Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.270
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Pharm Res ; 41(6): 1201-1216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834905

RESUMO

BACKGROUND: Some glucoside drugs can be transported via intestinal glucose transporters (IGTs), and the presence of carbohydrate excipients in pharmaceutical formulations may influence the absorption of them. This study, using gastrodin as probe drug, aimed to explore the effects of fructose, lactose, and arabic gum on intestinal drug absorption mediated by the glucose transport pathway. METHODS: The influence of fructose, lactose, and arabic gum on gastrodin absorption was assessed via pharmacokinetic experiments and single-pass intestinal perfusion. The expression of sodium-dependent glucose transporter 1 (SGLT1) and sodium-independent glucose transporter 2 (GLUT2) was quantified via RT‒qPCR and western blotting. Alterations in rat intestinal permeability were evaluated through H&E staining, RT‒qPCR, and immunohistochemistry. RESULTS: Fructose reduced the area under the curve (AUC) and peak concentration (Cmax) of gastrodin by 42.7% and 63.71%, respectively (P < 0.05), and decreased the effective permeability coefficient (Peff) in the duodenum and jejunum by 58.1% and 49.2%, respectively (P < 0.05). SGLT1 and GLUT2 expression and intestinal permeability remained unchanged. Lactose enhanced the AUC and Cmax of gastrodin by 31.5% and 65.8%, respectively (P < 0.05), and increased the Peff in the duodenum and jejunum by 33.7% and 26.1%, respectively (P < 0.05). SGLT1 and GLUT2 levels did not significantly differ, intestinal permeability increased. Arabic gum had no notable effect on pharmacokinetic parameters, SGLT1 or GLUT2 expression, or intestinal permeability. CONCLUSION: Fructose, lactose, and arabic gum differentially affect intestinal drug absorption through the glucose transport pathway. Fructose competitively inhibited drug absorption, while lactose may enhance absorption by increasing intestinal permeability. Arabic gum had no significant influence.


Assuntos
Álcoois Benzílicos , Excipientes , Frutose , Transportador de Glucose Tipo 2 , Glucose , Glucosídeos , Goma Arábica , Absorção Intestinal , Lactose , Ratos Sprague-Dawley , Transportador 1 de Glucose-Sódio , Animais , Absorção Intestinal/efeitos dos fármacos , Glucosídeos/farmacologia , Glucosídeos/administração & dosagem , Glucosídeos/farmacocinética , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Masculino , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Ratos , Excipientes/química , Excipientes/farmacologia , Glucose/metabolismo , Lactose/química , Álcoois Benzílicos/farmacologia , Álcoois Benzílicos/farmacocinética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
2.
Org Biomol Chem ; 22(10): 2091-2097, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38363206

RESUMO

Galactooligosaccharides (GOS) are widely used as a supplement in infant nutrition to mimic the beneficial effects found in prebiotic human milk oligosaccharides (HMOs). However, the complexity of the GOS mixture makes it challenging to ascertain which of the GOS components contribute most to their health benefits. Galactosyllactoses (GLs) are lactose-based trisaccharides containing a ß-galactopyranosyl residue at the 3'-position (3'galactosyllactose, 3'-GL), 4'-position (4'-galactosyllactose, 4'-GL), or the 6'-position (6'-galactosyllactose, 6'-GL). These GLs are of particular interest as they are present in both GOS mixtures and human milk at early stages of lactation. However, research on the potential health benefits of these individual GLs has been limited. Gram quantities are needed to assess their health benefits but these GLs are not readily available at this scale. In this study, we report the gram-scale chemical synthesis of 3'-GL, 4'-GL, and 6'-GL. All three galactosyllactoses were obtained on a gram scale in good purity from cheap and commercially available lactose. Furthermore, in vitro incubation of GLs with infant faecal microbiota demonstrates that the GLs were able to increase the abundance of Bifidobacterium and stimulate short chain fatty acid production.


Assuntos
Microbioma Gastrointestinal , Lactose , Lactente , Feminino , Humanos , Lactose/farmacologia , Lactose/química , Oligossacarídeos/química , Trissacarídeos/farmacologia , Leite Humano/química
3.
J Dairy Sci ; 107(2): 790-812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769945

RESUMO

Lactose is typically produced via cooling crystallization either from whey or whey permeate (edible grade) or from aqueous solution (pharmaceutical grade). While in solution, lactose is present in 2 anomeric forms, α- and ß-lactose. During cooling crystallization under standard process conditions, only α-lactose crystallizes, depleting the solution of α-anomer. In practice, mutarotation kinetics are often assumed to be much faster than crystallization. However, some literature reports limitation of crystallization by mutarotation. In the present research, we investigate the influence of operating conditions on mutarotation in lactose crystallization and explore the existence of an operation regimen where mutarotation can be disregarded in the crystallization process. Therefore, we study crystallization from aqueous lactose solutions by inline monitoring of concentrations of α- and ß-lactose via attenuated total reflection Fourier-transform spectroscopy. By implementing a linear cooling profile of 9 K/h to a minimum temperature of 10°C, we measured a remarkable increase in ß/α ratio, reaching a maximum of 2.19. This ratio exceeds the equilibrium level by 36%. However, when the same cooling profile was applied to a minimum temperature of 25°C, the deviation was significantly lower, with a maximum ß/α ratio of 1.72, representing only an 8% deviation from equilibrium. We also performed a theoretical assessment of the influence of process parameters on crystallization kinetics. We conclude that mutarotation needs to be taken into consideration for efficient crystallization control if the crystal surface area and supersaturation are sufficiently high.


Assuntos
Lactose , Soro do Leite , Animais , Lactose/química , Cristalização/veterinária , Proteínas do Soro do Leite/química , Espectroscopia de Ressonância Magnética/métodos , Água/química
4.
Bioprocess Biosyst Eng ; 47(2): 263-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38156992

RESUMO

The objective of this study was to develop a bioprocess for lactose hydrolysis in diverse dairy matrices, specifically skim milk and cheese whey, utilizing column reactors employing a core-shell enzymatic system featuring ß-galactosidase fused to a Cellulose Binding Domain (CBD) tag (ß-galactosidase-CBD). The effectiveness of reactor configurations, including ball columns and toothed columns operating in packed and fluidized-bed modes, was evaluated for catalyzing lactose hydrolysis in both skim milk and cheese whey. In a closed system, these reactors achieved lactose hydrolysis rates of approximately 50% within 5 h under all evaluated conditions. Considering the scale of the bioprocess, the developed enzymatic system was capable of continuously hydrolyzing 9.6 L of skim milk while maintaining relative hydrolysis levels of approximately 50%. The biocatalyst, created by immobilizing ß-galactosidase-CBD on magnetic core-shell capsules, exhibited exceptional operational stability, and the proposed bioprocess employing these column reactors showcases the potential for scalability.


Assuntos
Lactose , Leite , Animais , Lactose/química , Hidrólise , Leite/química , Leite/metabolismo , beta-Galactosidase/química , Fenômenos Magnéticos , Enzimas Imobilizadas/metabolismo
5.
Bioprocess Biosyst Eng ; 47(6): 919-929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644439

RESUMO

The growing need in the current market for innovative solutions to obtain lactose-free (L-F) milk is caused by the annual increase in the prevalence of lactose intolerance inside as well as the newborn, children, and adults. Various configurations of enzymes can yield two distinct L-F products: sweet (ß-galactosidase) and unsweet (ß-galactosidase and glucose oxidase) L-F milk. In addition, the reduction of sweetness through glucose decomposition should be performed in a one-pot mode with catalase to eliminate product inhibition caused by H2O2. Both L-F products enjoy popularity among a rapidly expanding group of consumers. Although enzyme immobilization techniques are well known in industrial processes, new carriers and economic strategies are still being searched. Polymeric carriers, due to the variety of functional groups and non-toxicity, are attractive propositions for individual and co-immobilization of food enzymes. In the presented work, two strategies (with free and immobilized enzymes; ß-galactosidase NOLA, glucose oxidase from Aspergillus niger, and catalase from Serratia sp.) for obtaining sweet and unsweet L-F milk under low-temperature conditions were proposed. For free enzymes, achieving the critical assumption, lactose hydrolysis and glucose decomposition occurred after 1 and 4.3 h, respectively. The tested catalytic membranes were created on regenerated cellulose and polyamide. In both cases, the time required for lactose and glucose bioconversion was extended compared to free enzymes. However, these preparations could be reused for up to five (ß-galactosidase) and ten cycles (glucose oxidase with catalase).


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Lactose , Leite , beta-Galactosidase , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Leite/química , Lactose/metabolismo , Lactose/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Animais , Aspergillus niger/enzimologia , Glucose/metabolismo , Glucose/química , Catalase/metabolismo , Catalase/química , Membranas Artificiais
6.
AAPS PharmSciTech ; 25(6): 147, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937406

RESUMO

Only few excipients are known to be suitable as pelletization aids. In this study, the potential use of croscarmellose sodium (CCS) as pelletization aid was investigated. Furthermore, the impact of cations on extrusion-spheronization (ES) of CCS was studied and different grades of CCS were tested. The influence of different cations on the swelling of CCS was investigated by laser diffraction. Mixtures of CCS with lactose monohydrate as filler with or without the inclusion of different cations were produced. The mixtures were investigated by mixer torque rheometry and consequently extruded and spheronized. Resulting pellets were analyzed by dynamic image analysis. In addition, mixtures of different CCS grades with dibasic calcium phosphate anhydrous (DP) and a mixture with praziquantel (PZQ) as filler were investigated. Calcium and magnesium cations caused a decrease of the swelling of CCS and influenced the use of CCS as pelletization aid since they needed to be included for successful ES. Aluminum, however, led to an aggregation of the CCS particles and to failure of extrusion. The inclusion of cations decreased the uptake of water by the mixtures which also reduced the liquid-to-solid-ratio (L/S) for successful ES. This was shown to be dependent on the amount of divalent cations in the mixture. With DP or PZQ as filler, no addition of cations was necessary for a successful production of pellets, however the optimal L/S for ES was dependent on the CCS grade used. In conclusion, CCS can be used as a pelletization aid.


Assuntos
Excipientes , Tamanho da Partícula , Excipientes/química , Composição de Medicamentos/métodos , Fosfatos de Cálcio/química , Lactose/química , Química Farmacêutica/métodos , Cátions/química , Praziquantel/química , Magnésio/química
7.
AAPS PharmSciTech ; 25(6): 138, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890193

RESUMO

Unexpected cross-contamination by foreign components during the manufacturing and quality control of pharmaceutical products poses a serious threat to the stable supply of drugs and the safety of customers. In Japan, in 2020, a mix-up containing a sleeping drug went undetected by liquid chromatography during the final quality test because the test focused only on the main active pharmaceutical ingredient (API) and known impurities. In this study, we assessed the ability of a powder rheometer to analyze powder characteristics in detail to determine whether it can detect the influence of foreign APIs on powder flow. Aspirin, which was used as the host API, was combined with the guest APIs (acetaminophen from two manufacturers and albumin tannate) and subsequently subjected to shear and stability tests. The influence of known lubricants (magnesium stearate and leucine) on powder flow was also evaluated for standardized comparison. Using microscopic morphological analysis, the surface of the powder was observed to confirm physical interactions between the host and guest APIs. In most cases, the guest APIs were statistically detected due to characteristics such as their powder diameter, pre-milling, and cohesion properties. Furthermore, we evaluated the flowability of a formulation incorporating guest APIs for direct compression method along with additives such as microcrystalline cellulose, potato starch, and lactose. Even in the presence of several additives, the influence of the added guest APIs was successfully detected. In conclusion, powder rheometry is a promising method for ensuring stable product quality and reducing the risk of unforeseen cross-contamination by foreign APIs.


Assuntos
Contaminação de Medicamentos , Pós , Reologia , Pós/química , Reologia/métodos , Contaminação de Medicamentos/prevenção & controle , Excipientes/química , Acetaminofen/química , Celulose/química , Preparações Farmacêuticas/química , Controle de Qualidade , Aspirina/química , Química Farmacêutica/métodos , Lactose/química , Composição de Medicamentos/métodos , Lubrificantes/química , Princípios Ativos
8.
J Synchrotron Radiat ; 30(Pt 2): 430-439, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891856

RESUMO

Synchrotron radiation based dynamic micro-computed tomography (micro-CT) is a powerful technique available at synchrotron light sources for investigating evolving microstructures. Wet granulation is the most widely used method of producing pharmaceutical granules, precursors to products like capsules and tablets. Granule microstructures are known to influence product performance, so this is an area for potential application of dynamic CT. Here, lactose monohydrate (LMH) was used as a representative powder to demonstrate dynamic CT capabilities. Wet granulation of LMH has been observed to occur on the order of several seconds, which is too fast for lab-based CT scanners to capture the changing internal structures. The superior X-ray photon flux from synchrotron light sources makes sub-second data acquisition possible and well suited for analysis of the wet-granulation process. Moreover, synchrotron radiation based imaging is non-destructive, does not require altering the sample in any way, and can enhance image contrast with phase-retrieval algorithms. Dynamic CT can bring insights to wet granulation, an area of research previously only studied via 2D and/or ex situ techniques. Through efficient data-processing strategies, dynamic CT can provide quantitative analysis of how the internal microstructure of an LMH granule evolves during the earliest moments of wet granulation. Here, the results revealed granule consolidation, the evolving porosity, and the influence of aggregates on granule porosity.


Assuntos
Lactose , Síncrotrons , Microtomografia por Raio-X , Tamanho da Partícula , Comprimidos/química , Pós , Lactose/química , Composição de Medicamentos/métodos
9.
Proc Natl Acad Sci U S A ; 117(18): 9793-9799, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284419

RESUMO

The development of pastoralism transformed human diets and societies in grasslands worldwide. The long-term success of cattle herding in Africa has been sustained by dynamic food systems, consumption of a broad range of primary and secondary livestock products, and the evolution of lactase persistence (LP), which allows digestion of lactose into adulthood and enables the milk-based, high-protein, low-calorie diets characteristic of contemporary pastoralists. Despite the presence of multiple alleles associated with LP in ancient and present-day eastern African populations, the contexts for selection for LP and the long-term development of pastoralist foodways in this region remain unclear. Pastoral Neolithic (c 5000 to 1200 BP) faunas indicate that herders relied on cattle, sheep, and goats and some hunting, but direct information on milk consumption, plant use, and broader culinary patterns is rare. Combined chemical and isotopic analysis of ceramic sherds (n = 125) from Pastoral Neolithic archaeological contexts in Kenya and Tanzania, using compound-specific δ13C and Δ13C values of the major fatty acids, provides chemical evidence for milk, meat, and plant processing by ancient herding societies in eastern Africa. These data provide the earliest direct evidence for milk product consumption and reveal a history of reliance on animal products and other nutrients, likely extracted through soups or stews, and plant foods. They document a 5,000-y temporal framework for eastern Africa pastoralist cuisines and cultural contexts for selection for alleles distinctive of LP in eastern Africa.


Assuntos
Arqueologia , Dieta , Análise de Alimentos/história , Leite/química , Animais , Isótopos de Carbono/química , Bovinos , Cerâmica/história , Dieta/história , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Cabras , História Antiga , Migração Humana/história , Humanos , Lactase/química , Lactose/química , Gado , Carne/análise , Ovinos
10.
Bioprocess Biosyst Eng ; 46(9): 1279-1291, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450268

RESUMO

Cellobiose 2-epimerase (CE) is ideally suited to synthesize lactulose from lactose, but the poor thermostability and catalytic efficiency restrict enzymatic application. Herein, a non-characterized CE originating from Caldicellulosiruptor morganii (CmCE) was discovered in the NCBI database. Then, a smart mutation library was constructed based on FoldX ΔΔG calculation and modeling structure analysis, from which a positive mutant D226G located within the α8/α9 loop exhibited longer half-lives at 65-75 °C as well as lower Km and higher kcat/Km values compared with CmCE. Molecular modeling demonstrated that the improvement of D226G was largely attributed to the rigidification of the flexible loop, the compactness of the catalysis pocket and the increment of substrate-binding capability. Finally, the yield of synthesizing lactulose catalyzed by D226G reached 45.5%, higher than the 35.9% achieved with CmCE. The disclosed effect of the flexible loop on enzymatic stability and catalysis provides insight to redesign efficient CEs to biosynthesize lactulose.


Assuntos
Lactose , Lactulose , Lactulose/química , Lactose/química , Celobiose/química , Racemases e Epimerases/genética , Clostridiales , Desenho Assistido por Computador
11.
Drug Dev Ind Pharm ; 49(6): 416-428, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37278581

RESUMO

OBJECTIVE: The investigation of benznidazole (BZN), excipients, and tablets aims to evaluate their thermal energy and tableting effects. They aim to understand better the molecular and pharmaceutical processing techniques of the formulation. SIGNIFICANCE: The Product Quality Review, part of Good Manufacturing Practices, is essential to highlight trends and identify product and process improvements. METHODS: A set of technique approaches, infrared spectroscopy, X-ray diffraction, and thermal analysis with isoconversional kinetic study, were applied in the protocol. RESULTS: X-ray experiments suggest talc and α-lactose monohydrate dehydration and conversion of ß-lactose to stable α-lactose upon tableting. The signal crystallization at 167 °C in the DSC curve confirmed this observation. A calorimetric study showed a decrease in the thermal stability of BZN tablets. Therefore, the temperature is a critical process parameter. The specific heat capacity (Cp) of BZN, measured by DSC, was 10.04 J/g at 25 °C and 9.06 J/g at 160 °C. Thermal decomposition required 78 kJ mol-1. Compared with the tablet (about 200 kJ mol-1), the necessary energy is two-fold lower, as observed in the kinetic study by non-isothermal TG experiment at 5; 7.5; 10; and 15 °C min-1. CONCLUSIONS: These results indicate the necessity of considering the thermal energy and tableting effects of BZN manufacturing, which contributes significantly to the molecular mechanistic understanding of this drug delivery system.


Assuntos
Química Farmacêutica , Temperatura Alta , Lactose/química , Comprimidos/química
12.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835132

RESUMO

Galectins constitute a family of galactose-binding lectins overly expressed in the tumor microenvironment as well as in innate and adaptive immune cells, in inflammatory diseases. Lactose ((ß-D-galactopyranosyl)-(1→4)-ß-D-glucopyranose, Lac) and N-Acetyllactosamine (2-acetamido-2-deoxy-4-O-ß-D-galactopyranosyl-D-glucopyranose, LacNAc) have been widely exploited as ligands for a wide range of galectins, sometimes with modest selectivity. Even though several chemical modifications at single positions of the sugar rings have been applied to these ligands, very few examples combined the simultaneous modifications at key positions known to increase both affinity and selectivity. We report herein combined modifications at the anomeric position, C-2, and O-3' of each of the two sugars, resulting in a 3'-O-sulfated LacNAc analog having a Kd of 14.7 µM against human Gal-3 as measured by isothermal titration calorimetry (ITC). This represents a six-fold increase in affinity when compared to methyl ß-D-lactoside having a Kd of 91 µM. The three best compounds contained sulfate groups at the O-3' position of the galactoside moieties, which were perfectly in line with the observed highly cationic character of the human Gal-3 binding site shown by the co-crystal of one of the best candidates of the LacNAc series.


Assuntos
Galectina 3 , Lactose , Humanos , Galectina 3/química , Galectina 3/farmacologia , Galectinas/química , Lactose/química , Ligantes
13.
Molecules ; 28(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838965

RESUMO

Galectin-10 (Gal-10) forms Charcot-Leyden crystals (CLCs), which play a key role in the symptoms of asthma and allergies and some other diseases. Gal-10 has a carbohydrate-binding site; however, neither the Gal-10 dimer nor the CLCs can bind sugars. To investigate the monomer-dimer equilibrium of Gal-10, high-performance size-exclusion chromatography (SEC) was employed to separate serial dilutions of Gal-10 with and without carbohydrates. We found that both the dimerization and crystallization of Gal-10 were promoted by lactose/galactose binding. A peak position shift for the monomer was observed after treatment with either lactose or galactose, implying that the polarity of the monomer was reduced by lactose/galactose binding. Further experiments indicated that alkaline conditions of pH 8.8 mimicked the lactose/galactose-binding environment, and the time interval between monomers and dimers in the chromatogram decreased from 0.8 min to 0.4 min. Subsequently, the electrostatic potential of the Gal-10 monomers was computed. After lactose/galactose binding, the top side of the monomer shifted from negatively charged to electrically neutral, allowing it to interact with the carbohydrate-binding site of the opposing subunit during dimerization. Since lactose/galactose promotes the crystallization of Gal-10, our findings implied that dairy-free diets (free of lactose/galactose) might be beneficial to patients with CLC-related diseases.


Assuntos
Galactose , Lactose , Humanos , Lactose/química , Galactose/metabolismo , Cristalização , Galectinas/química , Sítios de Ligação
14.
Molecules ; 28(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894584

RESUMO

In order to improve the safety and quality of lactose-free milk (LFM) Maillard reaction products (MRPs), this study used raw cow's milk as raw material and lactase hydrolysis to prepare LFM, which was heat-treated using pasteurization and then placed in storage temperatures of 4 °C, 25 °C and 37 °C to investigate the changes in the Maillard reaction (MR). The results of the orthogonal test showed that the optimal conditions for the hydrolysis of LFM are as follows: the hydrolysis temperature was 38 °C, the addition of lactase was 0.03%, and the hydrolysis time was 2.5 h. Under these conditions, the lactose hydrolysis rate reached 97.08%, and the lactose residue was only 0.15 g/100 g as determined by high-performance liquid chromatography (HPLC), complying with the standard of LFM in GB 28050-2011. The contents of furoamic acid and 5-hydroxymethylfurfural were determined by high-performance liquid chromatography, the color difference was determined by CR-400 color difference meter, and the internal fluorescence spectrum was determined by F-320 fluorescence spectrophotometer. The test results showed that the variation range of furosine in lactose-free milk after pasteurization was 44.56~136.45 mg/100g protein, the range of 5-hydroxymethylfurfural (HMF) was 12.51~16.83 mg/kg, the color difference ranges from 88.11 to 102.53 in L*, from -0.83 to -0.10 in a*, and from 1.88 to 5.47 in b*. The furosine content of LFM during storage at 4, 25, and 37 °C ranged from 44.56 to 167.85, 44.56 to 287.13, and 44.56 to 283.72 mg/100 g protein, respectively. The average daily increase in protein content was 1.18-3.93, 6.46-18.73, and 15.7-37.66 mg/100 g, respectively. The variation range of HMF was 12.51~17.61, 12.51~23.38, and 12.51~21.1 mg/kg, and the average daily increase content was 0.03~0.07, 0.47~0.68, and 0.51~0.97 mg/kg, respectively. During storage at 4 °C, the color difference of LFM ranged from 86.82 to 103.82, a* ranged from -1.17 to -0.04, and b* ranged from 1.47 to 5.70. At 25 °C, color difference L* ranges from 72.09 to 102.35, a* ranges from -1.60 to -0.03, b* ranges from 1.27 to 6.13, and at 37 °C, color difference L* ranges from 58.84 to 102.35, a* ranges from -2.65 to 1.66, and b* ranges from 0.54 to 5.99. The maximum fluorescence intensity (FI) of LFM varies from 131.13 to 173.97, 59.46 to 173.97, and 29.83 to 173.97 at 4, 25, and 37 °C. In order to reduce the effect of the Maillard reaction on LFM, it is recommended to pasteurize it at 70 °C-15 s and drink it as soon as possible during the shelf life within 4 °C.


Assuntos
Reação de Maillard , Pasteurização , Animais , Leite/química , Lactose/química , Proteínas/análise , Lactase
15.
Pharmazie ; 78(6): 93-99, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37537772

RESUMO

In powder formulations, it is a problem that the required therapeutic dose is not obtained because of loss of the active pharmaceutical ingredient (API). In this study, we investigated three types of lactose diluents, which are widely used as pharmaceutical excipients, for dispensing prednisolone powder. Extra-fine crystalline lactose, commonly used as a diluent in compounding powder formulations, was used as a comparison. The effect of lactose on the API loss rate was examined by analyzing the amount of prednisolone in the powder formulation taken out of a single-dose package after dispensing. The results showed that Dilactose-F had the lowest API loss rate (22%), followed by powder lactose (37.8%), extra-fine crystalline lactose (45.9%), and crystal form lactose (48.6%), indicating that the use of Dilactose-F as a diluent significantly improved API loss when compounding the powder formulation. Because each mixture of commercial prednisolone powder and lactose was within acceptable uniformity and loss rate before packaging, we considered that API loss occurred when the powder was taken out of the single-dose package before patients ingested them. Then, the physical properties of these lactose types affecting the API loss rate were examined. Strong correlation was not found between flowability and the API loss rate, but particle size distribution and bulk density were strongly correlated with the API loss rate. Furthermore, Dilactose-F, which showed the lowest API loss rate, did not show an exothermic peak due to epimerization to anhydrous ß -lactose in differential scanning calorimetry and showed a peak specific to ß -lactose in powder X-ray diffractometer. These results suggested that in powder compounding where the API content is low, the physical properties of lactose, such as particle size distribution, bulk density, and crystalline form, are intricately related to API loss.


Assuntos
Química Farmacêutica , Excipientes , Humanos , Pós , Química Farmacêutica/métodos , Excipientes/química , Lactose/química , Prednisolona , Tamanho da Partícula , Composição de Medicamentos/métodos
16.
Pharm Dev Technol ; 28(8): 719-723, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37467516

RESUMO

A low value of deformation before crushing is an obvious and understandable measure of brittleness of materials including tablets. In this article, three methods based on deformation measurement in a flexure tester are compared. The simplest one is a plain measurement of distance from contact or selected start point till fracture. Next the brittle-ductile method (BDI), where the distance is established by normalisation of the force-displacement curve based on the work of failure (WOF). The third method is the tablet brittleness index (TBI) by Gong and Sun, where the reciprocal of a linear distance is proposed as a brittleness quantity. The study is based on data from a previous investigation, where tablets of microcrystalline cellulose and lactose in different combinations and with four different crushing forces were utilised. The investigation shows that the BDI method is preferable. It is easy to compute without data manipulation, the sensitivity to the fracture force is negligible and it provides an independent characteristic of the brittleness of a compacted material.


Assuntos
Lactose , Lactose/química , Comprimidos/química , Resistência à Tração
17.
Pharm Dev Technol ; 28(2): 240-247, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36730066

RESUMO

Sodium hyaluronate (SHA) is an anti-inflammatory and protective agent against bronchoconstriction, and sodium cromoglicate (SCG) prevents exercise-induced bronchoconstriction and inflammation. Based on the pharmacological properties of both substances, this study aimed to develop a dry powder inhaler (DPI) of SHA alone and in combination with SCG. The target of the study was to develop flowable formulations without any surfactants by using the spray drying method. To obtain respirable SHA and SCG:SHA particles, variables of the spray dryer, such as inlet temperature, atomized air flow, and feed solution, were changed. The particles 1-8 µm in size were produced with high yield by spray drying and increasing the ethanol percentage of the feed solution (60%), which is the most remarkable parameter. After that, physicochemical characterizations were performed. The aerosol performance of DPI formulations prepared using lactose was evaluated using Handihaler® DPI. The fine particle fraction (FPF) was 36% for the SHA formulation, whereas it was 52 and 53% for SCG and SHA, respectively, in the SCG:SHA formulation. Consequently, both particles were produced reproducibly by spray drying, and inhaled SHA and SCG:SHA dry powder formulations were developed due to their high FPF and flowability with lactose.


Assuntos
Cromolina Sódica , Ácido Hialurônico , Pós/química , Secagem por Atomização , Lactose/química , Administração por Inalação , Aerossóis/química , Tamanho da Partícula , Inaladores de Pó Seco
18.
AAPS PharmSciTech ; 24(8): 225, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945987

RESUMO

The physics of tablets mixtures has gained much attention lately. The purpose of this work is to evaluate the compaction properties of Kollidon® SR (KSR) in the presence of different excipients such as Microcrystalline cellulose (MCC), Monohydrous lactose (MH Lactose), Poly (vinyl acetate) (PVA100), and a water-soluble drug Diclofenac sodium (DNa) to prepare once daily formulation. Tablets were prepared using direct compression and were compressed into flat-faced tablets using hydraulic press at various pressures. The combination of MCC and KSR in the tablets showed reduced porosity, and almost constant low Py values as KSR levels increased; also, KSR-DNa tablets had higher percentage porosity and crushing strength values than KSR-MH Lactose tablets. The crushing strengths of KSR-MCC tablets were larger than those of KSR-DNa tablets. Ternary mixture tablets comprised of KSR-MCC-DNa showed decreased porosities and low Py values as the percentage of KSR increased especially at high compression pressures but had higher crushing strengths compared to KSR-DNa or MCC-DNa binary tablets. KSR-MH Lactose-DNa ternary tablets experienced lower porosities and crushing strengths compared to KSR-MCC-DNa tablets. Quaternary tablets of KSR-PVA100-MCC-DNa showed lower porosity and Py values than quaternary tablets obtained using similar proportion of MH Lactose instead of MCC. In conclusion, optimum quaternary tablets were obtained with optimum crushing strengths, relatively low Py, and moderate percentage porosities among all prepared quaternary tablets. The drug release of the optimum quaternary tablets demonstrated similar in vitro release profile compared to that of the marketed product with a mechanism of release that follows Korsmeyer-Peppas model.


Assuntos
Diclofenaco , Povidona , Preparações de Ação Retardada , Lactose/química , Comprimidos/química , DNA
19.
Opt Lett ; 47(10): 2446-2449, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561372

RESUMO

Terahertz (THz) absorption spectroscopy is a powerful tool for molecular label-free fingerprinting, but it faces a formidable hurdle in enhancing the broadband spectral signals in trace-amount analysis. In this paper, we propose a sensing method based on the geometry scanning of metal metasurfaces with spoof surface polarization sharp resonances by numerical simulation. This scheme shows a significant absorption enhancement factor of about 200 times in an ultra-wide terahertz band to enable the explicit identification of various analytes, such as a trace-amount thin lactose film samples. The proposed method provides a new, to the best of our knowledge, choice for the enhancement of wide terahertz absorption spectra, and paves the way for the detection of trace-amount chemical, organic, or biomedical materials in the terahertz regime.


Assuntos
Espectroscopia Terahertz , Lactose/química , Metais , Espectroscopia Terahertz/métodos
20.
Proc Natl Acad Sci U S A ; 116(8): 2837-2842, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718416

RESUMO

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.


Assuntos
Galectina 1/química , Galectina 3/química , Glicoconjugados/química , Polissacarídeos/química , Amino Açúcares/química , Amino Açúcares/metabolismo , Sítios de Ligação , Proteínas Sanguíneas , Adesão Celular/genética , Proliferação de Células/genética , Galectina 1/genética , Galectina 3/genética , Galectinas , Humanos , Lactose/química , Ligantes , Nanopartículas/química , Polissacarídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA