Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.551
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 74(2): 227-229, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002804

RESUMO

In a recent issue of Science, Wilson et al. (2019) provide direct evidence that the bacterial-produced colibactin alkylates DNA in vivo, resulting in DNA adducts, which mediates its genotoxic effect. This work reinforces the role of colibactin-producing bacteria in colon cancer pathogenesis.


Assuntos
Neoplasias Colorretais/microbiologia , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Peptídeos/toxicidade , Policetídeos/toxicidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adutos de DNA/genética , Adutos de DNA/toxicidade , Dano ao DNA/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Mutação/genética , Peptídeos/genética
2.
Nat Chem Biol ; 19(2): 159-167, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253549

RESUMO

The human gut bacterial genotoxin colibactin is a possible key driver of colorectal cancer (CRC) development. Understanding colibactin's biological effects remains difficult owing to the instability of the proposed active species and the complexity of the gut microbiota. Here, we report small molecule boronic acid inhibitors of colibactin biosynthesis. Designed to mimic the biosynthetic precursor precolibactin, these compounds potently inhibit the colibactin-activating peptidase ClbP. Using biochemical assays and crystallography, we show that they engage the ClbP binding pocket, forming a covalent bond with the catalytic serine. These inhibitors reproduce the phenotypes observed in a clbP deletion mutant and block the genotoxic effects of colibactin on eukaryotic cells. The availability of ClbP inhibitors will allow precise, temporal control over colibactin production, enabling further study of its contributions to CRC. Finally, application of our inhibitors to related peptidase-encoding pathways highlights the power of chemical tools to probe natural product biosynthesis.


Assuntos
Microbioma Gastrointestinal , Policetídeos , Humanos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Escherichia coli/metabolismo , Policetídeos/química , Peptídeo Hidrolases/química
3.
Proc Natl Acad Sci U S A ; 119(11): e2121180119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254905

RESUMO

SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.


Assuntos
Cólera/microbiologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Interações Microbianas , Mutagênicos/metabolismo , Vibrio cholerae/fisiologia , Animais , Antibiose , Cólera/mortalidade , Dano ao DNA , Modelos Animais de Doenças , Escherichia coli/fisiologia , Humanos , Camundongos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prognóstico , Espécies Reativas de Oxigênio , Vibrio cholerae/efeitos dos fármacos
4.
PLoS Pathog ; 18(9): e1010766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067266

RESUMO

Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Proteínas de Membrana , Fosfotransferases , Policetídeos , Staphylococcus aureus , Fatores de Transcrição , Animais , Antibacterianos/metabolismo , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mutagênicos/metabolismo , N-Metilaspartato/metabolismo , Peptídeos , Fosfotransferases/genética , Policetídeos/metabolismo , Staphylococcus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/microbiologia
5.
Arch Toxicol ; 98(2): 425-469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147116

RESUMO

Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.


Assuntos
Micotoxinas , Perileno , Humanos , Alternaria/metabolismo , Micotoxinas/toxicidade , Micotoxinas/análise , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Lactonas/toxicidade , Lactonas/metabolismo , Medição de Risco , Contaminação de Alimentos/análise
6.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099548

RESUMO

Improvements in whole genome amplification (WGA) would enable new types of basic and applied biomedical research, including studies of intratissue genetic diversity that require more accurate single-cell genotyping. Here, we present primary template-directed amplification (PTA), an isothermal WGA method that reproducibly captures >95% of the genomes of single cells in a more uniform and accurate manner than existing approaches, resulting in significantly improved variant calling sensitivity and precision. To illustrate the types of studies that are enabled by PTA, we developed direct measurement of environmental mutagenicity (DMEM), a tool for mapping genome-wide interactions of mutagens with single living human cells at base-pair resolution. In addition, we utilized PTA for genome-wide off-target indel and structural variant detection in cells that had undergone CRISPR-mediated genome editing, establishing the feasibility for performing single-cell evaluations of biopsies from edited tissues. The improved precision and accuracy of variant detection with PTA overcomes the current limitations of accurate WGA, which is the major obstacle to studying genetic diversity and evolution at cellular resolution.


Assuntos
Variação Genética , Genoma Humano , Técnicas de Amplificação de Ácido Nucleico , Análise de Célula Única , Moldes Genéticos , Pareamento de Bases/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Humanos , Mutagênicos/metabolismo , Polimorfismo de Nucleotídeo Único/genética
7.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668960

RESUMO

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Assuntos
Benzo(a)pireno , Adutos de DNA , Poluentes Ambientais , Saccharomyces cerevisiae , Adutos de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Mutagênicos/toxicidade , Mutagênicos/metabolismo , DNA Fúngico/genética , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo
8.
PLoS Pathog ; 17(2): e1009310, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630958

RESUMO

Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of the cleavage product released during the synthesis of colibactin, a bacterial genotoxin, in 55 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells.


Assuntos
Dano ao DNA , Infecções por Escherichia coli/patologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Bexiga Urinária/patologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/isolamento & purificação , Idoso , Animais , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutagênicos/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia
9.
PLoS Pathog ; 17(3): e1009320, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662035

RESUMO

Humans are frequently exposed to bacterial genotoxins of the gut microbiota, such as colibactin and cytolethal distending toxin (CDT). In the present study, whole genome microarray-based identification of differentially expressed genes was performed in vitro on HT29 intestinal cells while following the ectopic expression of the active CdtB subunit of Helicobacter hepaticus CDT. Microarray data showed a CdtB-dependent upregulation of transcripts involved in positive regulation of autophagy concomitant with the downregulation of transcripts involved in negative regulation of autophagy. CdtB promotes the activation of autophagy in intestinal and hepatic cell lines. Experiments with cells lacking autophagy related genes, ATG5 and ATG7 infected with CDT- and colibactin-producing bacteria revealed that autophagy protects cells against the genotoxin-induced apoptotic cell death. Autophagy induction could also be associated with nucleoplasmic reticulum (NR) formation following DNA damage induced by these bacterial genotoxins. In addition, both genotoxins promote the accumulation of the autophagic receptor P62/SQSTM1 aggregates, which colocalized with foci concentrating the RNA binding protein UNR/CSDE1. Some of these aggregates were deeply invaginated in NR in distended nuclei together or in the vicinity of UNR-rich foci. Interestingly, micronuclei-like structures and some vesicles containing chromatin and γH2AX foci were found surrounded with P62/SQSTM1 and/or the autophagosome marker LC3. This study suggests that autophagy and P62/SQSTM1 regulate the abundance of micronuclei-like structures and are involved in cell survival following the DNA damage induced by CDT and colibactin. Similar effects were observed in response to DNA damaging chemotherapeutic agents, offering new insights into the context of resistance of cancer cells to therapies inducing DNA damage.


Assuntos
Autofagia/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Autofagia/fisiologia , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Helicobacter hepaticus/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mutagênicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/genética
10.
Photosynth Res ; 158(2): 81-90, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36847892

RESUMO

Gloeobacter violaceus is an ancient cyanobacterium as it branches out from the basal position in the phylogenic tree of cyanobacteria. It lacks thylakoid membranes and its unique bundle-shaped type of phycobilisomes (PBS) for light harvesting in photosynthesis are located on the interior side of cytoplasmic membranes. The PBS from G. violaceus have two large linker proteins that are not present in any other PBS, Glr2806, and Glr1262, which are encoded by the genes glr2806 and glr1262, respectively. The location and functions of the linkers Glr2806 and Glr1262 are currently unclear. Here, we report the studies of mutagenetic analysis of glr2806 and the genes of cpeBA, encoding the ß and α subunits of phycoerythrin (PE), respectively. In the mutant lacking glr2806, the length of the PBS rods remains unchanged, but the bundles are less tightly packed as examined by electron microscopy with negative staining. It is also shown that two hexamers are missing in the peripheral area of the PBS core, strongly suggesting that the linker Glr2806 is located in the core area instead of the rods. In the mutant lacking the cpeBA genes, PE is no longer present and the PBS rods have only three layers of phycocyanin hexamers. The construction of deletional mutants in G. violaceus, achieved for the first time, provides critical information for our understanding of its unique PBS and should be useful in studies of other aspects of this interesting organism as well.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/metabolismo , Mutagênicos/metabolismo , Proteínas/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Ficocianina/metabolismo , Ficoeritrina/metabolismo
11.
Nature ; 548(7669): 549-554, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28813411

RESUMO

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Assuntos
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldeído/química , Formaldeído/metabolismo , Redes e Vias Metabólicas , Mutagênicos/química , Mutagênicos/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Carbono/deficiência , Linhagem Celular , Galinhas , Coenzimas/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Inativação Metabólica , Camundongos , Nucleotídeos/biossíntese , Oxirredução , Serina/química , Serina/metabolismo , Tetra-Hidrofolatos/metabolismo
12.
Mol Cell ; 60(1): 177-88, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26412304

RESUMO

Endogenous formaldehyde is produced by numerous biochemical pathways fundamental to life, and it can crosslink both DNA and proteins. However, the consequences of its accumulation are unclear. Here we show that endogenous formaldehyde is removed by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), and Adh5(-/-) mice therefore accumulate formaldehyde adducts in DNA. The repair of this damage is mediated by FANCD2, a DNA crosslink repair protein. Adh5(-/-)Fancd2(-/-) mice reveal an essential requirement for these protection mechanisms in hematopoietic stem cells (HSCs), leading to their depletion and precipitating bone marrow failure. More widespread formaldehyde-induced DNA damage also causes karyomegaly and dysfunction of hepatocytes and nephrons. Bone marrow transplantation not only rescued hematopoiesis but, surprisingly, also preserved nephron function. Nevertheless, all of these animals eventually developed fatal malignancies. Formaldehyde is therefore an important source of endogenous DNA damage that is counteracted in mammals by a conserved protection mechanism.


Assuntos
Álcool Desidrogenase/metabolismo , Carcinógenos/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Formaldeído/metabolismo , Mutagênicos/metabolismo , Álcool Desidrogenase/genética , Animais , Células Cultivadas , Adutos de DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos
13.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445675

RESUMO

MTTA, also known as mephtetramine, is a stimulant novel psychoactive substance characterized by a simil-cathinonic structure. To date, little has been studied on its pharmaco-toxicological profile, and its genotoxic potential has never been assessed. In order to fill this gap, the aim of the present work was to evaluate its genotoxicity on TK6 cells in terms of its ability to induce structural and numerical chromosomal aberrations by means of a cytofluorimetric protocol of the "In Vitro Mammalian Cell Micronucleus (MN) test". To consider the in vitro effects of both the parental compound and the related metabolites, TK6 cells were treated with MTTA in the absence or presence of an exogenous metabolic activation system (S9 mix) for a short-term time (3 h) followed by a recovery period (23 h). No statistically significant increase in the MNi frequency was detected. Specifically, in the presence of S9 mix, only a slight increasing trend was observable at all tested concentrations, whereas, without S9 mix, at 75 µM, almost a doubling of the negative control was reached. For the purposes of comprehensive evaluation, a long-term treatment (26 h) was also included. In this case, a statistically significant enhancement in the MNi frequency was observed at 50 µM.


Assuntos
Dano ao DNA , Mutagênicos , Animais , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Fármacos do Sistema Nervoso Central , Testes de Mutagenicidade/métodos , Mamíferos/metabolismo
14.
Nat Prod Rep ; 39(5): 991-1014, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35288725

RESUMO

Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.


Assuntos
Mutagênicos , Policetídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mutagênicos/metabolismo , Peptídeos/química , Policetídeos/metabolismo
15.
Chem Res Toxicol ; 35(10): 1747-1765, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36044734

RESUMO

Nitro group containing xenobiotics include drugs, cancer chemotherapeutic agents, carcinogens (e.g., nitroarenes and aristolochic acid) and explosives. The nitro group undergoes a six-electron reduction to form sequentially the nitroso-, N-hydroxylamino- and amino-functional groups. These reactions are catalyzed by nitroreductases which, rather than being enzymes with this sole function, are enzymes hijacked for their propensity to donate electrons to the nitro group either one at a time via a radical mechanism or two at time via the equivalent of a hydride transfer. These enzymes include: NADPH-dependent flavoenzymes (NADPH: P450 oxidoreductase, NAD(P)H-quinone oxidoreductase), P450 enzymes, oxidases (aldehyde oxidase, xanthine oxidase) and aldo-keto reductases. The hydroxylamino group once formed can undergo conjugation reactions with acetate or sulfate catalyzed by N-acetyltransferases or sulfotransferases, respectively, leading to the formation of intermediates containing a good leaving group which in turn can generate a nitrenium or carbenium ion for covalent DNA adduct formation. The intermediates in the reduction sequence are also prone to oxidation and produce reactive oxygen species. As a consequence, many nitro-containing xenobiotics can be genotoxic either by forming stable covalent adducts or by oxidatively damaging DNA. This review will focus on the general chemistry of nitroreduction, the enzymes responsible, the reduction of xenobiotic substrates, the regulation of nitroreductases, the ability of nitrocompounds to form DNA adducts and act as mutagens as well as some future directions.


Assuntos
Poluentes Ambientais , Substâncias Explosivas , Acetiltransferases/metabolismo , Aldeídos , Aldo-Ceto Redutases/metabolismo , Carcinógenos , Adutos de DNA , Redes e Vias Metabólicas , Mutagênicos/metabolismo , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADP/metabolismo , Quinonas , Espécies Reativas de Oxigênio , Sulfatos , Sulfotransferases/metabolismo , Xantina Oxidase/metabolismo , Xenobióticos
16.
Xenobiotica ; 52(3): 301-311, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35473450

RESUMO

α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10 000 µg/plate while α-pinene oxide was mutagenic at ≥25 µg/plate.α-Pinene was metabolised to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/toxicidade , Animais , Monoterpenos Bicíclicos , Dano ao DNA , Masculino , Microssomos Hepáticos/metabolismo , Testes de Mutagenicidade , Mutagênicos/metabolismo , Mutagênicos/farmacologia , Estudos Prospectivos , Ratos
17.
J Appl Toxicol ; 42(3): 423-435, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34448506

RESUMO

Lignin and lignin-based materials have received considerable attention in various fields due to their promise as sustainable feedstocks. Guaiacol (G) and syringol (S) are two primary monolignols that occur in different ratios for different plant species. As methoxyphenols, G and S have been targeted as atmospheric pollutants and their acute toxicity examined. However, there is a rare understanding of the toxicological properties on other endpoints and mixture effects of these monolignols. To fill this knowledge gap, our study investigated the impact of different S/G ratios (0.5, 1, and 2) and three lignin depolymerization samples from poplar, pine, and miscanthus species on mutagenicity and developmental toxicity. A multitiered method consisted of in silico simulation, in vitro Ames test, and in vivo chicken embryonic assay was employed. In the Ames test, syringol showed a sign of mutagenicity, whereas guaiacol did not, which agreed with the T.E.S.T. simulation. For three S and G mixture and lignin monomers, mutagenic activity was related to the proportion of syringol. In addition, both S and G showed developmental toxicity in the chicken embryonic assay and T.E.S.T. simulation, and guaiacol had a severe effect on lipid peroxidation. A similar trend and comparable developmental toxicity levels were detected for S and G mixtures and the three lignin depolymerized monomers. This study provides data and insights on the differential toxicity of varying S/G ratios for some important building blocks for bio-based materials.


Assuntos
Guaiacol/toxicidade , Lignina/química , Mutagênese , Mutagênicos/toxicidade , Pirogalol/análogos & derivados , Testes de Toxicidade , Animais , Embrião de Galinha , Guaiacol/metabolismo , Lignina/metabolismo , Testes de Mutagenicidade , Mutagênicos/metabolismo , Pirogalol/metabolismo , Pirogalol/toxicidade
18.
Biochemistry ; 60(20): 1619-1625, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33945270

RESUMO

The natural product colibactin, along with its associated biosynthetic gene cluster, is an example system for the role microbially derived small molecules play in the human microbiome. This is particularly relevant in the human gut, where host microbiota is involved in various disorders, including colorectal cancer pathogenesis. Bacteria harboring the colibactin gene cluster induce alkylation of nucleobases in host DNA, forming interstrand cross-links both in vivo and in vitro. These lesions can lead to deleterious double-strand breaks and have been identified as the primary mechanism of colibactin-induced cytotoxicity. The gene product ClbS is one of several mechanisms utilized by the producing bacteria to maintain genome integrity. ClbS catalyzes hydrolytic inactivation of colibactin and has been shown to bind DNA, incurring self-resistance. Presented is the molecular basis for ClbS bound to a DNA oligonucleotide. The structure shows the interaction of the protein with the ends of a DNA duplex with terminal nucleotides flipped to the enzyme active site. The structure suggests an additional function for ClbS, the binding to damaged DNA followed by repair. Additionally, our study provides general insight into the function of the widely distributed and largely uncharacterized DUF1706 protein family.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Alquilação , DNA/química , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Mutagênicos/metabolismo , Peptídeos/farmacologia , Policetídeos/farmacologia , RNA/química
19.
Plant J ; 103(2): 858-868, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239588

RESUMO

As the gene pool is exposed to both strain on land resources and a lack of diversity in elite allotetraploid cotton, the acquisition and identification of novel alleles has taken on epic importance in facilitating cotton genetic improvement and functional genomics research. Ethyl methanesulfonate (EMS) is an excellent mutagen that induces genome-wide efficient mutations to activate the mutagenic potential of plants with many advantages. The present study established, determined and verified the experimental procedure suitable for EMS-based mutant library construction as the general reference guide in allotetraploid upland cotton. This optimized method and procedure are efficient, and abundant EMS mutant libraries (approximately 12 000) in allotetraploid cotton were successfully obtained. More than 20 mutant phenotypes were observed and screened, including phenotypes of the leaf, flower, fruit, fiber and plant architecture. Through the plants mutant library, high-throughput and high-resolution melting technology-based variation evaluation detected the EMS-induced site mutation. Additionally, based on overall genome-wide mutation analyses by re-sequencing and mutant library assessment, the examination results demonstrated the ideal quality of the cotton EMS-treated mutant library constructed in this study with appropriate high mutation density and saturated genome. What is more, the collection is composed of a broad repertoire of mutants, which is the valuable resource for basic genetic research and functional genomics underlying complex allotetraploid traits, as well as cotton breeding.


Assuntos
Metanossulfonato de Etila/metabolismo , Genoma de Planta/genética , Gossypium/genética , Mutagênicos/metabolismo , Mutação/genética , Tetraploidia , Metanossulfonato de Etila/farmacologia , Fertilidade/genética , Biblioteca Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Células Germinativas Vegetais , Germinação/genética , Gossypium/anatomia & histologia , Mutagênicos/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
20.
J Am Chem Soc ; 143(38): 15824-15833, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34524796

RESUMO

Colibactin is a genotoxic metabolite produced by commensal-pathogenic members of the human microbiome that possess the clb (aka pks) biosynthetic gene cluster. clb+ bacteria induce tumorigenesis in models of intestinal inflammation and have been causally linked to oncogenesis in humans. While colibactin is believed underlie these effects, it has not been possible to study the molecule directly due to its instability. Herein, we report the synthesis and biological studies of colibactin 742 (4), a stable colibactin derivative. We show that colibactin 742 (4) induces DNA interstrand-cross-links, activation of the Fanconi Anemia DNA repair pathway, and G2/M arrest in a manner similar to clb+E. coli. The linear precursor 9, which mimics the biosynthetic precursor to colibactin, also recapitulates the bacterial phenotype. In the course of this work, we discovered a novel cyclization pathway that was previously undetected in MS-based studies of colibactin, suggesting a refinement to the natural product structure and its mode of DNA binding. Colibactin 742 (4) and its precursor 9 will allow researchers to study colibactin's genotoxic effects independent of the producing organism for the first time.


Assuntos
Proteínas de Escherichia coli/síntese química , Peptídeos/síntese química , Policetídeos/síntese química , DNA/química , Escherichia coli/genética , Humanos , Microbiota/genética , Conformação Molecular , Família Multigênica , Mutagênicos/metabolismo , Mutação , Oxirredução , Fenótipo , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA