Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Genet Genomics ; 296(1): 235-242, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159255

RESUMO

Sporadic occurrences of neurodegenerative disorders including neuroaxonal dystrophy (NAD) have been previously reported in sheep. However, so far no causative genetic variant has been found for ovine NAD. The aim of this study was to characterize the phenotype and the genetic aetiology of an early-onset neurodegenerative disorder observed in several lambs of purebred Swaledale sheep, a native English breed. Affected lambs showed progressive ataxia and stiff gait and subsequent histopathological analysis revealed the widespread presence of axonal spheroid indicating neuronal degeneration. Thus, the observed clinical phenotype could be explained by a novel form of NAD. After SNP genotyping and subsequent linkage mapping within a paternal half-sib pedigree with a total of five NAD-affected lambs, we identified two loss-of-function variants by whole-genome sequencing in the ovine PLA2G6 gene situated in a NAD-linked genome region on chromosome 3. All cases were carriers of a compound heterozygous splice site variant in intron 2 and a nonsense variant in exon 8. Herein we present evidence for the occurrence of a familial novel form of recessively inherited NAD in sheep due to allelic heterogeneity at PLA2G6. This study reports two pathogenic variants in PLA2G6 causing a novel form of NAD in Swaledale sheep which enables selection against this fatal disorder.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Fosfolipases A2 do Grupo VI/genética , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/veterinária , Polimorfismo de Nucleotídeo Único , Doenças dos Ovinos/genética , Processamento Alternativo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Mamíferos/química , Éxons , Feminino , Expressão Gênica , Ligação Genética , Fosfolipases A2 do Grupo VI/deficiência , Heterozigoto , Íntrons , Masculino , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Ovinos , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/patologia , Carneiro Doméstico , Sequenciamento Completo do Genoma
2.
Biochim Biophys Acta ; 1861(5): 449-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873633

RESUMO

PLA2G6 or GVIA calcium-independent PLA2 (iPLA2ß) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2ß is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2ß-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2ß could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of ß-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2ß deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2ß deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2ß in severe obesity associated NAFLD.


Assuntos
Ácidos Graxos/sangue , Fosfolipases A2 do Grupo VI/deficiência , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/prevenção & controle , Fosfolipídeos/sangue , Animais , Apoptose , Ácido Araquidônico/sangue , Glicemia/metabolismo , Ésteres do Colesterol/sangue , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/sangue , Regulação da Expressão Gênica , Genótipo , Fosfolipases A2 do Grupo VI/genética , Insulina/sangue , Resistência à Insulina , Fígado/patologia , Lisofosfolipídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/sangue , Obesidade/enzimologia , Obesidade/genética , Obesidade/patologia , Oxirredução , PPAR gama/genética , PPAR gama/metabolismo , Fenótipo , Fosfatidilcolinas/sangue , Fosfatidiletanolaminas/sangue , Triglicerídeos/sangue
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(12): 1520-1533, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888832

RESUMO

Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA2ß is a homeostatic PLA2 by playing a role in phospholipid metabolism and remodeling. Global iPLA2ß-/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA2ß deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA2ß-/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA2ß-/-mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA2ß deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA2ß deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner.


Assuntos
Envelhecimento/metabolismo , Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Fosfolipases A2 do Grupo VI/deficiência , Enteropatias/metabolismo , Cirrose Hepática/metabolismo , Fosfolipídeos/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Ácidos e Sais Biliares/genética , Ceramidas/genética , Enteropatias/genética , Enteropatias/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Fosfolipídeos/genética
4.
J Med Genet ; 53(3): 180-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26668131

RESUMO

BACKGROUND: Mutations in PLA2G6, which encodes the calcium-independent phospholipase A2 group VI, cause neurodegeneration and diffuse cortical Lewy body formation by a yet undefined mechanism. We assessed whether altered protein glycosylation due to abnormal Golgi morphology might be a factor in the pathology of this disease. METHODS: Three patients presented with PLA2G6-associated neurodegeneration (PLAN); two had infantile neuroaxonal dystrophy (INAD) and one had adult-onset dystonia-parkinsonism. We analysed protein N-linked and O-linked glycosylation in cerebrospinal fluid, plasma, urine, and cultured skin fibroblasts using high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization--time of flight/mass spectrometry (MALDI-TOF/MS). We also assessed sialylation and Golgi morphology in cultured fibroblasts by immunofluorescence and performed rescue experiments using a lentiviral vector. RESULTS: The patients with INAD had PLA2G6 mutations NM_003560.2: c.[950G>T];[426-1077dup] and c.[1799G>A];[2221C>T] and the patient with dystonia-parkinsonism had PLA2G6 mutations NM_003560.2: c.[609G>A];[2222G>A]. All three patients had altered Golgi morphology and abnormalities of protein O-linked glycosylation and sialylation in cultured fibroblasts that were rescued by lentiviral overexpression of wild type PLA2G6. CONCLUSIONS: Our findings add altered Golgi morphology, O-linked glycosylation and sialylation defects to the phenotypical spectrum of PLAN; these pathways are essential for correct processing and distribution of proteins. Lewy body and Tau pathology, two neuropathological features of PLAN, could emerge from these defects. Therefore, Golgi morphology, O-linked glycosylation and sialylation may play a role in the pathogenesis of PLAN and perhaps other neurodegenerative disorders.


Assuntos
Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/patologia , Complexo de Golgi/ultraestrutura , Fosfolipases A2 do Grupo VI/deficiência , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Adulto , Células Cultivadas , Distúrbios Distônicos/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Glicosilação , Complexo de Golgi/metabolismo , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Lactente , Masculino , Mutação , Distrofias Neuroaxonais/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transtornos Parkinsonianos/genética , Sialiltransferases/metabolismo
5.
Neurochem Res ; 39(8): 1522-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24919816

RESUMO

Calcium-independent phospholipase A2 group VIa (iPLA2ß) preferentially releases docosahexaenoic acid (DHA) from the sn-2 position of phospholipids. Mutations of its gene, PLA2G6, are found in patients with several progressive motor disorders, including Parkinson disease. At 4 months, PLA2G6 knockout mice (iPLA2ß(-/-)) show minimal neuropathology but altered brain DHA metabolism. By 1 year, they develop motor disturbances, cerebellar neuronal loss, and striatal α-synuclein accumulation. We hypothesized that older iPLA2ß(-/-) mice also would exhibit inflammatory and other neuropathological changes. Real-time polymerase chain reaction and Western blotting were performed on whole brain homogenate from 15 to 20-month old male iPLA2ß(-/-) or wild-type (WT) mice. These older iPLA2ß(-/-) mice compared with WT showed molecular evidence of microglial (CD-11b, iNOS) and astrocytic (glial fibrillary acidic protein) activation, disturbed expression of enzymes involved in arachidonic acid metabolism, loss of neuroprotective brain derived neurotrophic factor, and accumulation of cytokine TNF-α messenger ribonucleic acid, consistent with neuroinflammatory pathology. There was no evidence of synaptic loss, of reduced expression of dopamine active reuptake transporter, or of accumulation of the Parkinson disease markers Parkin or Pink1. iPLA2γ expression was unchanged. iPLA2ß deficient mice show evidence of neuroinflammation and associated neuropathology with motor dysfunction in later life. These pathological biomarkers could be used to assess efficacy of dietary intervention, antioxidants or other therapies on disease progression in this mouse model of progressive human motor diseases associated with a PLA2G6 mutation.


Assuntos
Envelhecimento/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fosfolipases A2 do Grupo VI/deficiência , Transtornos das Habilidades Motoras/metabolismo , Envelhecimento/genética , Animais , Fosfolipases A2 do Grupo VI/genética , Masculino , Camundongos , Camundongos Knockout , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/patologia
6.
J Neurosci ; 31(31): 11411-20, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21813701

RESUMO

Infantile neuroaxonal dystrophy (INAD) is a fatal neurodegenerative disease characterized by the widespread presence of axonal swellings (spheroids) in the CNS and PNS and is caused by gene abnormality in PLA2G6 [calcium-independent phospholipase A(2)ß (iPLA(2)ß)], which is essential for remodeling of membrane phospholipids. To clarify the pathomechanism of INAD, we pathologically analyzed the spinal cords and sciatic nerves of iPLA(2)ß knock-out (KO) mice, a model of INAD. At 15 weeks (preclinical stage), periodic acid-Schiff (PAS)-positive granules were frequently observed in proximal axons and the perinuclear space of large neurons, and these were strongly positive for a marker of the mitochondrial outer membrane and negative for a marker of the inner membrane. By 100 weeks (late clinical stage), PAS-positive granules and spheroids had increased significantly in the distal parts of axons, and ultrastructural examination revealed that these granules were, in fact, mitochondria with degenerative inner membranes. Collapse of mitochondria in axons was accompanied by focal disappearance of the cytoskeleton. Partial membrane loss at axon terminals was also evident, accompanied by degenerative membranes in the same areas. Imaging mass spectrometry showed a prominent increase of docosahexaenoic acid-containing phosphatidylcholine in the gray matter, suggesting insufficient membrane remodeling in the presence of iPLA(2)ß deficiency. Prominent axonal degeneration in neuroaxonal dystrophy might be explained by the collapse of abnormal mitochondria after axonal transportation. Insufficient remodeling and degeneration of mitochondrial inner membranes and presynaptic membranes appear to be the cause of the neuroaxonal dystrophy in iPLA(2)ß-KO mice.


Assuntos
Cálcio/metabolismo , Fosfolipases A2 do Grupo VI/deficiência , Mitocôndrias/patologia , Distrofias Neuroaxonais , Doenças Neurodegenerativas/etiologia , Terminações Pré-Sinápticas/patologia , Fatores Etários , Aldeídos/metabolismo , Animais , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Modelos Biológicos , Distrofias Neuroaxonais/complicações , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Medula Espinal/patologia , Medula Espinal/ultraestrutura
7.
Am J Physiol Lung Cell Mol Physiol ; 302(1): L47-55, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21984569

RESUMO

An early event in the pathogenesis of emphysema is the development of inflammation associated with accumulation of polymorphonuclear leukocytes (PMN) in small airways, and inflammatory cell recruitment from the circulation involves migration across endothelial and epithelial cell barriers. Platelet-activating factor (PAF) promotes transendothelial migration in several vascular beds, and we postulated that increased PAF production in the airways of smokers might enhance inflammatory cell recruitment and exacerbate inflammation. To examine this possibility, we incubated human lung microvascular endothelial cells (HMVEC-L) with cigarette smoke extract (CSE) and found that CSE inhibits PAF-acetylhydrolase (PAF-AH) activity. This enhances HMVEC-L PAF production and PMN adherence, and adherence is blocked by PAF receptor antagonists (CV3988 or ginkgolide B). CSE also inhibited PAF-AH activity of lung endothelial cells isolated from wild-type (WT) and iPLA(2)ß knockout mice, and with WT cells, CSE enhanced PAF production and RAW 264.7 cell adherence. In contrast, CSE did not affect PAF production or RAW 264.7 cell adherence to iPLA(2)ß-null cells, suggesting that iPLA(2)ß plays an important role in PAF production by lung endothelial cells. These findings suggest that inhibition of PAF-AH by components of cigarette smoke may initiate or exacerbate inflammatory lung disease by enhancing PAF production and promoting accumulation of inflammatory cells in small airways. In addition, iPLA(2)ß is identified as a potential target for therapeutic interventions to reduce airway inflammation and the progression of chronic lung disease.


Assuntos
Células Endoteliais/metabolismo , Fosfolipases A2 do Grupo VI , Fator de Ativação de Plaquetas/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Fosfolipases A2 do Grupo VI/deficiência , Fosfolipases A2 do Grupo VI/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Éteres Fosfolipídicos/farmacologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores
8.
FASEB J ; 25(12): 4240-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21868473

RESUMO

Spinal cord injury (SCI) results in permanent loss of motor functions. A significant aspect of the tissue damage and functional loss may be preventable as it occurs, secondary to the trauma. We show that the phospholipase A(2) (PLA(2)) superfamily plays important roles in SCI. PLA(2) enzymes hydrolyze membrane glycerophospholipids to yield a free fatty acid and lysophospholipid. Some free fatty acids (arachidonic acid) give rise to eicosanoids that promote inflammation, while some lysophospholipids (lysophosphatidylcholine) cause demyelination. We show in a mouse model of SCI that two cytosolic forms [calcium-dependent PLA(2) group IVA (cPLA(2) GIVA) and calcium-independent PLA(2) group VIA (iPLA(2) GVIA)], and a secreted form [secreted PLA(2) group IIA (sPLA(2) GIIA)] are up-regulated. Using selective inhibitors and null mice, we show that these PLA(2)s play differing roles. cPLA(2) GIVA mediates protection, whereas sPLA(2) GIIA and, to a lesser extent, iPLA(2) GVIA are detrimental. Furthermore, completely blocking all three PLA(2)s worsens outcome, while the most beneficial effects are seen by partial inhibition of all three. The partial inhibitor enhances expression of cPLA(2) and mediates its beneficial effects via the prostaglandin EP1 receptor. These findings indicate that drugs that inhibit detrimental forms of PLA(2) (sPLA(2) and iPLA2) and up-regulate the protective form (cPLA2) may be useful for the treatment of SCI.


Assuntos
Fosfolipases A2/metabolismo , Traumatismos da Medula Espinal/enzimologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Feminino , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Fosfolipases A2 do Grupo II/deficiência , Fosfolipases A2 do Grupo II/metabolismo , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/deficiência , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo VI/antagonistas & inibidores , Fosfolipases A2 do Grupo VI/deficiência , Fosfolipases A2 do Grupo VI/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Inibidores de Fosfolipase A2 , Fosfolipases A2/classificação , Fosfolipases A2/deficiência , Receptor Cross-Talk , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
9.
Sci Rep ; 12(1): 13825, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970890

RESUMO

Infantile neuroaxonal dystrophy (INAD) is a rare paediatric neurodegenerative condition caused by mutations in the PLA2G6 gene, which is also the causative gene for PARK14-linked young adult-onset dystonia parkinsonism. INAD patients usually die within their first decade of life, and there are currently no effective treatments available. GLP1 receptor (GLP-1R) agonists are licensed for treating type 2 diabetes mellitus but have also demonstrated neuroprotective properties in a clinical trial for Parkinson's disease. Therefore, we evaluated the therapeutic efficacy of a new recently licensed GLP-1R agonist diabetes drug in a mouse model of INAD. Systemically administered high-dose semaglutide delivered weekly to juvenile INAD mice improved locomotor function and extended the lifespan. An investigation into the mechanisms underlying these therapeutic effects revealed that semaglutide significantly increased levels of key neuroprotective molecules while decreasing those involved in pro-neurodegenerative pathways. The expression of mediators in both the apoptotic and necroptotic pathways were also significantly reduced in semaglutide treated mice. A reduction of neuronal loss and neuroinflammation was observed. Finally, there was no obvious inflammatory response in wild-type mice associated with the repeated high doses of semaglutide used in this study.


Assuntos
Diabetes Mellitus Tipo 2 , Distrofias Neuroaxonais , Transtornos Parkinsonianos , Animais , Modelos Animais de Doenças , Distúrbios Distônicos , Fosfolipases A2 do Grupo VI/deficiência , Camundongos , Distrofias Neuroaxonais/genética , Transtornos Parkinsonianos/genética
10.
Parkinsonism Relat Disord ; 101: 66-74, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803092

RESUMO

BACKGROUND: PLA2G6-Associated Neurodegeneration, PLAN, is subdivided into: Infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, and adult-onset dystonia parkinsonism [1]. It is elicited by a biallelic pathogenic variant in phospholipase A2 group VI (PLA2G6) gene. In this study we describe new cases and provide a comprehensive review of previously published cases. METHODS: Eleven patients, from four different institutions and four different countries. All underwent a comprehensive chart review. RESULTS: Ages at onset ranged from 1 to 36 years, with a median of 16 and a mean of 16.18 ± 11.91 years. Phenotypic characteristics were heterogenous and resembled that of patients with infantile neuroaxonal dystrophy (n = 2), atypical neuroaxonal dystrophy (n = 1), adult-onset dystonia parkinsonism (n = 1), complex hereditary spastic paraparesis (n = 3), and early onset Parkinson's disease (n = 2). Parental genetic studies were performed for all patients and confirmed with sanger sequencing in five. Visual evoked potential illustrated optic atrophy in P4. Mineralization was evident in brain magnetic resonance imaging of P1, P2, P4, P5, P7, and P11. Single photon emission computed tomography was conducted for three patients, revealed decreased perfusion in the occipital lobes for P10. DaTscan was performed for P11 and showed decreased uptake in the deep gray matter, bilateral caudate nuclei, and bilateral putamen. Positive response to Apomorphine was noted for P10 and to Baclofen in P2, and P3. CONCLUSIONS: PLAN encompasses a wide clinical spectrum. Age and symptom at onset are crucial when classifying patients. Reporting new variants is critical to draw more attention to this condition and identify biomarkers to arrive at potential therapeutics.


Assuntos
Distúrbios Distônicos , Distrofias Neuroaxonais , Transtornos Parkinsonianos , Adolescente , Adulto , Criança , Pré-Escolar , Potenciais Evocados Visuais , Fosfolipases A2 do Grupo VI/deficiência , Fosfolipases A2 do Grupo VI/genética , Humanos , Lactente , Distúrbios do Metabolismo do Ferro , Mutação , Distrofias Neuroaxonais/diagnóstico por imagem , Distrofias Neuroaxonais/genética , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética , Fenótipo , Adulto Jovem
11.
J Lipid Res ; 51(11): 3166-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20686114

RESUMO

Ca(2+)-independent phospholipase A(2)ß (iPLA(2)ß) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA(2)ß-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M(1,3,5) receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA(2)ß(-/-), iPLA(2)ß(+/-), and iPLA(2)ß(+/+) mice, and [1-(14)C]DHA was infused intravenously. DHA incorporation coefficients k* and rates J(in), representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA(2)ß(-/-) or iPLA(2)ß(+/-) compared with iPLA(2)ß(+/+) mice showed widespread and significant baseline reductions in k* and J(in) for DHA. Arecoline increased both parameters in brain regions of iPLA(2)ß(+/+) mice but quantitatively less so in iPLA(2)ß(-/-) and iPLA(2)ß(+/-) mice. Consistent with iPLA(2)ß's reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA(2)ß deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M(1,3,5) receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Fosfolipases A2 do Grupo VI/deficiência , Imagem Molecular , Transdução de Sinais , Animais , Arecolina/administração & dosagem , Arecolina/farmacologia , Peso Corporal , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Artérias Cerebrais/fisiologia , Ácidos Docosa-Hexaenoicos/sangue , Fosfolipases A2 do Grupo VI/metabolismo , Cinética , Masculino , Camundongos
12.
J Lipid Res ; 51(10): 3003-15, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20625036

RESUMO

Group VIB Ca(2+)-independent phospholipase A(2)γ (iPLA(2)γ) is a membrane-bound iPLA(2) enzyme with unique features, such as the utilization of distinct translation initiation sites and the presence of mitochondrial and peroxisomal localization signals. Here we investigated the physiological functions of iPLA(2)γ by disrupting its gene in mice. iPLA(2)γ-knockout (KO) mice were born with an expected Mendelian ratio and appeared normal and healthy at the age of one month but began to show growth retardation from the age of two months as well as kyphosis and significant muscle weakness at the age of four months. Electron microscopy revealed swelling and reduced numbers of mitochondria and atrophy of myofilaments in iPLA(2)γ-KO skeletal muscles. Increased lipid peroxidation and the induction of several oxidative stress-related genes were also found in the iPLA(2)γ-KO muscles. These results provide evidence that impairment of iPLA(2)γ causes mitochondrial dysfunction and increased oxidative stress, leading to the loss of skeletal muscle structure and function. We further found that the compositions of cardiolipin and other phospholipid subclasses were altered and that the levels of myoprotective prostanoids were reduced in iPLA(2)γ-KO skeletal muscle. Thus, in addition to maintenance of homeostasis of the mitochondrial membrane, iPLA(2)γ may contribute to modulation of lipid mediator production in vivo.


Assuntos
Fosfolipases A2 do Grupo VI/genética , Mitocôndrias/metabolismo , Músculo Esquelético/enzimologia , Prostaglandinas/biossíntese , Animais , Feminino , Fosfolipases A2 do Grupo VI/deficiência , Fosfolipases A2 do Grupo VI/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo
13.
J Neurosci ; 28(9): 2212-20, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305254

RESUMO

Calcium-independent group VIA phospholipase A2 (iPLA2beta) is considered to play a role in signal transduction and maintenance of homeostasis or remodeling of membrane phospholipids. A role of iPLA2beta has been suggested in various physiological and pathological processes, including immunity, chemotaxis, and cell death, but the details remain unclear. Accordingly, we investigated mice with targeted disruption of the iPLA2beta gene. iPLA2beta-/- mice developed normally and grew to maturity, but all showed evidence of severe motor dysfunction, including a hindlimb clasping reflex during tail suspension, abnormal gait, and poor performance in the hanging wire grip test. Neuropathological examination of the nervous system revealed widespread degeneration of axons and/or synapses, accompanied by the presence of numerous spheroids (swollen axons) and vacuoles. These findings provide evidence that impairment of iPLA2beta causes neuroaxonal degeneration, and indicate that the iPLA2beta-/- mouse is an appropriate animal model of human neurodegenerative diseases associated with mutations of the iPLA2beta gene, such as infantile neuroaxonal dystrophy and neurodegeneration with brain iron accumulation.


Assuntos
Modelos Animais de Doenças , Fosfolipases A2 do Grupo VI/deficiência , Distrofias Neuroaxonais , Doenças Neurodegenerativas , Fatores Etários , Animais , Comportamento Animal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Força Muscular/fisiologia , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/fisiopatologia , RNA Mensageiro/metabolismo
14.
Mol Neurobiol ; 55(8): 6734-6754, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29344929

RESUMO

This study aimed to gain insights into the pathophysiology underlying PLA2G6-associated neurodegeneration that is implicated in three different neurological disorders, suggesting that other, unknown genetic or environmental factors might contribute to its wide phenotypic expression. To accomplish this, we downregulated the function of pla2g6 in the zebrafish nervous system, performed parkinsonism-related phenotypic characterization, and determined the effects of gene regulation upon the loss of pla2g6 function by using RNA sequencing and downstream analyses. Pla2g6 deficiency resulted in axonal degeneration, dopaminergic and motor neuron cell loss, and increased ß-synuclein expression. We also observed that many of the identified, differentially expressed genes were implicated in other brain disorders, which might explain the variable phenotypic expression of pla2g6-associated disease, and found that top enriched canonical pathways included those already known or suggested to play a major role in the pathogenesis of Parkinson's disease. Our data support that pla2g6 is relevant for cranial motor development with significant implications in the pathophysiology underlying Parkinson's disease.


Assuntos
Apoptose , Axônios/patologia , Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Fosfolipases A2 do Grupo VI/deficiência , Degeneração Neural/patologia , Proteínas de Peixe-Zebra/deficiência , Peixe-Zebra/metabolismo , beta-Sinucleína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Sequência de Bases , Padronização Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sequência Conservada , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Morfolinos/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
15.
PLoS One ; 10(10): e0141629, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26506412

RESUMO

Mutations in PLA2G6 have been proposed to be the cause of neurodegeneration with brain iron accumulation type 2. The present study aimed to clarify the mechanism underlying brain iron accumulation during the deficiency of calcium-independent phospholipase A2 beta (iPLA2ß), which is encoded by the PLA2G6 gene. Perl's staining with diaminobenzidine enhancement was used to visualize brain iron accumulation. Western blotting was used to investigate the expression of molecules involved in iron homeostasis, including divalent metal transporter 1 (DMT1) and iron regulatory proteins (IRP1 and 2), in the brains of iPLA2ß-knockout (KO) mice as well as in PLA2G6-knockdown (KD) SH-SY5Y human neuroblastoma cells. Furthermore, mitochondrial functions such as ATP production were examined. We have discovered for the first time that marked iron deposition was observed in the brains of iPLA2ß-KO mice since the early clinical stages. DMT1 and IRP2 were markedly upregulated in all examined brain regions of aged iPLA2ß-KO mice compared to age-matched wild-type control mice. Moreover, peroxidized lipids were increased in the brains of iPLA2ß-KO mice. DMT1 and IRPs were significantly upregulated in PLA2G6-KD cells compared with cells treated with negative control siRNA. Degeneration of the mitochondrial inner membrane and decrease of ATP production were observed in PLA2G6-KD cells. These results suggest that the genetic ablation of iPLA2ß increased iron uptake in the brain through the activation of IRP2 and upregulation of DMT1, which may be associated with mitochondrial dysfunction.


Assuntos
Proteínas de Transporte de Cátions/genética , Fosfolipases A2 do Grupo VI/genética , Proteína 2 Reguladora do Ferro/genética , Ferro/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Feminino , Fosfolipases A2 do Grupo VI/deficiência , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Proteína 2 Reguladora do Ferro/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Ativação Transcricional
16.
FEBS Lett ; 589(18): 2367-71, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26206229

RESUMO

Previous reports from our lab identified a mitochondrial calcium-independent phospholipase A2 activity that is activated when the mitochondrial membrane potential is decreased. This activity was demonstrated to influence occurrence of the permeability transition. Originally, this activity was ascribed to the iPLA2ß protein. Recently, both iPLA2ß and iPLA2γ knock out mice have been generated. It has been shown by others that the iPLA2γ plays a significant role in progression of the permeability transition. In this paper, using the iPLA2ß and iPLA2γ knock out mice we show that the membrane potential sensitive activity is the iPLA2γ.


Assuntos
Fosfolipases A2 do Grupo VI/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Hepáticas/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Fosfolipases A2 do Grupo VI/antagonistas & inibidores , Fosfolipases A2 do Grupo VI/deficiência , Fosfolipases A2 do Grupo VI/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Naftalenos/farmacologia , Pironas/farmacologia , Ratos
17.
PLoS One ; 9(10): e109409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313821

RESUMO

In platelets, group IVA cytosolic phospholipase A2 (cPLA2α) has been implicated as a key regulator in the hydrolysis of platelet membrane phospholipids, leading to pro-thrombotic thromboxane A2 and anti-thrombotic 12-(S)-hydroxyeicosatetranoic acid production. However, studies using cPLA2α-deficient mice have indicated that other PLA2(s) may also be involved in the hydrolysis of platelet glycerophospholipids. In this study, we found that group VIB Ca2+-independent PLA2 (iPLA2γ)-deficient platelets showed decreases in adenosine diphosphate (ADP)-dependent aggregation and ADP- or collagen-dependent thromboxane A2 production. Electrospray ionization mass spectrometry analysis of platelet phospholipids revealed that fatty acyl compositions of ethanolamine plasmalogen and phosphatidylglycerol were altered in platelets from iPLA2γ-null mice. Furthermore, mice lacking iPLA2γ displayed prolonged bleeding times and were protected against pulmonary thromboembolism. These results suggest that iPLA2γ is an additional, long-sought-after PLA2 that hydrolyzes platelet membranes and facilitates platelet aggregation in response to ADP.


Assuntos
Plaquetas/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Colágeno/metabolismo , Suscetibilidade a Doenças , Fosfolipases A2 do Grupo VI/deficiência , Fosfolipases A2 do Grupo VI/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeos/análise , Ativação Plaquetária , Agregação Plaquetária , Receptores Purinérgicos P2Y/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização por Electrospray , Trombose/metabolismo , Trombose/patologia , Tromboxano A2/metabolismo
18.
Pediatr Neurol ; 51(6): 850-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25439493

RESUMO

BACKGROUND: Alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism are two separate movement disorders with different dominant mutations in the same sodium-potassium transporter ATPase subunit gene, ATP1A3. PATIENT: We present a child with topiramate-responsive alternating hemiplegia of childhood who was tested for an ATP1A3 gene mutation. RESULTS: Gene sequencing revealed an identical ATP1A3 mutation as in three typical adult-onset rapid-onset dystonia parkinsonism cases but never previously described in an alternating hemiplegia of childhood case. CONCLUSION: The discordance of these phenotypes suggests that there are other undiscovered environmental, genetic, or epigenetic factors influencing the development of alternating hemiplegia of childhood or rapid-onset dystonia parkinsonism.


Assuntos
Distúrbios Distônicos/genética , Fosfolipases A2 do Grupo VI/deficiência , Hemiplegia/genética , Transtornos Parkinsonianos/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Pré-Escolar , Distúrbios Distônicos/etiologia , Feminino , Fosfolipases A2 do Grupo VI/genética , Hemiplegia/etiologia , Humanos , Masculino , Mutação , Transtornos Parkinsonianos/etiologia
19.
Histol Histopathol ; 28(8): 965-9, 2013 08.
Artigo em Inglês | MEDLINE | ID: mdl-23467909

RESUMO

Infantile neuroaxonal dystrophy (INAD) is a severe neurodegenerative disease characterized by its early onset. PLA2G6, which encodes a phospholipase A2, iPLA2ß, has been identified as a causative gene of INAD. iPLA2ß has been shown to be involved in various physiological and pathological processes, including immunity, cell death, and cell membrane homeostasis. Gene targeted mice with a null mutation of Pla2g6 develop the INAD phenotype as late as approximately 1 to 2 years after birth. Recently, another INAD mouse model, Pla2g6-INAD mice line, has been established. The Pla2g6-INAD mice bear a point mutation in the ankyrin repeat domain of Pla2g6 generated by N-ethyl-N-nitrosourea mutagenesis. These mutant mice develop severe motor dysfunction and hematopoietic abnormality in a manner following Mendelian law. The mice showed the abnormal gait and poor performance as early as 7 to 8 weeks of age, detected by hanging grip test. Neuropathological examination revealed widespread formation of spheroids containing tubulovesicular membranes similar to human INAD. Molecular and biochemical analysis revealed that the mutant mice expressed Pla2g6 mRNA and protein, but the mutated Pla2g6 protein had no glycerophospholipid-catalyzing enzyme activity. When analyzed the offspring which bear Pla2g6 knockout allele and Pla2g6-INAD allele, abnormal gait appeared slightly later than Pla2g6-INAD homozygotes but with earlier onset than the Pla2g6 knockout homozygotes. This result suggests that mutant Pla2g6 protein contributes to early onset of INAD symptoms in the absence of intact Pla2g6 protein. The analysis of various INAD mouse models may help to understand the pathogenesis of neurodegenerative diseases, including INAD.


Assuntos
Fosfolipases A2 do Grupo VI/genética , Distrofias Neuroaxonais/genética , Alelos , Animais , Modelos Animais de Doenças , Fosfolipases A2 do Grupo VI/deficiência , Hematopoese/genética , Humanos , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação , Distrofias Neuroaxonais/metabolismo , Doenças Neurodegenerativas/metabolismo , Fosfolipases A2/metabolismo , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA