Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 87(4): 675-691, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442031

RESUMO

Schwarzinicines A-D, a series of alkaloids recently discovered from Ficus schwarzii, exhibit pronounced vasorelaxant activity in rat isolated aorta. Building on this finding, a concise synthesis of schwarzinicines A and B has been reported, allowing further investigations into their biological properties. Herein, a preliminary exploration of the chemical space surrounding the structure of schwarzinicine A (1) was carried out aiming to identify structural features that are essential for vasorelaxant activity. A total of 57 analogs were synthesized and tested for vasorelaxant activity in rat isolated aorta. Both efficacy (Emax) and potency (EC50) of these analogs were compared. In addition to identifying structural features that are required for activity or associated with potency enhancement effect, four analogs showed significant potency improvements of up to 40.2-fold when compared to 1. Molecular dynamics simulation of a tetrameric 44-bound transient receptor potential canonical-6 (TRPC6) protein indicated that 44 could potentially form important interactions with the residues Glu509, Asp530, Lys748, Arg758, and Tyr521. These results may serve as a foundation for guiding further structural optimization of the schwarzinicine A scaffold, aiming to discover even more potent analogs.


Assuntos
Vasodilatadores , Vasodilatadores/farmacologia , Vasodilatadores/química , Vasodilatadores/síntese química , Animais , Relação Estrutura-Atividade , Ratos , Estrutura Molecular , Ficus/química , Aorta/efeitos dos fármacos , Alcaloides/farmacologia , Alcaloides/química , Masculino , Simulação de Dinâmica Molecular
2.
J Nat Prod ; 87(4): 820-830, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38449376

RESUMO

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Assuntos
Aorta , Bothrops , Oligopeptídeos , Peptídeos , Serpentes Peçonhentas , Animais , Ratos , Brasil , Aorta/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Bradicinina/farmacologia , Masculino , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/química , Ratos Wistar , Venenos de Serpentes/farmacologia , Vasodilatadores/farmacologia , Vasodilatadores/química , Estrutura Molecular
3.
Planta Med ; 90(6): 454-468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599606

RESUMO

Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga Mimosa tenuiflora was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied. Most flavanones and flavones were effective CaV1.2 channel blockers with a potency order of (2S)-sakuranetin > eriodictyol-7,3'-methyl ether > quercetin 3-methyl ether > 5,4'-dihydroxy-6,7-dimethoxyflavanone > santin > axillarin > penduletin > kumatakenin, ermanin and viscosine being weak or modest stimulators. Except for eriodictyol 5-O-methyl ether, all the flavonoids were also effective spasmolytic agents of vascular rings, kumatakenin and viscosine also showing an endothelium-dependent activity. (2S)-Sakuranetin also stimulated KCa1.1 channels both in single myocytes and vascular rings. In silico analysis provided interesting insights into the mode of action of (2S)-sakuranetin within both CaV1.2 and KCa1.1 channels. The green propolis of the Caatinga Mimosa tenuiflora is a valuable source of multi-target vasoactive flavonoids: this evidence reinforces its nutraceutical value in the cardiovascular disease prevention arena.


Assuntos
Flavonoides , Simulação de Acoplamento Molecular , Própole , Vasodilatadores , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Vasodilatadores/farmacologia , Vasodilatadores/isolamento & purificação , Vasodilatadores/química , Animais , Própole/química , Própole/farmacologia , Mimosa/química , Masculino , Ratos , Fitoalexinas
4.
Bioorg Chem ; 131: 106326, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563413

RESUMO

Morin is a vasorelaxant flavonoid, whose activity is ascribable to CaV1.2 channel blockade that, however, is weak as compared to that of clinically used therapeutic agents. A conventional strategy to circumvent this drawback is to synthesize new derivatives differently decorated and, in this context, morin-derivatives able to interact with CaV1.2 channels were found by employing the potential of PLATO in target fishing and reverse screening. Three different derivatives (5a-c) were selected as promising tools, synthesized, and investigated in in vitro functional studies using rat aorta rings and rat tail artery myocytes. 5a-c were found more effective vasorelaxant agents than the naturally occurring parent compound and antagonized both electro- and pharmaco-mechanical coupling in an endothelium-independent manner. 5a, the series' most potent, reduced also Ca2+ mobilization from intracellular store sites. Furthermore, 5a≈5c > 5b inhibited Ba2+ current through CaV1.2 channels. However, compound 5a caused also a concentration-dependent inhibition of KCa1.1 channel currents.


Assuntos
Inteligência Artificial , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Flavonoides , Vasodilatação , Vasodilatadores , Animais , Ratos , Flavonoides/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo
5.
J Nat Prod ; 85(9): 2192-2198, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35983865

RESUMO

Previously, we isolated 2R,3S,15R-calofolic acids (CAs) from Calophyllum scriblitifolium bark, which showed vasorelaxant activity on phenylephrine (PE)-precontracted rat aortic rings. Although the effect was suggested to be induced via an extracellular Ca2+-independent manner and mainly acts on vascular smooth muscle, the exact mechanism of action of CAs remained unclear. Thus, this study investigated the detailed mechanism of calofolic acid-A (CA-A) induced vasorelaxation in an aortic ring specimen using rat vascular smooth muscle cells (VSMCs). The levels of PE-induced phosphorylation on MLC Ser19 decreased in VSMCs pretreated with CA-A. CA-A also decreased the phosphorylation of MYPT1 Thr696 and MYPT1 Thr853. On the other hand, CA-A increased the PE-induced phosphorylation of MYPT1 Ser695 and MYPT1 Ser668, which are reported to be phosphorylated by a cAMP-dependent protein kinase (PKA). CA-A slightly increased PKA substrate phosphorylation in a concentration-dependent manner. Furthermore, CA-A enhanced isoproterenol (ISO)-induced cAMP accumulation and PKA substrate phosphorylation. Treatment with PI-3 kinase (PI3K) inhibitor, LY294002, enhanced ISO-induced cAMP accumulation and PKA substrate phosphorylation in the same manner as CA-A treatment. Furthermore, CA-A was found to directly inhibit PI3K enzyme activity in a dose-dependent manner. Taken together, the present study indicated that CA-A induces vasorelaxation through an indirectly activated PKA-MYPT1 pathway caused by inhibition of PI3K activity.


Assuntos
Calophyllum , Proteínas Quinases Dependentes de AMP Cíclico , Músculo Liso Vascular , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Vasodilatação , Vasodilatadores , Animais , Cálcio/metabolismo , Calophyllum/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Fenilefrina/metabolismo , Fenilefrina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação , Casca de Planta/química , Ratos , Vasodilatadores/química , Vasodilatadores/farmacologia
6.
Bioorg Chem ; 129: 106110, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087551

RESUMO

Using dehydroabietic acid as the lead compound for structural modification, 25 dehydroabietic acid derivatives were synthesized. Among them, compound D1 not only showed the strongest relaxation effect on the aortic vascular ring in vitro (Emax = 99.5 ± 2.1%, EC50 = 3.03 ± 0.96 µM), but also significantly reduced systolic and diastolic blood pressure in rats at a dose of 2.0 mg/kg in vivo. Next, the vascular protective effect of the best active D1 and its molecular mechanism were further investigated by HUVECs. The results showed that D1 induced endothelium-dependent diastole in the rat thoracic aorta in a concentration-dependent manner. Endothelium removal or aortic ring pretreatment with NG-nitro-l-arginine methylester (l-NAME), 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ), and tetraethylammonium (TEA) significantly inhibited D1-induced relaxation. In addition, wortmannin, KT5823, triciribine, diltiazem, BaCl2, 4-aminopyridine, indomethacin, propranolol, and atropine attenuated D1-induced vasorelaxation. D1 increased the phosphorylation of eNOS in HUVECs Furthermore, D1 attenuated the expression of TNF-α-induced cell adhesion molecules such as ICAM-1 and VCAM-1. However, this effect was attenuated by the eNOS inhibitors l-NAME and asymmetric dimethylarginine (ADMA). The findings suggest that D1-induced vasorelaxation through the PI3K/Akt/eNOS/NO/cGMP/PKG pathway by activating the KCa, Kir and KV channels or muscarinic and ß-adrenergic receptors, and inhibiting the l-type Ca2+ channels, which is closely related to the hypotensive action of the agent. Furthermore, D1 exhibits an inhibitory effect on vascular inflammation, which is associated with the observed vascular protective effects.


Assuntos
Vasodilatação , Vasodilatadores , Animais , Ratos , Aorta Torácica , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Vasodilatadores/química , Tetraetilamônio/química
7.
Molecules ; 27(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35630811

RESUMO

Senecio nutans Sch. Bip. and its constituents are reported to have antihypertensive effects. We isolated metabolite−1, a natural compound from S. nutans (4-hydroxy-3-(isopenten-2-yl)-acetophenone), and synthesized novel oxime − 1 (4-hydroxy-3-(isopenten-2-yl)-acetophenoxime) to evaluate their effect on vascular reactivity. Compounds were purified (metabolite−1) or synthetized (oxime−1) and characterized using IR and NMR spectroscopy and Heteronuclear Multiple Quantum Coherence (HMQC). Using pharmacological agents such as phenylephrine (PE) and KCl (enhancing contraction), acetylcholine (ACh), L-NAME (nitric oxide (NO) and endothelial function), Bay K8644-induced CaV1.2 channel (calcium channel modulator), and isolated aortic rings in an organ bath setup, the possible mechanisms of vascular action were determined. Pre-incubation of aortic rings with 10−5 M oxime−1 significantly (p < 0.001) decreased the contractile response to 30 mM KCl. EC50 to KCl significantly (p < 0.01) increased in the presence of oxime−1 (37.72 ± 2.10 mM) compared to that obtained under control conditions (22.37 ± 1.40 mM). Oxime−1 significantly reduced (p < 0.001) the contractile response to different concentrations of PE (10−7 to 10−5 M) by a mechanism that decreases Cav1.2-mediated Ca2+ influx from the extracellular space and reduces Ca2+ release from intracellular stores. At a submaximal concentration (10−5 M), oxime−1 caused a significant relaxation in rat aorta even without vascular endothelium or after pre-incubate the tissue with L-NAME. Oxime−1 decreases the contractile response to PE by blunting the release of Ca2+ from intracellular stores and blocking of Ca2+ influx by channels. Metabolite−1 reduces the contractile response to KCl, apparently by reducing the plasma membrane depolarization and Ca2+ influx from the extracellular space. These acetophenone derivates from S. nutans (metabolite−1 and oxime−1) cause vasorelaxation through pathways involving an increase of the endothelial NO generation or a higher bioavailability, further highlighting that structural modification of naturally occurring metabolites can enhance their intended pharmacological functions.


Assuntos
Produtos Biológicos , Senécio , Acetofenonas/farmacologia , Animais , Aorta Torácica , Produtos Biológicos/farmacologia , Endotélio Vascular/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Oximas/farmacologia , Fenilefrina/farmacologia , Ratos , Vasodilatadores/química , Vasodilatadores/farmacologia
8.
Mol Pharm ; 18(7): 2507-2520, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34142830

RESUMO

Puerarin monohydrate (PUEM), as the commercial solid form of the natural anti-hypertension drug puerarin (PUE), has low solubility, poor flowability, and mechanical properties. In this study, a novel solid form as PUE-Na chelate hydrate was prepared by a reactive crystallization method. Crystal structure analysis demonstrated that PUE-Na contains PUE-, Na+, and water in a molar ratio of 1:1:7. It crystallizes in the monoclinic space group P21, and Na+ is linked with PUE- and four water molecules through Na+ ← O coordination bonds. Another three crystal water molecules occupy channels along the crystallographic b-axis. Observing along the b-axis, the crystal structure features a distinct tubular helix and a DNA-like twisted helix. The complexation between Na+ and PUE- in aqueous solution was confirmed by the Na+ selective electrode, indicating that PUE-Na chelate hydrate belongs to a type of chelate rather than organic metal salt. Compared with PUEM, PUE-Na exhibited a superior dissolution rate (i.e., ∼38-fold increase in water) owing to its lower solvation free energy and clear-enriched exposed polar groups. Moreover, PUE-Na enhanced the tabletability and flowability of PUEM, attributing to its better elastoplastic deformation and lower-friction crystal habit. The unique PUE-Na chelate hydrate with significantly enhanced pharmaceutical properties is a very promising candidate for future product development of PUE.


Assuntos
Quelantes/química , Isoflavonas/química , Sódio/química , Vasodilatadores/química , Disponibilidade Biológica , Cristalização , Estrutura Molecular , Solubilidade
9.
Bioorg Med Chem Lett ; 36: 127785, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444740

RESUMO

An array of novel 7-methoxyl-2,3-disubstituted quinoxaline derivatives was designed, synthesized and their potential antihypertensive activities were examined, in an attempt to discover potent small molecules with vasorelaxant effects. The vasoactivities of these compounds on vascular tone, as well as underlying mechanisms were hereby explored. Results showed that five compounds (7s, 7t, 7v, 7w, 7γ) could induce endothelium-independent relaxation in high extracellular K+- and phenylephrine-precontracted C57 mice aortic rings. These five compounds, unlike other commonly used vasodilators, could slowly but effectively inhibit vasoconstriction.


Assuntos
Anti-Hipertensivos/farmacologia , Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Quinoxalinas/farmacologia , Vasodilatadores/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Aorta Torácica/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fenilefrina , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Vasodilatadores/síntese química , Vasodilatadores/química
10.
Bioorg Med Chem Lett ; 40: 127886, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662540

RESUMO

Soluble guanylate cyclase (sGC) is a clinically validated therapeutic target in the treatment of pulmonary hypertension. Modulators of sGC have the potential to treat diseases that are affected by dysregulation of the NO-sGC-cGMP signal transduction pathway. This letter describes the SAR efforts that led to the discovery of CYR715, a novel carboxylic acid-containing sGC stimulator, with an improved metabolic profile relative to our previously described stimulator, IWP-051. CYR715 addressed potential idiosyncratic drug toxicity (IDT) liabilities associated with the formation of reactive, migrating acyl glucuronides (AG) found in related carboxylic acid-containing analogs and demonstrated high oral bioavailability in rat and dose-dependent hemodynamic pharmacology in normotensive Sprague-Dawley rats.


Assuntos
Ácidos Carboxílicos/química , Glucuronídeos/química , Hipertensão Pulmonar/tratamento farmacológico , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores/química , Administração Oral , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Glucuronídeos/administração & dosagem , Glucuronídeos/farmacocinética , Humanos , Masculino , Metaboloma , Modelos Moleculares , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Ratos Sprague-Dawley , Transdução de Sinais , Relação Estrutura-Atividade , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacocinética
11.
Bioorg Chem ; 107: 104523, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33339668

RESUMO

Chuanxiongdiolides R4-R6 (1-3), three novel phthalide dimers featuring two classes of unreported monomeric units (ligustilide/senkyunolide A and ligustilide/neocnidilide) with an unprecedented linkage style (3a,7'/7a,7'a), were isolated from the aerial parts of Ligusticum chuanxiong, together with three pairs of enantiomeric phthalide dimers [(-)/(+)-4a/4b, 5a/5b, and 6a/6b]. The bioassays revealed that compounds 1, 3, 4, 5, and 6 showed significant vasodilation effects, and the mechanism may be attributed to Cav1.2 activation blockade. Based on the established compounds library, the structure activity relationship of the phthalides was proposed. Our findings afford possible leads for developing new vasodilator against cardiovascular and cerebrovascular diseases such as hypertension and ischemic stroke.


Assuntos
Benzofuranos/farmacologia , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Ligusticum/química , Vasodilatadores/farmacologia , Animais , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzofuranos/metabolismo , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/isolamento & purificação , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Células HEK293 , Compostos Heterocíclicos de Anel em Ponte/síntese química , Compostos Heterocíclicos de Anel em Ponte/isolamento & purificação , Compostos Heterocíclicos de Anel em Ponte/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Componentes Aéreos da Planta/química , Ligação Proteica , Coelhos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Vasodilatadores/química , Vasodilatadores/isolamento & purificação , Vasodilatadores/metabolismo
12.
Biomed Chromatogr ; 35(2): e4971, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32840898

RESUMO

Nimodipine is a dihydropyridine calcium channel blocker that exhibits higher selectivity toward cerebral blood vessels compared with other members of the same class. It has been shown to improve outcomes and prevent delayed cerebral ischemia in the setting of aneurysmal subarachnoid hemorrhage, a life-threatening brain bleed. Nimodipine is a chiral compound and it is marketed as a racemic mixture of (+)-R and (-)-S enantiomers. (-)-S-Nimodipine is approximately twice as potent a vasorelaxant as the racemic mixture and is more rapidly eliminated than the (+)-R counterpart following oral dosing. Few analytical procedures have been reported to determine nimodipine enantiomers in biological samples; however, the reported methods were time-consuming, involved multistep extraction procedures and required large sample volumes. Herein, we present an LC-MS/MS method for quantifying nimodipine enantiomers in human plasma using a small sample volume (0.3 ml) and a single liquid-liquid extraction step. The peak area ratios were linear over the tested concentration ranges (1.5-75 ng/ml) with r2 > 0.99. The intraday CV and percentage error were within ±14% while the interday values were within ±13%, making this analytical method feasible for research purposes and pharmacokinetic studies.


Assuntos
Cromatografia Líquida/métodos , Nimodipina/sangue , Nimodipina/química , Espectrometria de Massas em Tandem/métodos , Humanos , Modelos Lineares , Nimodipina/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo , Hemorragia Subaracnóidea/tratamento farmacológico , Vasodilatadores/sangue , Vasodilatadores/química , Vasodilatadores/farmacocinética
13.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802468

RESUMO

According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time-from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide-cyclic guanosine monophosphate activation, prostacyclin-cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Plantas/química , Metabolismo Secundário , Endotélio Vascular/citologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/química , Vasodilatadores/farmacologia
14.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430435

RESUMO

Treprostinil palmitil (TP) is a prodrug of treprostinil (TRE), a pulmonary vasodilator that has been previously formulated for inhaled administration via a nebulizer. TP demonstrates a sustained presence in the lungs with reduced systemic exposure and prolonged inhibition of hypoxia-induced pulmonary vasoconstriction in vivo. Here, we report on re-formulation efforts to develop a more convenient solution-based metered-dose inhaler (MDI) formulation of TP, a treprostinil palmitil inhalation aerosol (TPIA) that matches the pharmacokinetic (PK) and efficacy profile of a nebulized TP formulation, treprostinil palmitil inhalation suspension (TPIS). MDI canisters were manufactured using a two-stage filling method. Aerosol performance, formulation solubility, and chemical stability assays were utilized for in vitro evaluation. For in vivo studies, TPIA formulations were delivered to rodents using an inhalation tower modified for MDI delivery. Using an iterative process involving evaluation of formulation performance in vitro (TP and excipient solubility, chemical stability, physical stability, and aerosol properties) and confirmatory testing in vivo (rat PK and efficacy, guinea pig cough), a promising formulation was identified. The optimized formulation, TPIA-W, demonstrates uniform in vitro drug delivery, a PK profile suitable for a once-daily administration, efficacy lasting at least 12 h in a hypoxic challenge model, and a significantly higher cough threshold than the parent drug treprostinil.


Assuntos
Aerossóis/farmacologia , Epoprostenol/análogos & derivados , Pró-Fármacos/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Administração por Inalação , Animais , Modelos Animais de Doenças , Composição de Medicamentos , Epoprostenol/química , Epoprostenol/farmacologia , Cobaias , Humanos , Nanopartículas/química , Pró-Fármacos/química , Hipertensão Arterial Pulmonar/patologia , Ratos , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/química , Vasodilatadores/farmacologia
15.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946614

RESUMO

From unstable crystals to relatively stable monohydrate crystals, many researchers have been working on S-nitrosocaptopril for more than two decades. S-nitrosocaptopril monohydrate (Cap-NO·H2O) is a novel crystal form of S-nitrosocaptopril (Cap-NO), and is not only a nitric oxide (NO) donor, but also an angiotensin-converting enzyme inhibitor (ACEI). Yet, a method for long-term storage has never been reported. In order to determine the optimal storage conditions, Plackett-Burman (PB) design was performed to confirm the critical factors. Response surface methodology (RSM) was employed to determine the optimal Cap-NO·H2O storage condition, based on the rough interval determined by the path of steepest ascent experiment. The optimized storage condition was denoted as nitrogen purity of 97%, temperature of -10 °C and 1.20 g deoxidizer. In this case, a final preservation rate of 97.91 ± 0.59% could be obtained. In specific storage conditions, Cap-NO·H2O was found to be stable for at least 6 months in individual PE package, procreating a potentially applicable avenue.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Captopril/análogos & derivados , Doadores de Óxido Nítrico/química , Vasodilatadores/química , Captopril/química
16.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885772

RESUMO

Three novel monoterpenoid indole alkaloids gardflorine A (1), gardflorine B (2), and gardflorine C (3) were isolated from the leaves of Gardneria multiflora. Their structures, including absolute configurations, were established on the basis of spectroscopic methods (MS, UV, IR, 1D and 2D NMR) and circular dichroism experiments. All the compounds were evaluated for their vasorelaxant and acetylcholinesterase (AChE) inhibitory activities. Compound 1 exhibited potent vasorelaxant activity, with an EC50 value of 8.7 µM, and compounds 2 and 3 showed moderate acetylcholinesterase (AChE) inhibitory activities, with IC50 values of 26.8 and 29.2 µM, respectively.


Assuntos
Inibidores da Colinesterase/farmacologia , Loganiaceae/química , Folhas de Planta/química , Alcaloides de Triptamina e Secologanina/farmacologia , Vasodilatadores/farmacologia , Inibidores da Colinesterase/química , Dicroísmo Circular , Espectroscopia de Prótons por Ressonância Magnética , Alcaloides de Triptamina e Secologanina/química , Vasodilatadores/química
17.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361671

RESUMO

Aporphines, a major group of aporphinoid alkaloids, exhibit interesting and diverse pharmacological activities. A set of dimeric aporphines with an aryloxy group at C8, C9, and C11 have been isolated from six genera and shown to elicit various biological activities such as antitumor, antimalarial, antimicrobial, antiplatelet aggregation, antifibrotic, immunosuppressive, and vasorelaxant properties. In this review, the nomenclature, chemical structures, botanical sources, pharmacological activities, and synthetic approaches of this set of dimeric alkaloids are presented.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Aporfinas/química , Dimerização , Imunossupressores/química , Extratos Vegetais/química , Inibidores da Agregação Plaquetária/química , Vasodilatadores/química , Carbono/química , Estrutura Molecular , Plantas/química
18.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770756

RESUMO

Parmotremaperlatum is traditionally used in different areas of Pakistan to treat gastrointestinal, respiratory, and vascular diseases. This study evaluates the underlying mechanisms for traditional uses of P. perlatum in diarrhea, asthma, and hypertension. In vitro pharmacological studies were conducted using isolated jejunum, trachea, and aortic preparations, while the cytotoxic study was conducted in mice. Crude extract of P. perlatum(Pp.Cr), comprising appreciable quantities of alkaloids and flavonoids, relaxed spontaneously contracting jejunum preparation, K+ (80 mM)-induced, and carbachol (1 µM)-induced jejunum contractions in a concentration-dependent manner similar to dicyclomine and dantrolene. Pp.Cr showed a rightward parallel shift of concentration-response curves (CRCs) of Cch after a non-parallel shift similarto dicyclomine and shifted CRCs of Ca+2 to rightward much likeverapamil and dantrolene, demonstrating the coexistence of antimuscarinic and Ca+2 antagonistic mechanism. Furthermore, Pp.Cr, dicyclomine, and dantrolene relaxed K+ (80 mM)-induced and Cch (1 µM)-induced tracheal contractions and shifted rightward CRCs of Cch similar to dicyclomine, signifying the dual blockade. Additionally, Pp.Cr also relaxed the K+ (80 mM)-induced and phenylephrine (1 µM)-induced aortic contraction, similarly to verapamil and dantrolene, suggesting Ca+2 channel antagonism. Here, we explored for the first time thespasmolytic and bronchodilator effects of Pp.Crand whether they maybe due to the dual blockade of Ca+2 channels and muscarinic receptors, while the vasodilator effect might be owing to Ca+2 antagonism. Our results provide the pharmacological evidence that P. perlatum could be a new potential therapeutic option to treat gastrointestinal, respiratory, and vascular diseases. Hence, there is a need for further research to explore bioactive constituent of P. perlatum as well as further investigation by suitable experimental models are required to further confirm the importance and usefulness of P. perlatum in diarrhea, asthma, and hypertension treatment.


Assuntos
Produtos Biológicos/farmacologia , Broncodilatadores/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Antagonistas Muscarínicos/farmacologia , Parassimpatolíticos/farmacologia , Parmeliaceae/química , Vasodilatadores/farmacologia , Animais , Produtos Biológicos/química , Broncodilatadores/química , Bloqueadores dos Canais de Cálcio/química , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Antagonistas Muscarínicos/química , Parassimpatolíticos/química , Análise Espectral , Testes de Toxicidade Aguda , Vasodilatadores/química
19.
Inflammopharmacology ; 29(5): 1459-1473, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34532846

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are a major cause of upper gastro-intestinal (GI) ulceration and bleeding as well as cardiovascular (CV) diseases (e.g., myocardial infarction and stroke). A feature common to both these adverse events is a variety of vascular reactions. One approach to overcome these side effects has been the development of nitric-oxide (NO)-donating NSAIDs. The NO is considered to overcome some of these vascular reactions caused by NSAIDs. Unfortunately, the NO-NSAIDs developed so far have not had the expected benefits compared with NSAIDs alone. OBJECTIVES: Using in vitro preparations it is hoped to gain insight into the vascular and smooth muscle reactions induced by NO-NSAIDs compared with NSAIDs as a basis for improving the protective responses attributed to the NO-donating properties of these drugs. METHODS: A range of NO-NSAIDs was synthesized based on the esterification of NSAIDs with the nitro-butoxylate as a prototype of an NO-donor. These compounds, as well as NO-donor agents and NSAIDS, were examined for their possible effects on isolated segments of digital arteries of fallow deer, which provide a robust model for determining the effects of vasodilator and vasoconstrictor activities, in comparison with those of standard pharmacological agents. RESULTS: The NO-NSAIDs were found to antagonise the smooth muscle contractions produced by 5-hydroxytryptamine (serotonin, 5-HT). However, while almost all their parent NSAIDs had little or no effect, with the exception of the R-(-)-isomers of both ibuprofen and flurbiprofen, which caused vasodilatation, all the NO-NSAIDs tested antagonised the increase in tension produced by 5-HT. CONCLUSIONS: R-(-)-ibuprofen and R-(-)-flurbiprofen, along with the nitro-butoxyl esters of the NSAIDs examined, produce relaxation of segments of deer digital artery smooth muscle in vitro. The evidence presented suggests that their mechanism involves the release of NO or its products.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Artérias/efeitos dos fármacos , Cervos , Ésteres/química , Feminino , Masculino , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/toxicidade , Serotonina/metabolismo , Vasodilatadores/química , Vasodilatadores/farmacologia
20.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803532

RESUMO

Polyphenolic enriched extracts from two species of Cyperus, Cyperus glomeratus and Cyperus thunbergii, possess mammalian arginase inhibitory capacities, with the percentage inhibition ranging from 80% to 95% at 100 µg/mL and 40% to 64% at 10 µg/mL. Phytochemical investigation of these species led to the isolation and identification of two new natural stilbene oligomers named thunbergin A-B (1-2), together with three other stilbenes, trans-resveratrol (3), trans-scirpusin A (4), trans-cyperusphenol A (6), and two flavonoids, aureusidin (5) and luteolin (7), which were isolated for the first time from C.thunbergii and C. glomeratus. Structures were established on the basis of the spectroscopic data from MS and NMR experiments. The arginase inhibitory activity of compounds 1-7 was evaluated through an in vitro arginase inhibitory assay using purified liver bovine arginase. As a result, five compounds (1, 4-7) showed significant inhibition of arginase, with IC50 values between 17.6 and 60.6 µM, in the range of those of the natural arginase inhibitor piceatannol (12.6 µM). In addition, methanolic extract from Cyperus thunbergii exhibited an endothelium and NO-dependent vasorelaxant effect on thoracic aortic rings from rats and improved endothelial dysfunction in an adjuvant-induced arthritis rat model.


Assuntos
Arginase/antagonistas & inibidores , Cyperus/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/fisiopatologia , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Calamus , Bovinos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Masculino , Metanol , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Resveratrol/química , Resveratrol/isolamento & purificação , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , Vasodilatadores/química , Vasodilatadores/isolamento & purificação , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA