Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
PLoS Pathog ; 19(11): e1011627, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956215

RESUMO

Benznidazole is the front-line drug used to treat infections with Trypanosoma cruzi, the causative agent of Chagas disease. However, for reasons that are unknown, treatment failures are common. When we examined parasites that survived benznidazole treatment in mice using highly sensitive in vivo and ex vivo bioluminescence imaging, we found that recrudescence is not due to persistence of parasites in a specific organ or tissue that preferentially protects them from drug activity. Surviving parasites are widely distributed and located in host cells where the vast majority contained only one or two amastigotes. Therefore, infection relapse does not arise from a small number of intact large nests. Rather, persisters are either survivors of intracellular populations where co-located parasites have been killed, or amastigotes in single/low-level infected cells exist in a state where they are less susceptible to benznidazole. To better assess the nature of parasite persisters, we exposed infected mammalian cell monolayers to a benznidazole regimen that reduces the intracellular amastigote population to <1% of the pre-treatment level. Of host cells that remained infected, as with the situation in vivo, the vast majority contained only one or two surviving intracellular amastigotes. Analysis, based on non-incorporation of the thymidine analogue EdU, revealed these surviving parasites to be in a transient non-replicative state. Furthermore, treatment with benznidazole led to widespread parasite DNA damage. When the small number of parasites which survive in mice after non-curative treatment were assessed using EdU labelling, this revealed that these persisters were also initially non-replicative. A possible explanation could be that triggering of the T. cruzi DNA damage response pathway by the activity of benznidazole metabolites results in exit from the cell cycle as parasites attempt DNA repair, and that metabolic changes associated with non-proliferation act to reduce drug susceptibility. Alternatively, a small percentage of the parasite population may pre-exist in this non-replicative state prior to treatment.


Assuntos
Doença de Chagas , Nitroimidazóis , Parasitos , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Trypanosoma cruzi/genética , Nitroimidazóis/farmacologia , Doença de Chagas/parasitologia , Dano ao DNA , Tripanossomicidas/farmacologia , Tripanossomicidas/metabolismo , Mamíferos
2.
PLoS Pathog ; 16(11): e1008932, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33141865

RESUMO

Livestock diseases caused by Trypanosoma congolense, T. vivax and T. brucei, collectively known as nagana, are responsible for billions of dollars in lost food production annually. There is an urgent need for novel therapeutics. Encouragingly, promising antitrypanosomal benzoxaboroles are under veterinary development. Here, we show that the most efficacious subclass of these compounds are prodrugs activated by trypanosome serine carboxypeptidases (CBPs). Drug-resistance to a development candidate, AN11736, emerged readily in T. brucei, due to partial deletion within the locus containing three tandem copies of the CBP genes. T. congolense parasites, which possess a larger array of related CBPs, also developed resistance to AN11736 through deletion within the locus. A genome-scale screen in T. brucei confirmed CBP loss-of-function as the primary mechanism of resistance and CRISPR-Cas9 editing proved that partial deletion within the locus was sufficient to confer resistance. CBP re-expression in either T. brucei or T. congolense AN11736-resistant lines restored drug-susceptibility. CBPs act by cleaving the benzoxaborole AN11736 to a carboxylic acid derivative, revealing a prodrug activation mechanism. Loss of CBP activity results in massive reduction in net uptake of AN11736, indicating that entry is facilitated by the concentration gradient created by prodrug metabolism.


Assuntos
Compostos de Boro/metabolismo , Carboxipeptidases/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma congolense/enzimologia , Trypanosoma vivax/enzimologia , Tripanossomíase Africana/veterinária , Valina/análogos & derivados , Animais , Ácidos Carboxílicos/metabolismo , Resistência a Medicamentos , Feminino , Gado , Camundongos , Parasitemia/veterinária , Pró-Fármacos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Trypanosoma vivax/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Valina/metabolismo
3.
Bioorg Med Chem Lett ; 32: 127723, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249135

RESUMO

Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (Ki = 5.5 ± 0.1 µM), by the Dixon method. This compound has an iodoacetamide moiety that is susceptible to nucleophilic attack, particularly by the cysteine thiol group. Compound B was conceived to specifically target Cys-69, an important active site residue. By incubating TcRPI-B with Compound B, a trypsin digestion LC-MS/MS analysis revealed the identification of Compound B covalently bound to Cys-69. This inhibitor also exhibited notable in vitro trypanocidal activity against T. cruzi infective life-stages co-cultured in NIH-3T3 murine host cells (IC50 = 17.40 ± 1.055 µM). The study of Compound B served as a proof-of-concept so that next generation inhibitors can potentially be developed with a focus on using a prodrug group in replacement of the iodoacetamide moiety, thus representing an attractive starting point for the future treatment of Chagas' disease.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/enzimologia , Células 3T3 , Aldose-Cetose Isomerases/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cinética , Camundongos , Simulação de Dinâmica Molecular , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 49: 128289, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311084

RESUMO

Leishmaniasis is an infectious disease with several limitations regarding treatment schemes. This work reports the anti-Leishmania activity of spiroacridine compounds against the promastigote (IC50 = 1.1 to 6.0 µg / mL) and amastigote forms of the best compounds (EC50 = 4.9 and 0.9 µg / mL) inLeishmania (L.) infantumand proposes an in-silico study with possible selective therapeutic targets for L. infantum. The substituted dimethyl-amine compound (AMTAC 11) showed the best leishmanicidal activity in vitro, and was found to interact with TryRandLdTopoI. comparisons with standard inhibitors were performed, and its main interactions were elucidated. Based on the biological assessment and the structure-activity relationship study, the spiroacridine compounds appear to be promisinganti-leishmaniachemotherapeutic agents to be explored.


Assuntos
Acridinas/farmacologia , Compostos de Espiro/farmacologia , Tripanossomicidas/farmacologia , Acridinas/síntese química , Acridinas/metabolismo , Acridinas/toxicidade , DNA Topoisomerases Tipo I/metabolismo , Eritrócitos/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Ligação Proteica , Proteínas de Protozoários/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/metabolismo , Compostos de Espiro/toxicidade , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo , Tripanossomicidas/toxicidade
5.
Chem Biodivers ; 18(10): e2100493, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34403573

RESUMO

Hundreds of millions of people worldwide are affected by Chagas' disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 µM against epimastigotes and 0.41 vs. 4.88 µM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (-3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.


Assuntos
Produtos Biológicos/farmacologia , Euphorbia/química , Lactonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Euphorbia/metabolismo , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Filogenia , Tripanossomicidas/química , Tripanossomicidas/metabolismo
6.
PLoS Pathog ; 14(2): e1006850, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29425238

RESUMO

Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.


Assuntos
Aldeído Desidrogenase/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Compostos de Boro/metabolismo , Modelos Biológicos , Pró-Fármacos/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/enzimologia , Ativação Metabólica , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/química , Aldeído Desidrogenase/genética , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/genética , Substituição de Aminoácidos , Animais , Compostos de Boro/química , Compostos de Boro/farmacologia , Resistência a Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Mutação , Filogenia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/fisiologia
7.
Bioorg Med Chem Lett ; 30(5): 126911, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31952962
8.
Angew Chem Int Ed Engl ; 59(31): 12669-12673, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32239740

RESUMO

The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor-protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19 F chemical-shift predictions to deduce ligand-binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19 F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein-inhibitor conformations as well as monomeric and dimeric inhibitor-protein complexes, thus rendering it the largest computational study on chemical shifts of 19 F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.


Assuntos
Inibidores Enzimáticos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Pirimidinonas/química , Tiofenos/química , Tiorredoxinas/química , Tripanossomicidas/química , Inibidores Enzimáticos/metabolismo , Flúor/química , Mutação , Ligação Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirimidinonas/metabolismo , Tiofenos/metabolismo , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/enzimologia
9.
Bioorg Chem ; 85: 109-116, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30605884

RESUMO

New series of quinoline-based thiadiazole analogs (1-20) were synthesized, characterized by EI-MS, 1H NMR and 13C NMR. All synthesized compounds were subjected to their antileishmanial potential. Sixteen analogs 1-10, 12, 13, 16, 17, 18 and 19 with IC50 values in the range of 0.04 ±â€¯0.01 to 5.60 ±â€¯0.21 µM showed tremendously potent inhibition as compared to the standard pentamidine with IC50 value 7.02 ±â€¯0.09 µM. Analogs 11, 14, 15 and 20 with IC50 8.20 ±â€¯0.35, 9.20 ±â€¯0.40, 7.20 ±â€¯0.20 and 9.60 ±â€¯0.40 µM respectively showed good inhibition when compared with the standard. Structure-activity relationships have been also established for all compounds. Molecular docking studies were performed to determine the binding interaction of the compounds with the active site target.


Assuntos
Quinolinas/farmacologia , Tiadiazóis/farmacologia , Tripanossomicidas/farmacologia , Domínio Catalítico , Leishmania donovani/química , Leishmania major/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxirredutases/química , Oxirredutases/metabolismo , Ligação Proteica , Quinolinas/síntese química , Quinolinas/metabolismo , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/metabolismo , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo
10.
Nucleic Acids Res ; 45(14): 8378-8391, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637278

RESUMO

Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)-biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida.


Assuntos
Pareamento de Bases , DNA de Cinetoplasto/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/metabolismo , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , DNA de Cinetoplasto/química , DNA de Cinetoplasto/metabolismo , Humanos , Camundongos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Ressonância de Plasmônio de Superfície , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
11.
J Biol Chem ; 292(44): 18344-18353, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28918394

RESUMO

Apolipoprotein L1 (ApoL1) is a human serum protein conferring resistance to African trypanosomes, and certain ApoL1 variants increase susceptibility to some progressive kidney diseases. ApoL1 has been hypothesized to function like a pore-forming colicin and has been reported to have permeability effects on both intracellular and plasma membranes. Here, to gain insight into how ApoL1 may function in vivo, we used vesicle-based ion permeability, direct membrane association, and intrinsic fluorescence to study the activities of purified recombinant ApoL1. We found that ApoL1 confers chloride-selective permeability to preformed phospholipid vesicles and that this selectivity is strongly pH-sensitive, with maximal activity at pH 5 and little activity above pH 7. When ApoL1 and lipid were allowed to interact at low pH and were then brought to neutral pH, chloride permeability was suppressed, and potassium permeability was activated. Both chloride and potassium permeability linearly correlated with the mass of ApoL1 in the reaction mixture, and both exhibited lipid selectivity, requiring the presence of negatively charged lipids for activity. Potassium, but not chloride, permease activity required the presence of calcium ions in both the association and activation steps. Direct assessment of ApoL1-lipid associations confirmed that ApoL1 stably associates with phospholipid vesicles, requiring low pH and the presence of negatively charged phospholipids for maximal binding. Intrinsic fluorescence of ApoL1 supported the presence of a significant structural transition when ApoL1 is mixed with lipids at low pH. This pH-switchable ion-selective permeability may explain the different effects of ApoL1 reported in intracellular and plasma membrane environments.


Assuntos
Apolipoproteína L1/metabolismo , Membrana Celular/metabolismo , Cetilpiridínio/metabolismo , Modelos Moleculares , Potássio/metabolismo , Apolipoproteína L1/química , Apolipoproteína L1/genética , Apolipoproteína L1/farmacologia , Transporte Biológico , Sinalização do Cálcio , Membrana Celular/química , Permeabilidade da Membrana Celular , Cetilpiridínio/química , Fluorescência , Concentração de Íons de Hidrogênio , Dose Letal Mediana , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Potássio/química , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
12.
BMC Biotechnol ; 18(1): 22, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642881

RESUMO

BACKGROUND: Violacein is a deep violet compound that is produced by a number of bacterial species. It is synthesized from tryptophan by a pathway that involves the sequential action of 5 different enzymes (encoded by genes vioA to vioE). Violacein has antibacterial, antiparasitic, and antiviral activities, and also has the potential of inducing apoptosis in certain cancer cells. RESULTS: Here, we describe the construction of a series of plasmids harboring the complete or partial violacein biosynthesis operon and their use to enable production of violacein and deoxyviolacein in E.coli. We performed in vitro assays to determine the biological activity of these compounds against Plasmodium, Trypanosoma, and mammalian cells. We found that, while deoxyviolacein has a lower activity against parasites than violacein, its toxicity to mammalian cells is insignificant compared to that of violacein. CONCLUSIONS: We constructed E. coli strains capable of producing biologically active violacein and related compounds, and propose that deoxyviolacein might be a useful starting compound for the development of antiparasite drugs.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Alcaloides Indólicos/farmacologia , Indóis/farmacologia , Compostos de Espiro/farmacologia , Tripanossomicidas/farmacologia , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/metabolismo , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Células COS , Chlorocebus aethiops , Escherichia coli/genética , Células Hep G2 , Humanos , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/metabolismo , Indóis/isolamento & purificação , Indóis/metabolismo , Engenharia Metabólica , Óperon , Plasmídeos/genética , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/metabolismo , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
13.
Bull Exp Biol Med ; 163(3): 361-364, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744646

RESUMO

Four peptide sequences characterized by high content of hydrophobic, charged, and polar amino acids were obtained from 23 clones of M13 phage. Peptides P2 and P4 exhibited highest binding affinity for immobilized trypomastigotes. The inhibitory effects of peptides seemed to be due to blockade of certain epitopes on T. cruzi surface proteins responsible for interactions with the respective receptors of host cells.


Assuntos
Estágios do Ciclo de Vida/efeitos dos fármacos , Oligopeptídeos/farmacologia , Biblioteca de Peptídeos , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Biotinilação , Células HeLa , Humanos , Estágios do Ciclo de Vida/fisiologia , Oligopeptídeos/metabolismo , Ligação Proteica , Tripanossomicidas/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
14.
Antimicrob Agents Chemother ; 60(5): 2664-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26856844

RESUMO

Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases.


Assuntos
Nitroimidazóis/metabolismo , Trypanosoma cruzi/enzimologia , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Doença de Chagas/tratamento farmacológico , Doença de Chagas/metabolismo , DNA de Protozoário/genética , Nitroimidazóis/farmacologia , Nitrorredutases/genética , Nitrorredutases/metabolismo , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia
15.
PLoS Pathog ; 10(5): e1004114, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24789335

RESUMO

Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.


Assuntos
Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Tripanossomicidas/uso terapêutico , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Difosfonatos/química , Difosfonatos/metabolismo , Difosfonatos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/química , Farnesil-Difosfato Farnesiltransferase/metabolismo , Humanos , Modelos Moleculares , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Ligação Proteica , Quinuclidinas/química , Quinuclidinas/metabolismo , Quinuclidinas/farmacologia , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Células Vero
16.
Molecules ; 21(3): 368, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26999093

RESUMO

Glucose-6-phosphate dehydrogenase (G6PDH) plays a housekeeping role in cell metabolism by generating reducing power (NADPH) and fueling the production of nucleotide precursors (ribose-5-phosphate). Based on its indispensability for pathogenic parasites from the genus Trypanosoma, G6PDH is considered a drug target candidate. Several steroid-like scaffolds were previously reported to target the activity of G6PDH. Epiandrosterone (EA) is an uncompetitive inhibitor of trypanosomal G6PDH for which its binding site to the enzyme remains unknown. Molecular simulation studies with the structure of Trypanosoma cruzi G6PDH revealed that EA binds in a pocket close to the G6P binding-site and protrudes into the active site blocking the interaction between substrates and hence catalysis. Site directed mutagenesis revealed the important steroid-stabilizing effect of residues (L80, K83 and K84) located on helix α-1 of T. cruzi G6PDH. The higher affinity and potency of 16α-Br EA by T. cruzi G6PDH is explained by the formation of a halogen bond with the hydrogen from the terminal amide of the NADP+-nicotinamide. At variance with the human enzyme, the inclusion of a 21-hydroxypregnane-20-one moiety to a 3ß-substituted steroid is detrimental for T. cruzi G6PDH inhibition. The species-specificity of certain steroid derivatives towards the parasite G6PDH and the corresponding biochemically validated binding models disclosed in this work may prove valuable for the development of selective inhibitors against the pathogen's enzyme.


Assuntos
Androsterona/farmacocinética , Doença de Chagas/tratamento farmacológico , Glucosefosfato Desidrogenase/antagonistas & inibidores , Androsterona/metabolismo , Sítios de Ligação , Doença de Chagas/parasitologia , Glucosefosfato Desidrogenase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ribosemonofosfatos/metabolismo , Esteroides/farmacologia , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade
17.
Acta Chim Slov ; 63(4): 689-704, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28004090

RESUMO

The synthesis and biological activity of a variety of analogues to the naturally occurring antibacterial and antifungal Distamycin A were explored by a number of authors. These compounds were subject to a large array of assays. Some of these compounds showed high activity against a range of Gram-positive, Gram-negative bacteria as well as fungi. To explore the anti-parasitic activity of this class of compounds, specific modifications had to be made. A number of these compounds proved to be active against Trypanosoma brucei. The binding of a number of these compounds to short sequences of DNA were also examined using footprinting assays as well as NMR spectroscopy. Computer modelling was employed on selected compounds to understand the way these compounds bind to specific DNA sequences. A large number of variations were made to the standard structure of Distamycin. These changes involved the replacement of the pyrrole moieties as well as the head and tail groups with a number of heterocyclic compounds. Some of these minor groove binders (MGBs) were also investigated for their capability for the treatment of cancer and in particular lung cancer.


Assuntos
DNA/metabolismo , Distamicinas/metabolismo , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Simulação por Computador , DNA/química , Pegada de DNA , Distamicinas/química , Distamicinas/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia
18.
Mol Pharmacol ; 87(3): 451-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25527638

RESUMO

We have previously reported that curcumin analogs with a C7 linker bearing a C4-C5 olefinic linker with a single keto group at C3 (enone linker) display midnanomolar activity against the bloodstream form of Trypanosoma brucei. However, no clear indication of their mechanism of action or superior antiparasitic activity relative to analogs with the original di-ketone curcumin linker was apparent. To further investigate their utility as antiparasitic agents, we compare the cellular effects of curcumin and the enone linker lead compound 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (AS-HK014) here. An AS-HK014-resitant line, trypanosomes adapted to AS-HK014 (TA014), was developed by in vitro exposure to the drug. Metabolomic analysis revealed that exposure to AS-HK014, but not curcumin, rapidly depleted glutathione and trypanothione in the wild-type line, although almost all other metabolites were unchanged relative to control. In TA014 cells, thiol levels were similar to untreated wild-type cells and not significantly depleted by AS-HK014. Adducts of AS-HK014 with both glutathione and trypanothione were identified in AS-HK014-exposed wild-type cells and reproduced by chemical reaction. However, adduct accumulation in sensitive cells was much lower than in resistant cells. TA014 cells did not exhibit any changes in sequence or protein levels of glutathione synthetase and γ-glutamylcysteine synthetase relative to wild-type cells. We conclude that monoenone curcuminoids have a different mode of action than curcumin, rapidly and specifically depleting thiol levels in trypanosomes by forming an adduct. This adduct may ultimately be responsible for the highly potent trypanocidal and antiparasitic activity of the monoenone curcuminoids.


Assuntos
Curcumina/análogos & derivados , Curcumina/metabolismo , Glutationa/análogos & derivados , Espermidina/análogos & derivados , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Curcumina/farmacologia , Glutationa/metabolismo , Humanos , Espermidina/metabolismo , Tripanossomicidas/farmacologia
19.
Eur J Drug Metab Pharmacokinet ; 40(2): 209-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24711214

RESUMO

Chagas disease is an endemic infection in Latin America with a high health impact. Caused by the parasite Trypanosoma cruzi, it has expanded to non-endemic regions such as North America and European countries via immigration of infected people. This infectious disease has been rising in the ranking of international health priorities due to the growing migration flows from endemic to non-endemic areas. Benznidazole (BZN), a nitroheterocyclic drug, is one of the two trypanocidal drugs currently in clinical use, associated with significant adverse drug reactions (ADRs). Mammalian metabolism of BNZ has been poorly studied, including the potential role of metabolites on both toxicity and anti-parasitic activity. High-resolution UPLC/MS/MS was used to analyze three plasma samples obtained from pediatric patients under BNZ treatment in steady state. Spectroscopic and structural criteria were applied to identify BNZ and accompanying substances from chromatographic signals. From all detected species, two can be undoubtedly associated with the BNZ and N-benzylacetamide molecules, the second one being a fragment of the parent drug (BZN). From the obtained results, two hypotheses could be formulated. The first one is to relate the presence of N-benzyl acetamide with the hepatic metabolism of BNZ. The second hypothesis has to do with the possible trypanocidal activity of this metabolite, as well as its role in the development of side effects, associated with the pharmacotherapy. Complementary studies should be carried out to determine the possible association of this metabolite with the BNZ treatment stages, patient's clinical features, ADRs, and trypanocidal effectiveness.


Assuntos
Acetamidas/metabolismo , Nitroimidazóis/metabolismo , Tripanossomicidas/metabolismo , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas em Tandem
20.
Mol Microbiol ; 90(4): 665-79, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23926900

RESUMO

The surface of Trypanosoma brucei is covered by a dense coat of glycosylphosphatidylinositol-anchored glycoproteins. The major component is the variant surface glycoprotein (VSG) which is glycosylated by both paucimannose and oligomannose N-glycans. Surface glycans are poorly accessible and killing mediated by peptide lectin-VSG complexes is hindered by active endocytosis. However, contrary to previous observations, here we show that high-affinity carbohydrate binding agents bind to surface glycoproteins and abrogate growth of T. brucei bloodstream forms. Specifically, binding of the mannose-specific Hippeastrum hybrid agglutinin (HHA) resulted in profound perturbations in endocytosis and parasite lysis. Prolonged exposure to HHA led to the loss of triantennary oligomannose structures in surface glycoproteins as a result of genetic rearrangements that abolished expression of the oligosaccharyltransferase TbSTT3B gene and yielded novel chimeric enzymes. Mutant parasites exhibited markedly reduced infectivity thus demonstrating the importance of specific glycosylation patterns in parasite virulence.


Assuntos
Lectinas de Ligação a Manose/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Glicosilação , Humanos , Liliaceae , Lectinas de Ligação a Manose/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA