Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931739

RESUMO

The accurate perception of external environment information through the robot foot is crucial for the mobile robot to evaluate its ability to traverse terrain. Adequate foot-end contact signals can provide robust support for robot motion control and decision-making processes. The shape and uncertain rotation of the wheel-legged robot foot end represent a significant challenge to sensing the robot foot-end contact state, which current foot-end sensing schemes cannot solve. This paper presents a sensing method for the tire stress field of wheel-legged robots. A finite element analysis was conducted to study the deformation characteristics of the foot-end tire under force. Based on this analysis, a heuristic contact position estimator was designed that utilizes symmetrical deformation characteristics. Strain sensors, arranged in an array, extract the deformation information on the inner surface of the tire at a frequency of 200 Hz. The contact position estimator reduces the dimensionality of the data and fits the eigenvalues to the estimated contact position. Using support vector regression, the force estimator utilizes the estimated contact position and sensor signal to estimate the normal reaction force, designated as FZ. The sensing system is capable of detecting the contact position on the wheel circumference (with a root mean square error of 1.150°), as well as the normal force of 160 N on the Z axis (with a root mean square error of 6.04%). To validate the efficacy of the sensor detection method, a series of randomized and repeated experiments were conducted on a self-constructed test platform. This novel approach offers a promising avenue for perceiving contact states in wheel-legged robots.

2.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772274

RESUMO

For legged robots, aerial motions are the only option to overpass obstacles that cannot be circumvented with standard locomotion gaits. In these cases, the robot must perform a leap to either jump onto the obstacle or fly over it. However, these movements represent a challenge, because, during the flight phase, the Center of Mass (CoM) cannot be controlled, and there is limited controllability over the orientation of the robot. This paper focuses on the latter issue and proposes an Orientation Control System (OCS), consisting of two rotating and actuated masses (flywheels or reaction wheels), to gain control authority on the orientation of the robot. Due to the conservation of angular momentum, the rotational velocity if the robot can be adjusted to steer the robot's orientation, even when the robot has no contact with the ground. The axes of rotation of the flywheels are designed to be incident, leading to a compact orientation control system that is capable of controlling both roll and pitch angles, considering the different moments of inertia in the two directions. The concept was tested by means of simulations on the robot Solo12.

3.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112388

RESUMO

Addressing the problem that control methods of wheel-legged robots for future Mars exploration missions are too complex, a time-efficient control method based on velocity planning for a hexapod wheel-legged robot is proposed in this paper, which is named time-efficient control based on velocity planning (TeCVP). When the foot end or wheel at knee comes into contact with the ground, the desired velocity of the foot end or knee is transformed according to the velocity transformation of the rigid body from the desired velocity of the torso which is obtained by the deviation of torso position and posture. Furthermore, the torques of joints can be obtained by impedance control. When suspended, the leg is regarded as a system consisting of a virtual spring and a virtual damper to realize control of legs in the swing phase. In addition, leg sequences of switching motion between wheeled configuration and legged configuration are planned. According to a complexity analysis, velocity planning control has lower time complexity and less times of multiplication and addition compared with virtual model control. In addition, simulations show that velocity planning control can realize stable periodic gait motion, wheel-leg switching motion and wheeled motion and the operation time of velocity planning control is about 33.89% less than that of virtual model control, which promises a great prospect for velocity planning control in future planetary exploration missions.

4.
Sensors (Basel) ; 22(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35632226

RESUMO

In this paper, we present a strategy for a legged robot to stably cross cinder blocks with a limited area acquired from a camera. First, we used the point cloud acquired from the camera to detect the planes and calculate their centroids and directions. This information was used to determine the position and direction of the foot to which the robot should go. Existing A*-based footstep planners require a global map to reach the goal from the start and do not generate a path if there is no solution to the goal due to completeness of A*. In addition, if the map is not updated while moving the path, it is vulnerable to changes in the object position. Our strategy calculates the footsteps that the robot can walk in a limited camera area without securing a global map. In addition, it updates the local map information every walking step so that it quickly recognizes nearby objects and finds a path that can move. While the robot is walking, objects may not be detected due to the narrow camera field of view. In addition, even if an area for the robot to land is found, a situation in which the robot's legs collide may occur. We present a strategy to solve this problem using previous landing data. In the experimental environment composed of several patterns, the performance was verified by stably walking on the blocks without collision between the robot's legs.


Assuntos
Robótica , Algoritmos , , Caminhada
5.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433436

RESUMO

The article describes the problem of geometric synthesis of the inspection robot suspension system, designed for operation in difficult conditions with the presence of scattered obstacles. The exemplary application of a mine infrastructure inspection robot is developed and supported by the ideas. The brief introduction presents current trends, requirements and known design approaches of platforms enabled to cross the obstacles. The idea of a nature-inspired wheel-legged robot is given, and the general outline of its characteristics is provided. Then the general idea of kinematic system elements selection is discussed. The main subject of geometrical synthesis of the chosen four-bar mechanism is described in detail. The mathematical model of the suspension and connections between the parts of the structure is clarified. The well-known analytical approach of brute force search is analyzed and validated. Then the method inspired by the branch and bound algorithm is developed. Finally, a novel application of the nature-inspired algorithm (the Chameleon Swarm Algorithm) to synthesis is proposed. The obtained results are analyzed, and a brief comparison of methods is given. The successful implementation of the algorithm is presented. The obtained results are effectively tested with simulations and experimental tests. The designed structure developed with the CSA is assembled and attached to the prototype of a 14-DOF wheel-legged robot. Furthermore, the principles of walking and the elements forming the control structure were also discussed. The paper is summarized with the description of the developed wheel-legged robot LegVan 1v2.


Assuntos
Robótica , Robótica/métodos , Algoritmos , Modelos Teóricos , Caminhada
6.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450801

RESUMO

Recent achievements in the field of computer vision, reinforcement learning, and locomotion control have largely extended legged robots' maneuverability in complex natural environments. However, little research focuses on sensing and analyzing the physical properties of the ground, which is crucial to robots' locomotion during their interaction with highly irregular profiles, deformable terrains, and slippery surfaces. A biomimetic, flexible, multimodal sole sensor (FMSS) designed for legged robots to identify the ontological status and ground information, such as reaction force mapping, contact situation, terrain, and texture information, to achieve agile maneuvers was innovatively presented in this paper. The FMSS is flexible and large-loaded (20 Pa-800 kPa), designed by integrating a triboelectric sensing coat, embedded piezoelectric sensor, and piezoresistive sensor array. To evaluate the effectiveness and adaptability in different environments, the multimodal sensor was mounted on one of the quadruped robot's feet and one of the human feet then traversed through different environments in real-world tests. The experiment's results demonstrated that the FMSS could recognize terrain, texture, hardness, and contact conditions during locomotion effectively and retrain its sensitivity (0.66 kPa-1), robustness, and compliance. The presented work indicates the FMSS's potential to extend the feasibility and dexterity of tactile perception for state estimation and complex scenario detection.


Assuntos
Robótica , Percepção do Tato , Biomimética , Humanos , Locomoção
7.
Sensors (Basel) ; 21(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34696095

RESUMO

Aiming at highly dynamic locomotion and impact mitigation, this paper proposes the design and implementation of a symmetric legged robot. Based on the analysis of the three-leg topology in terms of force sensitivity, force production, and impact mitigation, the symmetric leg was designed and equipped with a high torque density actuator, which was assembled by a custom motor and two-stage planetary. Under the kinematic and dynamic constraints of the robot system, a nonlinear optimization for high jumping and impact mitigation is proposed with consideration of the peak impact force at landing. Finally, experiments revealed that the robot achieved a jump height of 1.8 m with a robust landing, and the height was equal to approximately three times the leg length.


Assuntos
Robótica , Fenômenos Biomecânicos , Locomoção
8.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450814

RESUMO

Aiming at the crossing problem of complex terrain, to further improve the ability of obstacles crossing, this paper designs and develops an all-terrain wheel-legged hybrid robot (WLHR) with strong adaptability to the environment. According to the operation requirements in different road conditions, the robot adopts a wheel and leg compound structure, which can realize the transformation of wheel movement and leg movement to adjust its motion state. The straight and turning process of the robot is analyzed theoretically, the kinematics model is established and solved, and obstacle crossing analysis is carried out by establishing the mathematical model of front wheel obstacle crossing when the robot meets obstacles. To verify the analysis results, ADAMS software is used to simulate and analyze the process of robot running on the complex road surface and obstacles-crossing. Finally, a theoretical prototype is made to verify its feasibility. Theoretical analysis and experimental results show that the designed WLHR is feasible and has the stability of the wheeled mechanism and the higher obstacle crossing ability of the legged mechanism so that the robot can adapt to a variety of complex road conditions.


Assuntos
Robótica , Corrida , Fenômenos Biomecânicos , Movimento (Física) , Movimento
9.
Sensors (Basel) ; 20(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443542

RESUMO

Manipulators with multi degree-of-freedom (DOF) are widely used for the peg-in-hole task. Compared with manipulators, six-legged robots have better mobility performance apart from completing operational tasks. However, there are nearly no previous studies of six-legged robots performing the peg-in-hole task. In this article, a peg-in-hole approach for six-legged robots is studied and experimented with a six-parallel-legged robot. Firstly, we propose a method whereby a vision sensor and a force/torque (F/T) sensor can be used to explore the relative location between the hole and peg. According to the visual information, the robot can approach the hole. Next, based on the force feedback, the robot plans the trajectory in real time to mate the peg and hole. Then, during the insertion, admittance control is implemented to guarantee the smooth insertion. In addition, during the whole assembly process, the peg is held by the gripper and attached to the robot body. Connected to the body, the peg has sufficient workspace and six DOF to perform the assembly task. Finally, experiments were conducted to prove the suitability of the approach.

10.
Sensors (Basel) ; 19(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426547

RESUMO

In this research, the dynamic walking of a legged robot in underwater environments is proposed. For this goal, the underwater zero moment point (Uzmp) is proposed in order to generate the trajectory of the centre of the mass of the robot. Also, the underwater zero moment point auxiliary (Uzmp aux.) is employed to stabilize the balance of the robot before it undergoes any external perturbations. The concept demonstration of a legged robot with hydraulic actuators is developed. Moreover, the control that was used is described and the hydrodynamic variables of the robot are determined. The results demonstrate the validity of the concepts that are proposed in this article, and the dynamic walking of the legged robot in an underwater environment is successfully demonstrated.

11.
Sensors (Basel) ; 19(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455002

RESUMO

This paper presents a novel CPG-based gait generation of the curved-leg hexapod robot that can enable smooth gait transitions between multi-mode gaits. First, the locomotion of the curved leg and instability during the gait transitions are analyzed. Then, a modified Hopf oscillator is applied in the CPG control, which can realize multiple gaits by adjusting a simple parameter. In addition, a smooth gait switching method is also proposed via smooth gait transition functions and gait planning. Tripod gait, quadruped gait, and wave gait are planned for the hexapod robot to achieve quick and stable gait transitions smoothly and continuously. MATLAB and ADAMS simulations and corresponding practical experiments are conducted. The results show that the proposed method can achieve smooth and continuous mutual gait transitions, which proves the effectiveness of the proposed CPG-based hexapod robot control.

12.
Sensors (Basel) ; 18(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518964

RESUMO

Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

13.
Sensors (Basel) ; 18(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149656

RESUMO

In view of terrain classification of the autonomous multi-legged walking robots, two synthetic classification methods for terrain classification, Simple Linear Iterative Clustering based Support Vector Machine (SLIC-SVM) and Simple Linear Iterative Clustering based SegNet (SLIC-SegNet), are proposed. SLIC-SVM is proposed to solve the problem that the SVM can only output a single terrain label and fails to identify the mixed terrain. The SLIC-SegNet single-input multi-output terrain classification model is derived to improve the applicability of the terrain classifier. Since terrain classification results of high quality for legged robot use are hard to gain, the SLIC-SegNet obtains the satisfied information without too much effort. A series of experiments on regular terrain, irregular terrain and mixed terrain were conducted to present that both superpixel segmentation based synthetic classification methods can supply reliable mixed terrain classification result with clear boundary information and will put the terrain depending gait selection and path planning of the multi-legged robots into practice.

14.
Biomimetics (Basel) ; 9(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248598

RESUMO

Legged robots have shown great adaptability to various environments. However, conventional walking gaits are insufficient to meet the motion requirements of robots. Therefore, achieving high-speed running for legged robots has become a significant research topic. In this paper, based on the Spring-Loaded Inverted Pendulum (SLIP) model and the optimized Double leg-Spring-Loaded Inverted Pendulum (D-SLIP) model, the running control strategies for the double flying phase Bound gait and the Rotatory gallop gait of quadruped robots are designed. First, the dynamics of the double flying phase Bound gait and Rotatory gallop gait are analyzed. Then, based on the "three-way" control idea of the SLIP model, the running control strategy for the double flying phase Bound gait is designed. Subsequently, the SLIP model is optimized to derive the D-SLIP model with two touchdown legs, and its dynamic characteristics are analyzed. And the D-SLIP model is applied to the running control strategy of the Rotatory gallop gait. Furthermore, joint simulation verification is conducted using Adams virtual prototyping and MATLAB/Simulink control systems for the designed control strategies. Finally, experimental verification is performed for the double flying phase Bound gait running control strategy. The experimental results demonstrate that the quadruped robot can achieve high-speed and stable running.

15.
Bioinspir Biomim ; 19(2)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346329

RESUMO

This paper proposes a generalized spring-loaded inverted pendulum (G-SLIP) model to explore various popular reduced-order dynamic models' characteristics and suggest a better robot leg design under specified performance indices. The G-SLIP model's composition can be varied by changing the model's parameters, such as ground contacting type and spring property. It can be transformed into four widely used models: the spring-loaded inverted pendulum (SLIP) model, the two-segment leg model, the SLIP with rolling foot model, and the rolling SLIP model. The effects of rolling contact and spring configuration on the dynamic behavior and fixed-point distribution of the G-SLIP model were analyzed, and the basins of attraction of the four described models were studied. By varying the parameters of the G-SLIP model, the dynamic behavior of the model can be optimized. Optimized for general locomotion running at various speeds, the model provided leg design guidelines. The leg was empirically fabricated and installed on the hexapod for experimental evaluation. The results indicated that the robot with a designed leg runs faster and is more power-efficient.


Assuntos
Robótica , Animais , Robótica/métodos , Modelos Biológicos , Locomoção , , Insetos , Fenômenos Biomecânicos , Perna (Membro) , Marcha
16.
ISA Trans ; 147: 439-452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350797

RESUMO

The reliability of sensors and servos is paramount in diagnosing the Heavy-Legged Robot (HLR). Servo faults stemming from mechanical wear, environmental disturbances, or electrical issues pose significant challenges to traditional diagnostic methods, which rely heavily on delicate sensors. This study introduces a framework that solely relies on joint position and permanent magnet synchronous motor (PMSM) information to mitigate dependency on fragile sensors for servo-fault diagnosis. An essential contribution involves refining a model that directly connects PMSM currents to HLR motion. Moreover, to address scenarios where actual servo outputs and HLR cylinder velocities are unavailable, an improved sliding mode observer (ISMO) is proposed. Additionally, a Fourier expansion model characterizes the relationship between operation time and fault-free disturbance in the HLR. Subsequently, the dual-line particle filter (DPF) algorithm is employed to predict fault-free disturbance. The outputs of DPF serve as a feedforward to the ISMO, enabling the real-time servo torque fault diagnosis. The accuracy and validity of this technical framework are verified through various simulations in MATLAB/SIMSCAPE and real-world experiments.

17.
Biomimetics (Basel) ; 8(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622945

RESUMO

This paper presents the development, modeling, and control of L03, an underactuated 3D bipedal robot with symmetrical hips and straight legs. This innovative design requires only five actuators, two for the legs and three for the hips. This paper is divided into three parts: (1) mechanism design and kinematic analysis; (2) trajectory planning for the center of mass and foot landing points based on the Divergent Component of Motion (DCM), enabling lateral and forward walking capabilities for the robot; and (3) gait stability analysis through prototype experiments. The primary focus of this study is to explore the application of underactuated symmetrical designs and determine the number of motors required to achieve omnidirectional movement of a bipedal robot. Our simulation and experimental results demonstrate that L03 achieves simple walking with a stable and consistent gait. Due to its lightweight construction, low leg inertia, and straight-legged design, L03 can achieve ground perception and gentle ground contact without the need for force sensors. Compared to existing bipedal robots, L03 closely adheres to the characteristics of the linear inverted pendulum model, making it an invaluable platform for future algorithm research.

18.
Natl Sci Rev ; 10(5): nwad045, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37056443

RESUMO

Physical characteristics of terrains, such as softness and friction, provide essential information for legged robots to avoid non-geometric obstacles, like mires and slippery stones, in the wild. The perception of such characteristics often relies on tactile perception and vision prediction. Although tactile perception is more accurate, it is limited to close-range use; by contrast, establishing a supervised or self-supervised contactless prediction system using computer vision requires adequate labeled data and lacks the ability to adapt to the dynamic environment. In this paper, we simulate the behavior of animals and propose an unsupervised learning framework for legged robots to learn the physical characteristics of terrains, which is the first report to manage it online, incrementally and with the ability to solve cognitive conflicts. The proposed scheme allows robots to interact with the environment and adjust their cognition in real time, therefore endowing robots with the adaptation ability. Indoor and outdoor experiments on a hexapod robot are carried out to show that the robot can extract tactile and visual features of terrains to create cognitive networks independently; an associative layer between visual and tactile features is created during the robot's exploration; with the layer, the robot can autonomously generate a physical segmentation model of terrains and solve cognitive conflicts in an ever-changing environment, facilitating its safe navigation.

19.
Soft Robot ; 10(1): 40-51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35333662

RESUMO

Jumping locomotion is critical for microrobots to overcome obstacles. Among the microjumping robots, the development of an omnidirectional jumping mechanism is challenging. To avoid the complicated microfabrication process, we present an insect-computer hybrid robot by controlling the locomotions of an Oriental Migratory Locust (Locusta migratoria manilensis, Meyen 1835). The insect-computer hybrid robot achieves repetitive omnidirectional jumps of ∼100 mm high. A series of experiments on jumping control, turning control, and collaborative directional jumping control are carried out. We also demonstrate the implementation of a wireless stimulator backpack that provides remote locomotion control, which transforms the insect into a hybrid robot. Moreover, a feedback jump control system is subsequently presented. The results indicate that the hybrid robot could easily achieve an omnidirectional jump and maintain body righting after landing. This robot is well-suited for applications that require locomotion on uneven terrains, such as environmental surveillance and search and rescue.

20.
Biomimetics (Basel) ; 8(1)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810397

RESUMO

Legged animals can adapt to complex terrains because they can step or jump over obstacles. Their application of foot force is determined according to the estimation of the height of an obstacle; then, the trajectory of the legs is controlled to clear the obstacle. In this paper, we designed a three-DoF one-legged robot. A spring-loaded inverted pendulum model was employed to control the jumping. Herein, the jumping height was mapped to the foot force by mimicking the jumping control mechanisms of animals. The foot trajectory in the air was planned using the Bézier curve. Finally, the experiments of the one-legged robot jumping over multiple obstacles of different heights were implemented in the PyBullet simulation environment. The simulation results demonstrate the effectiveness of the method proposed in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA