Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
PLoS One ; 18(9): e0290732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733783

RESUMO

Vascular bundles of bamboo are determinants for mechanical properties of bamboo material and for physiological properties of living bamboo. The morphology of vascular bundles reflecting mechanical and physiological functions differs not only within internode tissue but also among different internodes in the culm. Although the distribution of vascular bundle fibers has received much attention, quantitative evaluation of the morphological transformation of vascular bundles associated with spatial distribution patterns has been limited. In this study deep learning models were used to determine quantitative changes in the distribution and morphology of vascular bundles in the culms of moso bamboo (Phyllostachys pubescens). A precise model for extracting vascular bundles from cross-sectional images was constructed using the U-Net model. Analyses of extracted vascular bundles from different internodes showed significant changes in vascular bundle distribution and morphology among internodes. Vascular bundles in lower internodes showed outer relative position and larger area than those in upper internodes. Aspect ratio and eccentricity indicate that vascular bundles in internodes near the base have more elliptical morphology, with a long axis in the radial direction. The variational autoencoder model using extracted vascular bundles enabled simulation of the morphological transformation of vascular bundles along with radial direction. These deep learning models enabled highly accurate quantification of vascular bundle morphologies, and will contribute to a further understanding of bamboo development as well as evaluation of the mechanical and physiological properties of bamboo.


Assuntos
Feixe Vascular de Plantas , Poaceae , Axônios , Simulação por Computador
2.
Plant J ; 116(5): 1342-1354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614094

RESUMO

Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/genética , Ralstonia solanacearum/fisiologia , Inibidores da Tripsina/metabolismo , Feixe Vascular de Plantas , Plantas , Doenças das Plantas
3.
Chem Asian J ; 18(17): e202300505, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458199

RESUMO

The development of butyl acetate sensors with high sensitivity and selectivity has been highly desirable for its harmful effects on human health. In this work, we developed a high-performance butyl acetate sensor based on vascular bundle structure Zn2 SnO4 nanomaterial derived from maize straw. The vascular bundle structure Zn2 SnO4 with higher specific surface area obtained by calcination to remove the maize straw template, plays the dual role of accelerating the diffusion of gas molecules and providing more active sites. Our research showed that the sensor had a response of 18 to 100 ppm butyl acetate at a working temperature of 250 °C, with a fast response recovery rate (18 s/25 s), which showed significant improvement compared to the Zn2 SnO4 sensor prepared without templates. The improved performance can be attributed to the cross-linked nanoparticle chains and gas collision mechanism of the sensor. These findings highlight the potential of our sensor for the detection of butyl acetate gas.


Assuntos
Feixe Vascular de Plantas , Zea mays , Humanos , Acetatos , Zinco
4.
Int J Biol Macromol ; 246: 125530, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355061

RESUMO

In this study, hemicellulose was isolated from the apical, middle and basal segments of C. lanceolata stem to investigate the dynamic change of its structure during xylogenesis. Results showed that the C. lanceolata hemicellulose is mainly consisted of O-acetylgalactoglucomannan (GGM) which backbone is alternately linked by ß-d-mannopyranosyl (Manp) and ß-d-glucopyranosyl (Glcp) via (1 â†’ 4)-glycosidic bond, while the side chains are α-d-galactopyranosyl (Galp) and acetyl. In addition, 4-O-methylglucuronoarabinoxylan (GAX) is another dominant structure of C. lanceolata hemicellulose which contains a linear backbone of (1 â†’ 4)-ß-d-xylopyranosyl (Xylp) and side chains of 4-O-Me-α-d-glucuronic acid (MeGlcpA) and α-L-arabinofuranose (Araf). The thickness of the cell wall, the ratio of GGM/GAX and the molecular weight of hemicellulose were increased as the extension of growth time. The degree of glycosyl substitutions of xylan and mannan was decreased from 10.34 % (apical) to 8.38 % (basal) and from 15.63 % (apical) to 10.49 % (basal), respectively. However, the total degree of acetylation was enhanced from 0.28 (apical) to 0.37 (basal). Transcriptome analysis showed that genes (CSLA9, IRX9H1, IRX10L, IRX15L, GMGT1, TBL19, TBL25, GUX2, GUX3, GXM1, F8H1 and F8H2) related to hemicellulose biosynthesis are mainly expressed in mature part. This study is of great significance for genetic breeding and high-value utilization of C. lanceolata.


Assuntos
Cunninghamia , Cunninghamia/química , Cunninghamia/crescimento & desenvolvimento , Feixe Vascular de Plantas/química , Feixe Vascular de Plantas/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Polissacarídeos/análise
5.
J Exp Bot ; 74(14): 4077-4092, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37085949

RESUMO

Plant growth and development rely heavily on cyclins, which comprise an important class of cell division regulators. D-type cyclins (CYCDs) are responsible for the rate-limiting step of G1 cells. In the plant kingdom, despite the importance of CYCDs in herbaceous plants, there is little knowledge of these proteins in perennial woody plants. Here, the gene of a nucleus-localized cyclin, PsnCYCD1;1, was cloned from Populus simonii × P. nigra. PsnCYCD1;1 was highly expressed in tissues with active cell division, especially the leaf buds, and could be induced by sucrose and phytohormones. Moreover, overexpression of PsnCYCD1;1 in poplar could stimulate cell division, resulting in the generation of small cells and causing severe morphological changes in the vascular bundles, resulting in 'S'-shaped tortuous stems and curled leaves. Furthermore, transcriptomic analysis revealed that endogenous genes related to cell division and vascular cambium development were significantly up-regulated in the transgenic plants. In addition, using yeast two-hybrid and bimolecular fluorescence complementation assays PsnCDKA1, PsnICK3, and PsnICK5 were identified as proteins interacting with PsnCYCD1;1. Our study demonstrates that PsnCYCD1;1 accelerates plant cell division and participates in secondary growth of vascular bundles in poplar.


Assuntos
Populus , Feixe Vascular de Plantas/metabolismo , Divisão Celular , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ciclinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 191(1): 317-334, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36179092

RESUMO

In rice (Oryza sativa L.), vascular bundle phloem tissue in the panicle neck is vital for the transport of photosynthetic products from leaf to panicle and is positively associated with grain yield. However, genetic regulation of the single large vascular bundle phloem area (LVPA) in rice panicle neck tissue remains poorly understood. In this study, we carried out genome-wide association analysis of LVPA in the panicle neck using 386 rice accessions and isolated and characterized the gene LVPA4, which is allelic to NARROW LEAF1 (NAL1). Phenotypic analyses were carried out on the near-isogenic line (NIL) NIL-LVPA4LT in the high-yielding indica (xian) cultivar Teqing and on overexpression lines transformed with a vector carrying the Lemont alleles of LVPA4. Both NIL-LVPA4LT and LVPA4 overexpression lines exhibited significantly increased LVPA, enlarged flag leaf size, and improved panicle type. NIL-LVPA4LT had a 7.6%-9.6% yield increase, mainly due to the significantly higher filled grain number per panicle, larger vascular system for transporting photoassimilates to spikelets, and more sufficient source supply that could service the increased sink capacity. Moreover, NIL-LVPA4LT had improved grain quality compared with Teqing, which was mainly attributed to substantial improvement in grain filling, especially for inferior spikelets in NIL-LVPA4LT. The single-nucleotide variation in the third exon of LVPA4 was associated with LVPA, spikelet number, and leaf size throughout sequencing analysis in 386 panels. The results demonstrate that LVPA4 has synergistic effects on source capacity, sink size, and flow transport and plays crucial roles in rice productivity and grain quality, thus revealing the value of LVPA4 in rice breeding programs for improved varieties.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Floema/genética , Melhoramento Vegetal , Feixe Vascular de Plantas/genética , Grão Comestível/genética
7.
Biomolecules ; 12(12)2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36551200

RESUMO

The need to produce crops with higher yields is critical due to a growing global population, depletion of agricultural land, and severe climate change. Compared with the "source" and "sink" transport systems that have been studied a lot, the development and utilization of vascular bundles (conducting vessels in plants) are increasingly important. Due to the complexity of the vascular system, its structure, and its delicate and deep position in the plant body, the current research on model plants remains basic knowledge and has not been repeated for crops and applied to field production. In this review, we aim to summarize the current knowledge regarding biomolecular strategies of vascular bundles in transport systems (source-flow-sink), allocation, helping crop architecture establishment, and influence of the external environment. It is expected to help understand how to use sophisticated and advancing genetic engineering technology to improve the vascular system of crops to increase yield.


Assuntos
Produtos Agrícolas , Feixe Vascular de Plantas , Produtos Agrícolas/genética , Agricultura , Mudança Climática
8.
Physiol Plant ; 174(3): e13695, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35491933

RESUMO

Phloem unloading and loading are associated with stem non-structural carbohydrates (NSCs) accumulation and remobilization in rice (Oryza sativa L.). Four rice recombinant inbred lines (R032, R191, R046, and R146) derived from a cross between Zhenshan 97 and Minghui 63 were used to investigate the contributions of stem large and small vascular bundles (SVBs) to NSCs accumulation and translocation. Before heading, the parenchyma cells in stem cortex tissues (PCs) surrounding SVBs had higher starch density than those surrounding large vascular bundles (LVBs). Moreover, the protein levels of sucrose transporters (SUTs), cell wall invertase, sucrose synthase, and adenosine diphosphate glucose pyrophosphorylase, as well as the phloem plasmodesma densities were higher in SVBs than those in LVBs. After heading, starch density decreased more in PCs surrounding SVBs than in LVBs. Also, the protein levels of SUTs, α-amylase, sucrose phosphate synthase and sucrose synthase, the phloem plasmodesma densities in SVBs were higher than those in LVBs. The correlations of the number and total cross-sectional area of SVBs with mass and contribution to yield of transferred NSCs were higher than those of LVBs. Our results suggest that SVBs may have higher contributions to pre-anthesis stem NSCs accumulation and post-anthesis translocation than LVBs, which is potentially attributed to the high level of protein and enzyme involved in stem unloading and loading via apoplastic and symplastic pathways.


Assuntos
Oryza , Transporte Biológico , Carboidratos , Proteínas de Membrana Transportadoras/metabolismo , Oryza/metabolismo , Floema/metabolismo , Feixe Vascular de Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo
9.
Plant Cell ; 34(6): 2328-2342, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35285491

RESUMO

The Arabidopsis (Arabidopsis thaliana) leaf veins bundle-sheath cells (BSCs)-a selective barrier to water and solutes entering the mesophyll-increase the leaf radial hydraulic conductance (Kleaf) by acidifying the xylem sap by their plasma membrane H+-ATPase,  AHA2. Based on this and on the BSCs' expression of phototropins PHOT1 and PHOT2, and the known blue light (BL)-induced Kleaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs' phots activates its H+-ATPase, which, consequently, upregulates Kleaf. Indeed, under BL, the Kleaf of the knockout mutant lines phot1-5, phot2-1, phot1-5 phot2-1, and aha2-4 was lower than that of the wild-type (WT). BSC-only-directed complementation of phot1-5 or aha2-4 by PHOT1 or AHA2, respectively, restored the BL-induced Kleaf increase. BSC-specific silencing of PHOT1 or PHOT2 prevented such Kleaf increase. A xylem-fed kinase inhibitor (tyrphostin 9) replicated this also in WT plants. White light-ineffective in the phot1-5 mutant-acidified the xylem sap (relative to darkness) in WT and in the PHOT1-complemented phot1-5. These results, supported by BL increase of BSC protoplasts' water permeability and cytosolic pH and their hyperpolarization by BL, identify the BSCs as a second phot-controlled water conductance element in leaves, in series with stomatal conductance. Through both, BL regulates the leaf water balance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Fototropinas/genética , Fototropinas/metabolismo , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Água/metabolismo
10.
Plant Biotechnol J ; 20(6): 1042-1053, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35080335

RESUMO

The peduncle vascular system of maize is critical for the transport of photosynthetic products, nutrients, and water from the roots and leaves to the ear. Accordingly, it positively affects the grain yield. However, the genetic basis of peduncle vascular bundle (PVB)-related traits in maize remains unknown. Thus, 15 PVB-related traits of 386 maize inbred lines were investigated at three locations (Yongcheng, 17YC; Kaifeng, 20KF; and Yuanyang, 20YY). The repeatability for the 15 traits ranged from 35.53% to 92.13%. A genome-wide association study was performed and 69 non-redundant quantitative trait loci (QTL) were detected, including 9, 41, and 27 QTL identified at 17YC, 20KF, and 20YY, respectively. These QTL jointly explained 4.72% (SLL) to 37.30% (NSVB) of the phenotypic variation. Eight QTL were associated with the same trait at two locations. Furthermore, four pleiotropic QTL were identified. Moreover, one QTL (qPVB44), associated with NSVB_20KF, was co-localized with a previously reported locus related to kernel width, implying qPVB44 may affect the kernel width by modulating the number of small vascular bundles. Examinations of the 69 QTL identified 348 candidate genes that were classified in five groups. Additionally, 26 known VB-related homologous genes (e.g. VLN2, KNOX1, and UGT72B3) were detected in 20 of the 69 QTL. A comparison of the NSVB between a Zmvln2 EMS mutant and its wild type elucidated the function of the candidate gene ZmVLN2. These results are important for clarifying the genetic basis of PVB-related traits and may be useful for breeding new high-yielding maize cultivars.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico/métodos , Fenótipo , Melhoramento Vegetal , Feixe Vascular de Plantas , Zea mays/genética
11.
Sci Rep ; 11(1): 21754, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741092

RESUMO

The wound inflicted during grafting of watermelon seedlings requires rapid and sufficient vascular development which is affected by light quality. Our objective was to investigate the effect of light spectra emitted by light-emitting diodes (LEDs) during healing of grafted watermelon (Citrullus lanatus) seedlings on their vascular development, physiological and phytohormonal profile, and root architecture. Three LEDs emitting red (R), blue (B), and RB with 12% blue (12B) were tested in a healing chamber. During the first three days, the photosynthetic apparatus portrayed by PIABS, φP0, ψE0, and ΔVIP was less damaged and faster repaired in B-treated seedlings. B and 12B promoted vascular reconnection and root development (length, surface area and volume). This was the result of signaling cascade between phytohormones such as indole-3-acetic acid and others. After vascular reconnection the seedlings switched lights for 3 more days and the picture was reversed. Seedlings treated with B for the first 3 days and R for days 4 to 6 had better photosynthetic characteristics, root system development, morphological, shoot and root biomass, and quality (i.e. Dickson's quality index) characteristics. We concluded that blue light is important during the first 3 days of healing, while the presence of red is necessary after vascular reconnection.


Assuntos
Citrullus/efeitos da radiação , Produção Agrícola/métodos , Feixe Vascular de Plantas/crescimento & desenvolvimento , Plântula/efeitos da radiação , Citrullus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
12.
Biomolecules ; 11(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34827716

RESUMO

Fingerprint analysis is a common technique in forensic and criminal investigations. Similar techniques exist in the field of infrared spectroscopy to identify biomolecules according to their characteristic spectral fingerprint features. These unique markers are located in a wavenumber range from 1800 to 600 cm-1 in the mid infrared region. Here, a novel bioanalytical concept of correlating these spectral features with corresponding mass spectrometry datasets to unravel metabolic clusters within complex plant tissues was applied. As proof of concept, vascular bundles of oilseed rape (Brassica napus) were investigated, one of the most important and widely cultivated temperate zone oilseed crops. The link between mass spectrometry data and spectral data identified features that co-aligned within both datasets. Regions of origin were then detected by searching for these features in hyperspectral images of plant tissues. This approach, based on co-alignment and co-localization, finally enabled the detection of eight distinct metabolic clusters, reflecting functional and structural arrangements within the vascular bundle. The proposed analytical concept may assist future synergistic research approaches and may lead to biotechnological innovations with regard to crop yield and sustainability.


Assuntos
Brassica napus , Feixe Vascular de Plantas , Produtos Agrícolas , Traqueófitas
13.
Plant Physiol ; 187(1): 59-72, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618144

RESUMO

The efficiencies offered by C4 photosynthesis have motivated efforts to understand its biochemical, genetic, and developmental basis. Reactions underlying C4 traits in most C4 plants are partitioned between two cell types, bundle sheath (BS), and mesophyll (M) cells. RNA-seq has been used to catalog differential gene expression in BS and M cells in maize (Zea mays) and several other C4 species. However, the contribution of translational control to maintaining the distinct proteomes of BS and M cells has not been addressed. In this study, we used ribosome profiling and RNA-seq to describe translatomes, translational efficiencies, and microRNA abundance in BS- and M-enriched fractions of maize seedling leaves. A conservative interpretation of our data revealed 182 genes exhibiting cell type-dependent differences in translational efficiency, 31 of which encode proteins with core roles in C4 photosynthesis. Our results suggest that non-AUG start codons are used preferentially in upstream open reading frames of BS cells, revealed mRNA sequence motifs that correlate with cell type-dependent translation, and identified potential translational regulators that are differentially expressed. In addition, our data expand the set of genes known to be differentially expressed in BS and M cells, including genes encoding transcription factors and microRNAs. These data add to the resources for understanding the evolutionary and developmental basis of C4 photosynthesis and for its engineering into C3 crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Expressão Gênica , Células do Mesofilo/metabolismo , Feixe Vascular de Plantas/metabolismo , Ribossomos/metabolismo , Zea mays/genética , Folhas de Planta/metabolismo , Zea mays/metabolismo
14.
Cells ; 10(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359895

RESUMO

The combined response of exclusion of solar ultraviolet radiation (UV-A+B and UV-B) and static magnetic field (SMF) pre-treatment of 200 mT for 1 h were studied on soybean (Glycine max) leaves using synchrotron imaging. The seeds of soybean with and without SMF pre-treatment were sown in nursery bags kept in iron meshes where UV-A+B (280-400 nm) and UV-B (280-315 nm) from solar radiation were filtered through a polyester filters. Two controls were planned, one with polythene filter controls (FC)- which allows all the UV (280-400 nm); the other control had no filter used (open control-OC). Midrib regions of the intact third trifoliate leaves were imaged using the phase-contrast imaging technique at BL-4, Indus-2 synchrotron radiation source. The solar UV exclusion results suggest that ambient UV caused a reduction in leaf growth which ultimately reduced the photosynthesis in soybean seedlings, while SMF treatment caused enhancement of leaf growth along with photosynthesis even under the presence of ambient UV-B stress. The width of midrib and second-order veins, length of the second-order veins, leaf vein density, and the density of third-order veins obtained from the quantitative image analysis showed an enhancement in the leaves of plants that emerged from SMF pre-treated seeds as compared to untreated ones grown in open control and filter control conditions (in the presence of ambient UV stress). SMF pre-treated seeds along with UV-A+B and UV-B exclusion also showed significant enhancements in leaf parameters as compared to the UV excluded untreated leaves. Our results suggested that SMF-pretreatment of seeds diminishes the ambient UV-induced adverse effects on soybean.


Assuntos
/efeitos da radiação , Campos Magnéticos , Folhas de Planta/efeitos da radiação , Síncrotrons , Raios Ultravioleta , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/efeitos da radiação , Espectrofotometria Ultravioleta
15.
Int J Biol Macromol ; 188: 983-992, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403677

RESUMO

Plant laccases have been proposed to participate in lignin biosynthesis. However, there is no direct evidence that individual laccases in Populus can polymerize lignin monomers and alter cell wall structure. Here, a Populus laccase, PtrLAC16, was expressed and purified in a eukaryotic system. Enzymatic analysis of PtrLAC16 showed that it could polymerize lignin monomers in vitro. PtrLAC16 preferred sinapyl alcohol, and this preference is associated with an altered S/G ratio in transgenic Populus lines. PtrLAC16 was localized exclusively in the cell walls of stem vascular tissue, and a reduction in PtrLAC16 expression led to a significant decrease in lignin content and altered cell wall structure. There was a direct correlation between the inhibition of PtrLAC16 expression and structural changes in the stem cell wall of Populus. This study provides direct evidence that PtrLAC16 plays a key role in the polymerization of lignin monomers, especially for sinapyl lignin, and affects the formation of xylem cell walls in Populus.


Assuntos
Biocatálise , Parede Celular/enzimologia , Lacase/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Polimerização , Populus/enzimologia , Xilema/enzimologia , Regulação da Expressão Gênica de Plantas , Cinética , Lacase/isolamento & purificação , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Transporte Proteico , Análise Espectral Raman , Frações Subcelulares/metabolismo , Xilema/ultraestrutura
16.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155141

RESUMO

When exposed to high light, plants produce reactive oxygen species (ROS). In Arabidopsis thaliana, local stress such as excess heat or light initiates a systemic ROS wave in phloem and xylem cells dependent on NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins. In the case of excess light, although the initial local accumulation of ROS preferentially takes place in bundle-sheath strands, little is known about how this response takes place. Using rice and the ROS probes diaminobenzidine and 2',7'-dichlorodihydrofluorescein diacetate, we found that, after exposure to high light, ROS were produced more rapidly in bundle-sheath strands than mesophyll cells. This response was not affected either by CO2 supply or photorespiration. Consistent with these findings, deep sequencing of messenger RNA (mRNA) isolated from mesophyll or bundle-sheath strands indicated balanced accumulation of transcripts encoding all major components of the photosynthetic apparatus. However, transcripts encoding several isoforms of the superoxide/H2O2-producing enzyme NADPH oxidase were more abundant in bundle-sheath strands than mesophyll cells. ROS production in bundle-sheath strands was decreased in mutant alleles of the bundle-sheath strand preferential isoform of OsRBOHA and increased when it was overexpressed. Despite the plethora of pathways able to generate ROS in response to excess light, NADPH oxidase-mediated accumulation of ROS in the rice bundle-sheath strand was detected in etiolated leaves lacking chlorophyll. We conclude that photosynthesis is not necessary for the local ROS response to high light but is in part mediated by NADPH oxidase activity.


Assuntos
Luz , NADPH Oxidases/metabolismo , Oryza/enzimologia , Oryza/efeitos da radiação , Fotossíntese/efeitos da radiação , Feixe Vascular de Plantas/enzimologia , Feixe Vascular de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Benzidinas/metabolismo , Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Oxigênio/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Feixe Vascular de Plantas/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
17.
Plant J ; 107(3): 938-955, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974297

RESUMO

Acclimation of plants to adverse conditions requires the coordination of gene expression and signalling pathways between tissues and cell types. As the energy and carbon capturing organs, leaves are significantly affected by abiotic and biotic stresses. However, tissue- or cell type-specific analyses of stress responses have focussed on the Arabidopsis root. Here, we comparatively explore the transcriptomes of three leaf tissues (epidermis, mesophyll, vasculature) after induction of diverse stress pathways by chemical stimuli (antimycin A, 3-amino-1,2,4-triazole, methyl viologen, salicylic acid) and ultraviolet light in Arabidopsis using laser capture microdissection followed by RNA sequencing. Stimulation of stress pathways caused an overall reduction in the number of genes expressed in a tissue-specific manner, though a small subset gained or changed their tissue specificity. We find no evidence of a common stress response, with only a few genes consistently responsive to two or more treatments in the analysed tissues. However, differentially expressed genes overlap between tissues for individual treatments. A focussed analysis provided evidence for an interaction of auxin and ethylene that mediates retrograde signalling during mitochondrial dysfunction specifically in the epidermis, and a gene regulatory network defined the hierarchy of interactions. Taken together, we have generated an extensive reference dataset that will be valuable for future experiments analysing transcriptional responses on a tissue or single-cell level. Our results will enable the tailoring of the tissue-specific engineering of stress-tolerant plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Células do Mesofilo/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Microdissecção e Captura a Laser , Epiderme Vegetal/citologia , Feixe Vascular de Plantas , Estresse Fisiológico , Transcrição Gênica
18.
J Plant Res ; 134(4): 765-778, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33837510

RESUMO

In various monocotyledons, there are basally blindly ended stem vascular bundles, which never connect to the vascular bundles of roots. These blindly ended vascular bundles seem to be unsuitable for transferring water in terrestrial plants. In the present study, we aim to clarify the trace of the blindly ended stem vascular bundles in whole plants, and consider the evolutional process for holding such vascular bundles in the stem. We examined a whole stem vasculature of Eriocaulon taquetii (Eriocaulaceae, monocotyledons) by observation of serial transverse sections, cut by a manual rotary microtome, and viewed under an epifluorescence microscope. Our investigation revealed a threedimensional reconfiguration of the scape vasculature and detected basipetally developing and basally blindly ended vascular bundles, originated from involucral bracts and arranged with acropetally developing vascular bundles alternately in the scape internode. The basipetally developing and basally blindly ended vascular bundles, which originate from the primodia of foliar organs, have been reported in various commelinids. The characteristic vascular bundles would be homologous and presumed to be a synapomorphy of commelinids. These vascular bundles are considered to be a relic characteristic from ancestral semiaquatic plants of monocotyledons.


Assuntos
Eriocaulaceae , Evolução Biológica , Feixe Vascular de Plantas , Sementes
19.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920962

RESUMO

The plant hormone auxin acts as a mediator providing positional instructions in a range of developmental processes. Studies in Arabidopsis thaliana L. show that auxin acts in large part via activation of Auxin Response Factors (ARFs) that in turn regulate the expression of downstream genes. The rice (Oryza sativa L.) gene OsARF11 is of interest because of its expression in developing rice organs and its high sequence similarity with MONOPTEROS/ARF5, a gene with prominent roles in A. thaliana development. We have assessed the phenotype of homozygous insertion mutants in the OsARF11 gene and found that in relation to wildtype, osarf11 seedlings produced fewer and shorter roots as well as shorter and less wide leaves. Leaves developed fewer veins and larger areoles. Mature osarf11 plants had a reduced root system, fewer branches per panicle, fewer grains per panicle and fewer filled seeds. Mutants had a reduced sensitivity to auxin-mediated callus formation and inhibition of root elongation, and phenylboronic acid (PBA)-mediated inhibition of vein formation. Taken together, our results implicate OsARF11 in auxin-mediated growth of multiple organs and leaf veins. OsARF11 also appears to play a central role in the formation of lateral root, panicle branch, and grain meristems.


Assuntos
Meristema/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Ácidos Borônicos/farmacologia , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Mutação/genética , Tamanho do Órgão , Oryza/genética , Fenótipo , Feixe Vascular de Plantas/metabolismo , Plântula/metabolismo
20.
Plant J ; 107(2): 629-648, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914380

RESUMO

Beyond facilitating transport and providing mechanical support to the leaf, veins have important roles in the performance and productivity of plants and the ecosystem. In recent decades, computational image analysis has accelerated the extraction and quantification of vein traits, benefiting fields of research from agriculture to climatology. However, most of the existing leaf vein image analysis programs have been developed for the reticulate venation found in dicots. Despite the agroeconomic importance of cereal grass crops, like Oryza sativa (rice) and Zea mays (maize), a dedicated image analysis program for the parallel venation found in monocots has yet to be developed. To address the need for an image-based vein phenotyping tool for model and agronomic grass species, we developed the grass vein image quantification (grasviq) framework. Designed specifically for parallel venation, this framework automatically segments and quantifies vein patterns from images of cleared leaf pieces using classical computer vision techniques. Using image data sets from maize inbred lines and auxin biosynthesis and transport mutants in maize, we demonstrate the utility of grasviq for quantifying important vein traits, including vein density, vein width and interveinal distance. Furthermore, we show that the framework can resolve quantitative differences and identify vein patterning defects, which is advantageous for genetic experiments and mutant screens. We report that grasviq can perform high-throughput vein quantification, with precision on a par with that of manual quantification. Therefore, we envision that grasviq will be adopted for vein phenomics in maize and other grass species.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Folhas de Planta/anatomia & histologia , Feixe Vascular de Plantas/anatomia & histologia , Zea mays/anatomia & histologia , Automação/métodos , Conjuntos de Dados como Assunto , Melhoramento Vegetal , Poaceae/anatomia & histologia , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...