotoxic metabolites (glutaric and 3-hydroxyglutaric acids) in body tissues, but especially within the brain, is observed. Estimated incidence of the disease is 1 in 110,000 newborns, The prevalence however may be higher, depending on a specific ethnic group, and result in phenotypic variation as well. In this paper we present clinical data of 13 patients of Polish nationality. They all present a mild phenotype and clinical course of glutaric aciduria type 1. Based on their clinical data, presented herein, we like to pay attention to the phenotypic and neuroimaging features important for the diagnosis of mild form of this disease. Moreover, we present novel molecular data, which may correlate with such a manifestation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Encéfalo/diagnóstico por imagem , Glutaril-CoA Desidrogenase/deficiência , Neuroimagem , Fenótipo , Encéfalo/metabolismo , Feminino , Glutaratos/metabolismo , Humanos , Recém-Nascido , Masculino , Polônia
19.
Metab Brain Dis ; 34(4): 1231-1241, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31062211

RESUMO

Glutaric acidemia type 1 (GA1) is an inherited metabolic autosomal recessive disorder that is caused by a deficiency in glutaryl-CoA dehydrogenase (GCDH). Untreated patients suffer primarily from severe striatal damage. More than 250 variants in the GCDH gene have been reported with a variable frequency among different ethnic groups. In this study, we aimed to characterize 89 Egyptian patients with GA1 and identify the variants in the 41 patients who were available for genotyping. All of our patients demonstrated clinical, neuroradiological, and biochemical characteristics that are consistent with a diagnosis of GA1. All patients presented with variable degrees of developmental delay ranging from mild to severe. Most of the 89 patients presented with acute onset type (71.9%), followed by insidious (19%) and asymptomatic (9%). A delay in diagnosis was inversely associated with macrocephaly. The prevalence rate ratio (PR) for macrocephaly that was associated with each 6-month delay was 0.95 (95%CI 0.91-0.99). However, high body weight was associated with a higher likelihood of having macrocephaly (PR 1.16, 95%CI 1.06-1.26 per 1 SD increment of Z score weight). However, body weight was inversely associated with the morbidity score. Consanguinity level was 64% among our patient's cohort and was positively associated with the C5DC level (ß (95%CI) 1.06 (0.12-1.99)). Forty-one patients were available for genotyping and were sequenced for the GCDH gene. We identified a total of 25 variants, of which the following six novel variants were identified: three missense variants, c.320G > T (p.Gly107Val), c.481C > T (p.Arg161Trp) and c.572 T > G (p.Met191Arg); two deletions, c.78delG (p.Ala27Argfs34) and c.1035delG (p.Gly346Alafs*11); and one indel, c.272_331del (p.Val91_Lys111delinsGlu). All of the novel variants were absent in the 300 normal chromosomes. The most common variant, c.*165A > G, was detected in 42 alleles, and the most commonly detected missense variant, c.1204C > T (p.Arg402Trp), was identified in 29 mutated alleles in 15/41 (34.2%) of patients. Our findings suggest that GA1 is not uncommon organic acidemia disease in Egypt; therefore, there is a need for supporting neonatal screening programs in Egypt.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico por imagem , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Peso Corporal/fisiologia , Encéfalo/diagnóstico por imagem , Encefalopatias Metabólicas/diagnóstico por imagem , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/metabolismo , Criança , Pré-Escolar , Egito , Feminino , Genótipo , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Índice de Gravidade de Doença , Avaliação de Sintomas
20.
Diabet Med ; 35(12): 1663-1670, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230019

RESUMO

AIMS: Type 2 diabetes mellitus is associated with cognitive dysfunction, but the underlying structural brain correlates are uncertain. This study examined the association between cognitive functioning and structural brain abnormalities in people with long-standing Type 2 diabetes. METHODS: Ninety-three people with Type 2 diabetes (age 62.3 ± 5.4 years, diabetes duration 9.7 ± 6.7 years; HbA1c 65 ± 10 mmol/mol, 8.1 ± 1.3%) were included. Cognitive functioning was assessed by a test battery covering the domains memory, processing speed and executive functioning. Brain tissue volumes and white matter hyperintensity volumes were automatically determined on MRI. Linear regression analyses were performed adjusted for age, sex and education. RESULTS: In people with Type 2 diabetes, increased white matter hyperintensity volume was associated with decreased processing speed [regression B coefficient = -0.22 (-0.38 to -0.06), P = 0.009], but not with memory or executive function (P > 0.05). Brain tissue volumes were not significantly related to cognitive functioning (P > 0.05). CONCLUSIONS: In people with long-standing, less strictly controlled Type 2 diabetes, white matter hyperintensities volumes were associated with decreased processing speed. This suggests that cerebral small vessel disease is an underlying disease mechanism of cognitive dysfunction in these individuals.


Assuntos
Encéfalo/patologia , Cognição/fisiologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/psicologia , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/etiologia , Encefalopatias Metabólicas/patologia , Estudos de Casos e Controles , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Testes Neuropsicológicos , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA