Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.628
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 17(4): e1009495, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819309

RESUMO

Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Doença de Chagas/parasitologia , Ácidos Graxos/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Metabolismo Energético , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Nutrientes/deficiência , Oxirredução , Fosforilação Oxidativa , Trypanosoma cruzi/crescimento & desenvolvimento
2.
Mol Microbiol ; 115(5): 986-1004, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33354791

RESUMO

Diphosphoinositol-5-pentakisphosphate (5-PP-IP5 ), also known as inositol heptakisphosphate (5-IP7 ), has been described as a high-energy phosphate metabolite that participates in the regulation of multiple cellular processes through protein binding or serine pyrophosphorylation, a posttranslational modification involving a ß-phosphoryl transfer. In this study, utilizing an immobilized 5-IP7 affinity reagent, we performed pull-down experiments coupled with mass spectrometry identification, and bioinformatic analysis, to reveal 5-IP7 -regulated processes in the two proliferative stages of the unicellular parasite Trypanosoma cruzi. Our protein screen clearly defined two cohorts of putative targets either in the presence of magnesium ions or in metal-free conditions. We endogenously tagged four protein candidates and immunopurified them to assess whether 5-IP7 -driven phosphorylation is conserved in T. cruzi. Among the most interesting targets, we identified a choline/o-acetyltransferase domain-containing phosphoprotein that undergoes 5-IP7 -mediated phosphorylation events at a polyserine tract (Ser578-580 ). We also identified a novel SPX domain-containing phosphoribosyltransferase [EC 2.7.6.1] herein termed as TcPRPPS4. Our data revealed new possible functional roles of 5-IP7 in this divergent eukaryote, and provided potential new targets for chemotherapy.


Assuntos
Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Magnésio/metabolismo , Espectrometria de Massas , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteômica , Proteínas de Protozoários/genética , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
3.
FASEB J ; 35(7): e21685, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085343

RESUMO

Leucine zipper-EF-hand containing transmembrane protein 1 (Letm1) is a mitochondrial inner membrane protein involved in Ca2+ and K+ homeostasis in mammalian cells. Here, we demonstrate that the Letm1 orthologue of Trypanosoma cruzi, the etiologic agent of Chagas disease, is important for mitochondrial Ca2+ uptake and release. The results show that both mitochondrial Ca2+ influx and efflux are reduced in TcLetm1 knockdown (TcLetm1-KD) cells and increased in TcLetm1 overexpressing cells, without alterations in the mitochondrial membrane potential. Remarkably, TcLetm1 knockdown or overexpression increases or does not affect mitochondrial Ca2+ levels in epimastigotes, respectively. TcLetm1-KD epimastigotes have reduced growth, and both overexpression and knockdown of TcLetm1 cause a defect in metacyclogenesis. TcLetm1-KD also affected mitochondrial bioenergetics. Invasion of host cells by TcLetm1-KD trypomastigotes and their intracellular replication is greatly impaired. Taken together, our findings indicate that TcLetm1 is important for Ca2+ homeostasis and cell viability in T cruzi.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Doença de Chagas/parasitologia , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Transporte Biológico , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Chlorocebus aethiops , Metabolismo Energético , Potencial da Membrana Mitocondrial , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Trypanosoma cruzi/metabolismo , Células Vero
4.
Cell Microbiol ; 23(4): e13295, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33222354

RESUMO

Infection by Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, depends on reactive oxygen species (ROS), which has been described to induce parasite proliferation in mammalian host cells. It is unknown how the parasite manages to increase host ROS levels. Here, we found that intracellular T. cruzi forms release in the host cytosol its major cyclophilin of 19 kDa (TcCyp19). Parasites depleted of TcCyp19 by using CRISPR/Cas9 gene replacement proliferate inefficiently and fail to increase ROS, compared to wild type parasites or parasites with restored TcCyp19 gene expression. Expression of TcCyp19 in L6 rat myoblast increased ROS levels and restored the proliferation of TcCyp19 depleted parasites. These events could also be inhibited by cyclosporin A, (a cyclophilin inhibitor), and by polyethylene glycol-linked to antioxidant enzymes. TcCyp19 was found more concentrated in the membrane leading edges of the host cells in regions that also accumulate phosphorylated p47phox , as observed to the endogenous cyclophilin A, suggesting some mechanisms involved with the translocation process of the regulatory subunit p47phox in the activation of the NADPH oxidase enzymatic complex. We concluded that cyclophilin released in the host cell cytosol by T. cruzi mediates the increase of ROS, required to boost parasite proliferation in mammalian hosts.


Assuntos
Ciclofilinas/metabolismo , Citosol/metabolismo , Interações Hospedeiro-Parasita , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Animais , Ciclofilinas/biossíntese , Ciclofilinas/genética , Citosol/química , Mioblastos/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Trypanosoma cruzi/genética
5.
Mol Microbiol ; 113(5): 1003-1021, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31961979

RESUMO

The protozoan Trypanosoma cruzi has a complicated dual-host life cycle, and starvation can trigger transition from the replicating insect stage to the mammalian-infectious nonreplicating insect stage (epimastigote to trypomastigote differentiation). Abundance of some mature RNAs derived from its mitochondrial genome increase during culture starvation of T. cruzi for unknown reasons. Here, we examine T. cruzi mitochondrial gene expression in the mammalian intracellular replicating life stage (amastigote), and uncover implications of starvation-induced changes in gene expression. Mitochondrial RNA levels in general were found to be lowest in actively replicating amastigotes. We discovered that mitochondrial respiration decreases during starvation in insect stage cells, despite the previously observed increases in mitochondrial mRNAs encoding electron transport chain (ETC) components. Surprisingly, T. cruzi epimastigotes in replete medium grow at normal rates when we genetically compromised their ability to perform insertion/deletion editing and thereby generate mature forms of some mitochondrial mRNAs. However, these cells, when starved, were impeded in the epimastigote to trypomastigote transition. Further, they experience a short-flagella phenotype that may also be linked to differentiation. We hypothesize a scenario where levels of mature RNA species or editing in the single T. cruzi mitochondrion are linked to differentiation by a yet-unknown signaling mechanism.


Assuntos
Regulação da Expressão Gênica , Genes Mitocondriais , Estágios do Ciclo de Vida , RNA Mensageiro/genética , RNA Mitocondrial/genética , Trypanosoma cruzi/genética , Células 3T3-L1 , Animais , Diferenciação Celular , Linhagem Celular , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Proteínas de Protozoários/metabolismo , Ribossomos/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento
6.
Cell Microbiol ; 22(11): e13243, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32597009

RESUMO

Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNAmet to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2αT169A or with an endogenous CRISPR/Cas9-generated eIF2αT169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of µORF in epimastigotes. eIF2αT169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.


Assuntos
Doença de Chagas/parasitologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica , Humanos , Estágios do Ciclo de Vida , Mutação , Parasitemia , Fosforilação , Biossíntese de Proteínas , Proteoma/metabolismo , Proteínas de Protozoários/análise , Proteínas de Protozoários/biossíntese , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/patogenicidade , Virulência
7.
Parasitology ; 148(3): 295-301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32940196

RESUMO

The escape kinetics from the anterior midgut (AM) of Trypanosoma cruzi during the initial steps of infection was assessed in Triatoma infestans, as well as its ability to survive migration in the digestive tract of the vector. All the four strains evaluated survived and reached variable parasite densities. After 49-50 days, YuYu [discrete typing units (DTU) I] strain reached the highest parasite numbers in the rectum followed by Bug (DTU V), CL-Brener (DTU VI) and Dm28c (DTU I). All strains accomplished metacyclogenesis. Bug strain reached the highest numbers of metacyclic trypomastigotes followed by YuYu and CL-Brener/Dm28c. A remarkable parasite reduction in the AM for Bug strain, but not Dm28c was noticed at 72 h of infection. In the posterior midgut + rectum high densities of parasites from both strains were detected at this period indicating the parasites crossed the AM. For Dm28c strain, in infections initiated with trypomastigotes, parasites left AM faster than those starting with epimastigotes. In conclusion, T. cruzi strains from different DTUs were able to infect T. infestans reaching variable parasite densities. The kinetics of migration in the digestive tract may be affected by strain and/or the evolutive form used for infection.


Assuntos
Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Trato Gastrointestinal/parasitologia , Ninfa/parasitologia
8.
Exp Parasitol ; 221: 108061, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383023

RESUMO

Chagas disease (CD) caused by Trypanosoma cruzi remains a serious public health problem in Latin America. The available treatment is limited to two old drugs, benznidazole (Bz) and nifurtimox, which exhibit limited efficacy and trigger side effects, justifying the search for new therapies. Also, more accurate and sensitive experimental protocols for drug discovery programs are necessary to shrink the translational gaps found among pre-clinical and clinical trials. Presently, cardiac spheroids were used to evaluate host cell cytotoxicity and anti-T.cruzi activity of benznidazole, exploring its effect on the release of inflammatory mediators. Bz presented low toxic profile on 3D matrices (LC50 > 200 µM) and high potency in vitro (EC50 = 0.99 µM) evidenced by qPCR analysis of T.cruzi-infected cardiac spheroids. Flow cytometry appraisal of inflammatory mediators released at the cellular supernatant showed increases in IL - 6 and TNF contents (≈190 and ≈ 25-fold) in parasitized spheroids as compared to uninfected cultures. Bz at 10 µM suppressed parasite load (92%) concomitantly decreasing in IL-6 (36%) and TNF (68%). Our findings corroborate the successful use of 3D cardiac matrices for in vitro identification of novel anti-parasitic agents and potential impact in host cell physiology.


Assuntos
Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Imageamento Tridimensional , Camundongos , Microscopia de Fluorescência , Conformação Molecular , Esferoides Celulares , Trypanosoma cruzi/crescimento & desenvolvimento
9.
Exp Parasitol ; 226-227: 108125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129877

RESUMO

Chagas disease, caused by Trypanosoma cruzi, is a major public health problem and is described as one of the most neglected diseases worldwide. It affects about 6-7 million people. Currently, only two drugs are available for the treatment of this disease: nifurtimox and benznidazole. However, both drugs are highly toxic and have several side effects, which lead many patients to discontinue treatment. Moreover, these compounds show a significant curative efficacy only in the acute phase of the disease. Therefore, searching for new drugs is necessary. The objective of this study was to evaluate the in vitro and in vivo activity of a benzofuroxan derivative (EA2) against T. cruzi, and to evaluate the hematological and biochemical changes induced by its treatment in animals infected with T. cruzi. The results were then compared with those of healthy controls. In vitro testing was first performed with T. cruzi epimastigote forms. In this experiment, EA2 was diluted at three different concentrations (0.25, 0.50, and 1%). In vitro evaluation of the trypanocidal activity was performed 24, 48, and 72 h after incubation. In vivo assays were performed using three different doses (10, 5, and 2,5 mg/kg). Mice were divided into 10 groups (five animals/group), wherein four groups comprised non-infected animals (A, G, H, I) and six groups comprised infected animals (B, C, D E, F, J). Groups B and J represented the negative and positive controls, respectively. Groups G, H, and I were used to confirm that EA2 was not toxic to non-infected animals. Parasitemia was measured in infected animals and the hematological and biochemical profiles (urea, creatinine, albumin, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) were evaluated in all animals. EA2 demonstrated in vitro trypanocidal activity at all concentrations tested. Although it did not demonstrate a curative effect in vivo, EA2 was able to retard the onset of parasitemia, and significantly reduced the parasite count in groups D and E (treated with 5 and 2.5 mg/kg, respectively). EA2 did not induce changes in hematological and biochemical parameters in non-infected animals, demonstrating that it is not toxic. However, further assessments should aim to confirm the safety of EA2 since this was the first in vitro and in vivo study conducted with this molecule.


Assuntos
Benzofuranos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Parasitemia/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Animais , Benzofuranos/farmacologia , Análise Química do Sangue , Doença de Chagas/sangue , Contagem de Eritrócitos , Feminino , Hemoglobinas/análise , Camundongos , Parasitemia/sangue , Contagem de Plaquetas , Distribuição Aleatória , Tripanossomicidas/farmacologia , Trypanosoma cruzi/crescimento & desenvolvimento
10.
Exp Parasitol ; 224: 108100, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33744229

RESUMO

Chagas disease and leishmaniasis are neglected diseases caused by parasites of the Trypanosomatidae family and together they affect millions of people in the five continents. The treatment of Chagas disease is based on benznidazole, whereas for leishmaniasis few drugs are available, such as amphotericin B and miltefosine. In both cases, the current treatment is not entirely efficient due to toxicity or side effects. Encouraged by the need to discover valid targets and new treatment options, we evaluated 8 furan compounds against Trypanosoma cruzi and Leishmania amazonensis, considering their effects against proliferation, infection, and ultrastructure. Many of them were able to impair T. cruzi and L. amazonensis proliferation, as well as cause ultrastructural alterations, such as Golgi apparatus disorganization, autophagosome formation, and mitochondrial swelling. Taken together, the results obtained so far make these compounds eligible for further steps of chemotherapy study.


Assuntos
Furanos/farmacologia , Leishmania mexicana/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cromatografia em Camada Fina , Doenças Endêmicas , Furanos/química , Humanos , Concentração Inibidora 50 , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Macrófagos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura
11.
Genomics ; 112(1): 990-997, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229555

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas disease, a life-threatening disease that affects different tissues. Within its mammalian host, T. cruzi develops molecular strategies for successful invasion of different cell types and adaptation to the intracellular environment. Conversely, the host cell responds to the infection by activating intracellular pathways to control parasite replication. Here, we reviewed genome-wide expression studies based on microarray and RNA-seq data from both parasite and host genes generated from animal models of infection as well as from Chagas disease patients. As expected, analyses of T. cruzi genes highlighted changes related to parasite energy metabolism and cell surface molecules, whereas host cell transcriptome emphasized the role of immune response genes. Besides allowing a better understanding of mechanisms behind the pathogenesis of Chagas disease, these studies provide essential information for the development of new therapies as well as biomarkers for diagnosis and assessment of disease progression.


Assuntos
Doença de Chagas/genética , Transcriptoma , Trypanosoma cruzi/genética , Animais , Cardiomiopatia Chagásica/genética , Doença de Chagas/parasitologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Humanos , Estágios do Ciclo de Vida , Camundongos , RNA não Traduzido/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
12.
Molecules ; 26(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834070

RESUMO

Several methoxybenzo[h]quinoline-3-carbonitrile analogs were designed and synthesized in a repositioning approach to developing compounds with anti-prostate cancer and anti-Chagas disease properties. The compounds were synthesized through a sequential multicomponent reaction of aromatic aldehydes, malononitrile, and 1-tetralone in the presence of ammonium acetate and acetic acid (catalytic). The effect of the one-pot method on the generation of the target product has been studied. The compounds were in vitro screened against bloodstream trypomastigotes of T. cruzi (NINOA and INC-5 strains) and were most effective at showing a better activity profile than nifurtimox and benznidazole (reference drugs). A study in silico on absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) profiling to help describe the molecular properties related to the pharmacokinetic aspects in the human body of these compounds was reported. In addition, X-ray data for the compound 2-Amino-5,6-dihydro-4-(3-hydroxy-4-methoxy-phenyl)-8-methoxybenzo[h]quinoline-3-carbonitrile 6 was being reported. Spectral (IR, NMR, and elemental analyses) data on all final compounds were consistent with the proposed structures.


Assuntos
Doença de Chagas , Simulação por Computador , Quinolinas , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Desenho de Fármacos , Humanos , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologia
13.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203527

RESUMO

The natural products pulchrol and pulchral, isolated from the roots of the Mexican plant Bourreria pulchra, have previously been shown to possess antiparasitic activity towards Trypanosoma cruzi, Leishmania braziliensis and L. amazonensis, which are protozoa responsible for Chagas disease and leishmaniasis. These infections have been classified as neglected diseases, and still require the development of safer and more efficient alternatives to their current treatments. Recent SARs studies, based on the pulchrol scaffold, showed which effects exchanges of its substituents have on the antileishmanial and antitrypanosomal activity. Many of the analogues prepared were shown to be more potent than pulchrol and the current drugs used to treat leishmaniasis and Chagas disease (miltefosine and benznidazole, respectively), in vitro. Moreover, indications of some of the possible interactions that may take place in the binding sites were also identified. In this study, 12 analogues with modifications at two or three different positions in two of the three rings were prepared by synthetic and semi-synthetic procedures. The molecules were assayed in vitro towards T. cruzi epimastigotes, L. braziliensis promastigotes, and L. amazonensis promastigotes. Some compounds had higher antiparasitic activity than the parental compound pulchrol, and in some cases even benznidazole and miltefosine. The best combinations in this subset are with carbonyl functionalities in the A-ring and isopropyl groups in the C-ring, as well as with alkyl substituents in both the A- and C-rings combined with a hydroxyl group in position 1 (C-ring). The latter corresponds to cannabinol, which indeed was shown to be potent towards all the parasites.


Assuntos
Benzopiranos , Leishmania braziliensis/crescimento & desenvolvimento , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Benzopiranos/química , Benzopiranos/farmacologia , Doença de Chagas/tratamento farmacológico , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Tripanossomicidas/química , Tripanossomicidas/farmacologia
14.
Molecules ; 26(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361638

RESUMO

The species Cordia verbenacea DC (Boraginaceae), known as the whaling herb and camaradinha, is a perennial shrub species native to the Atlantic Forest. Its leaves are used in folk medicine as an anti-inflammatory, analgesic, antiulcerogenic and curative agent, in the form of teas or infusions for internal or topical use. The present study aimed to verify the cytotoxicity of the essential oil and the leishmanicidal and trypanocidal potential of C. verbenacea. The essential oil was characterized by GC-MS. The in vitro biological activity was determined by anti-Leishmania and anti-Trypanosoma assays. The cytotoxixity was determined using mammalian fibroblasts. The C. verbenacea species presented α-pinene (45.71%), ß-caryophyllene (18.77%), tricyclo[2,2,1-(2.6)]heptane (12.56%) as their main compounds. The essential oil exhibited strong cytotoxicity at concentrations below 250 µg/mL (LC50 138.1 µg/mL) in mammalian fibroblasts. The potent anti-trypanosome and anti-promastigote activities occurred from the concentration of 62.5 µg/mL and was considered clinically relevant. The results also demonstrate that at low concentrations (<62.5 µg/mL), the essential oil of C. verbenacea managed to be lethal for these activities. This can be considered an indication of the power used in daily human consumption. Therefore, it can be concluded that the essential oil of C. verbenacea contains a compound with remarkable antiparasitic activities and requires further research.


Assuntos
Cordia/química , Citotoxinas , Leishmania braziliensis/crescimento & desenvolvimento , Óleos Voláteis , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Linhagem Celular , Citotoxinas/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Camundongos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/farmacologia
15.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361781

RESUMO

The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".


Assuntos
Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Tripanossomíase Africana/tratamento farmacológico , Animais , Antiprotozoários/síntese química , Antiprotozoários/classificação , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Descoberta de Drogas , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Leishmania/metabolismo , Leishmaniose/parasitologia , Leishmaniose/transmissão , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/crescimento & desenvolvimento , Trypanosoma brucei gambiense/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão
16.
Bioorg Med Chem ; 28(1): 115185, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31784198

RESUMO

Novel isothiocyanate derivatives were synthesized starting from noscapine, bile acids, amino acids, and some aromatic compounds. Antiparasitic activities of the synthesized derivatives were tested against four unicellular protozoa, i.e., Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Interestingly, seven isothiocyanate analogues displayed promising antiparasitic activity against Leishmania donovani with IC50 values between 0.4 and 1.0 µM and selectivity index (SI) ranged from 7.8 to 18.4, comparable to the standard drug miltefosine (IC50 = 0.7 µM). Compound 7h demonstrated the best antileishmanial activity with an IC50 value of 0.4 µM. Seven products exhibited inhibition activity against T. brucei rhodesiense with IC50s below 2.0 µM and SI between 2.7 and 29.3. Four primary amine derivatives of noscapine and five isothiocyanate derivatives exhibited antiplasmodial activity with IC50s in the range of 1.1-2.7 µM and SI values between 1.1 and 14.5. The isothiocyanate derivative 7c showed against T. cruzi with an IC50 value of 1.9 µM and SI 4. Molecular docking and ADMET studies were performed to investigate the interaction between active ligands and T. brucei trypanothione reductase active site. The docking studies showed significant binding affinity of noscapine derivatives to enzyme active site and good compatibility with experimental data.


Assuntos
Antiprotozoários/farmacologia , Isotiocianatos/farmacologia , Simulação de Acoplamento Molecular , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Isotiocianatos/síntese química , Isotiocianatos/química , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Ratos , Relação Estrutura-Atividade , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/crescimento & desenvolvimento , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento
17.
Exp Cell Res ; 383(2): 111560, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31437457

RESUMO

In higher eukaryotic cells, pertubations in ER environment, called ER stress, usually activate unfolded protein response (UPR) pathway in an attempt to re-stablish the ER homeostasis and prevent cell death. Because trypanosomatids appear to lack the classical UPR, it is not clear how these parasites respond to ER stress. Thus, the aim of this work was to evaluate the effects of ER stressors tunicamycin (TM) or dithiothreitol (DTT) on Trypanosoma cruzi. The TM treatment showed strong trypanostatic effect. At 2.5 µg/mL of TM, the mRNA levels of both binding protein (BiP) and calreticulin (CRT) increased significantly, whereas the protein levels of BiP remained stable. TM treatment induced ultrastructural changes compatible with an autophagic process. The DTT treatment inhibited the cell growth, induced drastic morphological changes, mitochondrial membrane depolarization and increased ROS production. The expression of BiP apparently was not affected by DTT, whereas the mRNA levels of BiP and CRT were significantly reduced. Our results suggest that TM induces autophagy/ER-phagy without causing substantial injury to the parasite. Conversely, the DTT treatment seems to rupture the mitochondrion homeostasis leading to parasite death. The comprehension of the mechanisms behind the susceptibility of T. cruzi to ER stress open perspectives for the development of chemotherapeutic agents addressed to these pathways.


Assuntos
Ditiotreitol/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Tunicamicina/farmacologia , Calreticulina/genética , Calreticulina/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Testes de Sensibilidade Parasitária , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
18.
Exp Parasitol ; 217: 107962, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32763249

RESUMO

Trypanosoma cruzi is a parasitic protozoan that infects various species of domestic and wild animals, triatomine bugs and humans. It is the etiological agent of American trypanosomiasis, also known as Chagas Disease, which affects about 17 million people in Latin America and is emerging elsewhere in the world. Iron (Fe) is a crucial micronutrient for almost all cells, acting as a cofactor for several metabolic enzymes. T. cruzi has a high requirement for Fe, using heminic and non-heminic Fe for growth and differentiation. Fe occurs in the oxidized (Fe3+) form in aerobic environments and needs to be reduced to Fe2+ before it enters cells. Fe-reductase, located in the plasma membranes of some organisms, catalyzes the Fe3+⇒ Fe2+ conversion. In the present study we found an amino acid sequence in silico that allowed us to identify a novel 35 kDa protein in T. cruzi with two transmembrane domains in the C-terminal region containing His residues that are conserved in the Ferric Reductase Domain Superfamily and are required for catalyzing Fe3+ reduction. Accordingly, we named this protein TcFR. Intact epimastigotes from the T. cruzi DM28c strain reduced the artificial Fe3+-containing substrate potassium ferricyanide in a cell density-dependent manner, following Michaelis-Menten kinetics. The TcFR activity was more than eightfold higher in a plasma membrane-enriched fraction than in whole homogenates, and this increase was consistent with the intensity of the 35 kDa band on Western blotting images obtained using anti-NOX5 raised against the human antigen. Immunofluorescence experiments demonstrated TcFR on the parasite surface. That TcFR is part of a catalytic complex allowing T. cruzi to take up Fe from the medium was confirmed by experiments in which DM28c was assayed after culturing in Fe-depleted medium: (i) proliferation during the stationary growth phase was five times slower; (ii) the relative expression of TcFR (qPCR) was 50% greater; (iii) intact cells had 120% higher Fe-reductase activity. This ensemble of results indicates that TcFR is a conserved enzyme in T. cruzi, and its catalytic properties are modulated in order to respond to external Fe fluctuations.


Assuntos
FMN Redutase/metabolismo , Ferro/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Animais , Western Blotting , Membrana Celular/enzimologia , Doença de Chagas/parasitologia , Colorimetria , FMN Redutase/análise , FMN Redutase/química , Imunofluorescência , Humanos , Filogenia , Distribuição de Poisson , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Trypanosoma cruzi/classificação , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Regulação para Cima
19.
Exp Parasitol ; 215: 107930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464221

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, is responsible for the infection of millions of people worldwide and it is a public health problem, without an effective cure. Four fragments with antimicrobial potential from the hemocyanin of Penaeus monodon shrimp were identified using a computer software AMPA. The present study aimed to evaluate the antichagasic effect of these four peptides (Hmc364-382, Hmc666-678, Hmc185-197 and Hmc476-498). The peptides were tested against the epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi Y strain (benznidazole-resistant strain) and cytotoxicity in mammalian cells was evaluated against LLC-MK2 lineage cells. Two fragments (Hmc364-382, Hmc666-678) showed activity against the epimastigote and trypomastigote forms and their selectivity index (SI) was calculated. The Hmc364-382 peptide was considered the most promising (SI > 50) one and it was used for further studies, using flow cytometry analyses with specific molecular probes and scanning electron microscopy (SEM). Hmc364-382 was able to induce cell death in T. cruzi through necrosis, observed by loss of membrane integrity in flow cytometry analyses and pore formation in SEM. Overall, Hmc364-382 open perspectives to the development of new antichagasic agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Hemocianinas/farmacologia , Penaeidae/química , Trypanosoma cruzi/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/toxicidade , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Citometria de Fluxo , Hemocianinas/toxicidade , Concentração Inibidora 50 , Macaca mulatta , Microscopia Eletrônica de Varredura , Fatores de Tempo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura
20.
Exp Parasitol ; 219: 108032, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33137308

RESUMO

Chagas disease affects several countries around the world with health and sanitation problems. Cysteine proteases are essential for the virulence and replication of the Trypanosoma cruzi, being modulated by dipeptidyl nitriles and derivatives. Here, four dipeptidyl nitrile derivatives were assayed in three T. cruzi morphologies and two strains (Tulahuen and Y) using a set of assays: (i) analysis of the inhibitory activity against cysteine proteases; (ii) determination of the cytotoxic activity and selectivity index; (iii) verification of the inhibition of the trypomastigote invasion in the host cell. These compounds could inhibit the activity of cysteine proteases using the selective substrate Z-FR-MCA for the trypomastigote lysate and extracellular amastigotes. Interestingly, these compounds did not present relevant enzymatic inhibition for the epimastigote lysate. Most of the substances were also cytotoxic and selective against the trypomastigotes and intracellular amastigotes. The best compound of the series (Neq0662) could reduce the enzymatic activity of the cysteine proteases for the trypomastigotes and amastigotes. It was equipotent to the benznidazole drug in the cytotoxic studies using these two parasite forms. Neq0662 was also selective for the parasite, and it inhibited the invasion of the mammalian host cell in all conditions tested at 10 µM. The stereochemistry of the trifluoromethyl group was an important factor for the bioactivity when the two diastereomers (Neq0662 and Neq0663) were compared. All-in-all, these results indicate that these compounds could move further in the drug development stage because of its promising bioactive profile.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Nitrilas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Análise de Variância , Animais , Antiparasitários/química , Antiparasitários/farmacologia , Área Sob a Curva , Linhagem Celular , Sobrevivência Celular , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/toxicidade , Haplorrinos , Rim/citologia , Nitrilas/química , Proteólise , Estereoisomerismo , Sais de Tetrazólio , Tiazóis , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA