Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(23): 10914-10921, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088143

RESUMEN

As massive amounts of carbon dioxide (CO2) have been emitted into the atmosphere causing severe global warming problems, developing carbon-negative techniques to control atmospheric CO2 concentrations is enormously urgent. Herein, by coupling the direct atmosphere CO2 capture adsorbent ZSM-5 with the CO2 reduction photocatalyst NiV2Se4, we present the first synergistic approach for concentrating and converting atmospheric CO2 into C2 solar fuels. A C2H6 yield of 1.85 µmol g-1 h-1 has been achieved in the air, outperforming state-of-the-art direct atmospheric CO2 conversion photocatalysts. Comprehensive characterizations show that ZSM-5 enhances CO2 capture from the atmosphere, improving the interfacial interaction of CO2 on the NiV2Se4 surface for C-C coupling of CH3* to form C2H6. This work demonstrates the first example of integrating direct CO2 capture material with a CO2 reduction photocatalyst for atmospheric CO2 capture and utilization, which paves the way for the negative-carbon technology development under worldwide carbon-neutral pressure.

2.
Angew Chem Int Ed Engl ; 62(39): e202309625, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37563855

RESUMEN

Highly selective photoreduction of CO2 to valuable hydrocarbons is of great importance to achieving a carbon-neutral society. Precisely manipulating the formation of the Metal1 ⋅⋅⋅C=O⋅⋅⋅Metal2 (M1 ⋅⋅⋅C=O⋅⋅⋅M2 ) intermediate on the photocatalyst interface is the most critical step for regulating selectivity, while still a significant challenge. Herein, inspired by the polar electronic structure feature of CO2 molecule, we propose a strategy whereby the Lewis acid-base dual sites confined in a bimetallic catalyst surface are conducive to forming a M1 ⋅⋅⋅C=O⋅⋅⋅M2 intermediate precisely, which can promote selectivity to hydrocarbon formation. Employing the Ag2 Cu2 O3 nanowires with abundant Cu⋅⋅⋅Ag Lewis acid-base dual sites on the preferred exposed {110} surface as a model catalyst, 100 % selectivity toward photoreduction of CO2 into CH4 has been achieved. Subsequent surface-quenching experiments and density functional theory (DFT) calculations verify that the Cu⋅⋅⋅Ag Lewis acid-base dual sites do play a vital role in regulating the M1 ⋅⋅⋅C=O⋅⋅⋅M2 intermediate formation that is considered to be prone to convert CO2 into hydrocarbons. This study reports a highly selective CO2 photocatalyst, which was designed on the basis of a newly proposed theory for precise regulation of reaction intermediates. Our findings will stimulate further research on dual-site catalyst design for CO2 reduction to hydrocarbons.

3.
Nano Lett ; 23(6): 2219-2227, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913675

RESUMEN

Chemical/electric energy-driven processes dominate the traditional precious metal (PM) recovery market. The renewable energy-driven selective PM recycling approach crucial for carbon neutrality is under exploration. Herein, via an interfacial structure engineering approach, coordinational-active pyridine groups are covalently integrated onto the photoactive semiconductor SnS2 surface to construct Py-SnS2. Triggered by the preferred coordinational binding force between PMs and pyridine groups, together with the photoreduction capability of SnS2, Py-SnS2 shows significantly enhanced selective PM-capturing performance toward Au3+, Pd4+, and Pt4+ with recycling capacity up to 1769.84, 1103.72, and 617.61 mg/g for Au3+, Pd4+, and Pt4+, respectively. Further integrating the Py-SnS2 membrane into a homemade light-driven flow cell, 96.3% recovery efficiency was achieved for continuous Au recycling from a computer processing unit (CPU) leachate. This study reported a novel strategy to fabricate coordinational bonds triggered photoreductive membranes for continuous PM recovery, which could be expanded to other photocatalysts for broad environmental applications.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36780328

RESUMEN

Rational design of functional material interfaces with well-defined physico-chemical-driven forces is crucial for achieving highly efficient interfacial chemical reaction dynamics for resource recovery. Herein, via an interfacial structure engineering strategy, precious metal (PM) coordination-active pyridine groups have been successfully covalently integrated into ultrathin 1T-MoS2 (Py-MoS2). The constructed Py-MoS2 shows highly selective interfacial coordination bonding-assisted redox (ICBAR) functionality toward PM recycling. Py-MoS2 shows state-of-the-art high recovery selectivity toward Au3+ and Pd4+ within 13 metal cation mixture solutions. The related recycling capacity reaches up to 3343.00 and 2330.74 mg/g for Au3+ and Pd4+, respectively. More importantly, above 90% recovery efficiencies have been achieved in representative PMs containing electronic solid waste leachate, such as computer processing units (CPU) and spent catalysts. The ICBAR mechanism developed here paves the way for interface engineering of the well-documented functional materials toward highly efficient PM recovery.

5.
Nano Lett ; 22(18): 7572-7578, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36083029

RESUMEN

Developing highly efficient advanced battery deionization (BDI) electrode materials at a low cost is vital for seawater desalination. Herein, a high-efficiency wood-based BDI electrode has been fabricated for seawater desalination, benefiting from the self-supporting three-dimensional (3D) nanoporous structure and rich redox-active sites. The finely tuned rich electrochemical redox active C═O groups on the surface of the wood electrode derived from the facile thermochemical conversion of lignin play a crucial role in the Faradaic cation removal dynamics of BDI. Coupling the 3D wood electrode and a polyaniline-modified wood electrode as the cathode and anode, an all-wood-electrode-based deionization battery has been successfully assembled with a state-of-the-art ion removal capacity of up to 164 mg g-1 in seawater. Our work reported an example of utilizing wood as the BDI electrode via fine-tuning the redox-active sites, demonstrating a novel resource utilization pathway of converting cheap biomass into BDI electrodes for highly efficient seawater desalination.


Asunto(s)
Nanoporos , Purificación del Agua , Electrodos , Lignina , Cloruro de Sodio , Purificación del Agua/métodos , Madera
6.
Water Res ; 222: 118885, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932701

RESUMEN

Persulfate (PS, S2O82-) activation through transition metal sulfides (TMS) has gained increasing attention since it can decompose a wide variety of refractory halogenated organic compounds in groundwater and wastewater. However, the processes of PS activation by TMS and particularly the formation of •OH radical under anoxic and acidic conditions (pH ∼2.8) remain elusive. Herein, by employing mixed redox-couple-involved chalcopyrite (CuFeS2) (150 mg/L) nanoparticles for PS (3.0 mM) activation, 96% of trichloroethylene was degraded within 120 min at pH 6.8 under visible light irradiation. The combination of experimental studies and theoretical calculations suggested that the Cu(I)/Fe(III) mixed redox-couple in CuFeS2 plays a crucial role to activate PS. Cu(I) acted as an electron donor to transfer electron to Fe(III), then Fe(III) served as an electron transfer bridge as well as a catalytic center to further donate this received electron to the O-O bond of PS, thus yielding SO4•- for trichloroethylene oxidation. Moreover, for the first time, •OH radicals were found to form from the catalytic hydrolysis of PS onto CuFeS2 surface, where S2O82- anion was hydrolyzed to yield H2O2 and these ensuing H2O2 were further transformed into •OH radicals via photoelectron-assisted O-O bond cleavage step. Our findings offer valuable insights for understanding the mechanisms of PS activation by redox-couple- involved TMS, which could promote the design of effective activators toward PS decomposition for environmental remediation.


Asunto(s)
Cobre/química , Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Catálisis , Compuestos Férricos , Peróxido de Hidrógeno/química , Hidrólisis , Oxidación-Reducción , Sulfatos/química , Sulfuros/química , Contaminantes Químicos del Agua/química
7.
Inorg Chem ; 61(20): 7804-7812, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35522893

RESUMEN

Langmuir adsorption model is a classic physical-chemical adsorption model and is widely used to describe the monolayer adsorption behavior at the material interface in environmental chemistry. Traditional adsorption dynamic modeling solely considered the surface physiochemical interaction between the adsorbent and adsorbate. The surface reaction dynamics resulting from the heterogeneous surface and intrinsic electronic structure of absorbents were rarely considered within the reported adsorption experiments. Herein, by employing the chlorine hybrid graphene oxide (GO-Cl) to adsorb Ag+ in an aqueous solution, complicated molecular dynamics significantly deviated from the monolayer adsorption mechanism, as suggested by Langmuir adsorption curve fitting, has been elucidated down to atomic scale. In the time-dependent Ag adsorption experiments, both Ag single atoms and Ag/AgCl nanoparticle heterostructures are observed to be formed sequentially on GO-Cl. These observations indicate that for the surface adsorption dynamics, not only the surface chemical adsorption process involved but also photoreduction and the C-Cl bond cleavage reaction has been heavily engaged within the GO-Cl interface, suggesting a much more complicated vision rather than the monolayered adsorption algorithm as derived from curve fitting. This study uses GO-Cl as a simple example to disclose the complicated adsorption dynamic process underneath Langmuir adsorption curve fitting. It advocates the necessity of imaging the interfacial atomic-scale dynamic structure with high-resolution microscopy techniques in modern adsorption studies, rather than simply explaining the adsorption dynamics relying on the curve fitting results due to the complicated physiochemical reactivity of the adsorbents.

8.
Nat Commun ; 13(1): 2146, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443754

RESUMEN

Ultrathin two-dimensional (2D) metal oxyhalides exhibit outstanding photocatalytic properties with unique electronic and interfacial structures. Compared with monometallic oxyhalides, bimetallic oxyhalides are less explored. In this work, we have developed a novel top-down wet-chemistry desalination approach to remove the alkali-halide salt layer within the complicated precursor bulk structural matrix Pb0.6Bi1.4Cs0.6O2Cl2, and successfully fabricate a new 2D ultrathin bimetallic oxyhalide Pb0.6Bi1.4O2Cl1.4. The unlocked larger surface area, rich bimetallic active sites, and faster carrier dynamics within Pb0.6Bi1.4O2Cl1.4 layers significantly enhance the photocatalytic efficiency for atmospheric CO2 reduction. It outperforms the corresponding parental matrix phase and other state-of-the-art bismuth-based monometallic oxyhalides photocatalysts. This work reports a top-down desalination strategy to engineering ultrathin bimetallic 2D material for photocatalytic atmospheric CO2 reduction, which sheds light on further constructing other ultrathin 2D catalysts for environmental and energy applications from similar complicate structure matrixes.

9.
J Hazard Mater ; 431: 128590, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247735

RESUMEN

Herein, we converted spent LiFePO4 battery to the sea urchin-like material (SULM) with a highly efficient and environment-friendly method, which can contribute to building a zero-waste city. With SULM as a Fenton-like catalyst, a highly-efficient degradation process was realized for organic pollutants with interface and solution synergistic effect. In our SULM+NH2OH+H2O2 Fenton-like system, NH2OH can effectively promote the interface iron (Fe(Ⅲ)/Fe(Ⅱ)) and solution iron (Fe(Ⅲ)/Fe(Ⅱ)) redox cycle, thus promoting the generation of reactive oxygen species (ROS). However, the ROS generation process and organic pollutants degradation pathway with the presence of NH2OH remains a puzzle. Here the detailed ROS generation mechanism and pollutants degradation pathway have been illustrated carefully based on experimental exploration and characterization. Therein, hydroxyl radicals (·OH) and singlet oxygen (1O2) are the main ROS for oxidizing and degrading organic pollutants. Notably, 1O2 can be converted from superoxide radicals (·O2) in SULM+NH2OH+H2O2 system. This study not only demonstrates the strategy of "trash-to-treasure" and "waste-to-control-waste" to simultaneously reduce the hazardous release from industrial solid waste and organic wastewater, it also provides new mechanistic insights for NH2OH mediated Fenton-like redox system.

10.
Nano Lett ; 22(4): 1656-1664, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35119284

RESUMEN

Heterostructure engineering plays a vital role in regulating the material interface, thus boosting the electron transportation pathway in advanced catalysis. Herein, a novel Bi2O3/BiO2 heterojunction catalyst was synthesized via a molten alkali-assisted dealumination strategy and exhibited rich structural dynamics for an electrocatalytic CO2 reduction reaction (ECO2RR). By coupling in situ X-ray diffraction and Raman spectroscopy measurements, we found that the as-synthesized Bi2O3/BiO2 heterostructure can be transformed into a novel Bi/BiO2 Mott-Schottky heterostructure, leading to enhanced adsorption performance for CO2 and *OCHO intermediates. Consequently, high selectivity toward formate larger than 95% was rendered in a wide potential window along with an optimum partial current density of -111.42 mA cm-2 that benchmarked with the state-of-the-art Bi-based ECO2RR catalysts. This work reports the construction and fruitful structural dynamic insights of a novel heterojunction electrocatalyst for ECO2RR, which paves the way for the rational design of efficient heterojunction electrocatalysts for ECO2RR and beyond.

11.
J Hazard Mater ; 423(Pt B): 127206, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34544002

RESUMEN

Wastewater with complex compositions of both heavy metals and organic pollutants is of critical environmental and socioeconomic threat worldwide, which urgently requires feasible remediation technologies to target this challenge. In this study, natural chalcopyrite (CuFeS2, NCP), the most abundant copper-based mineral in the Earth's crust, has been discovered to be a heterogeneous catalyst that can activate peroxydisulfate (PDS) for the simultaneous degradation of organic pollutant Rhodamine B (RhB) and reduction of hexavalent chromium (Cr(VI)). Batch experimental results indicate that both RhB and Cr(VI) could be simultaneously removed under a near-neutral condition in NCP/PDS combined system. The radicals SO4•- and •OH generated from PDS activation are the main oxidative species detected by electron paramagnetic resonance (EPR) spectroscopy. SO4•- acted as a predominant role in RhB degradation, while Cr(VI) reduction is mainly attributed to the oxidization of S2- and S22- species on NCP surface, as well as the photoreduction performance of NCP, which could be enhanced by the intermediates generated from RhB degradation. Density functional theory (DFT) calculation results disclose that Fe is the critical catalytic site for PDS activation. This work demonstrates a user-friendly strategy for remediation of complex wastewater containing both heavy metal and organic pollutants by combining photoreduction and advanced oxidation processes (AOPs) with natural minerals. It paves a way for wastewater treatment by utilizing low-cost natural abundant minerals as catalysts.


Asunto(s)
Cromo , Cobre , Minerales , Oxidación-Reducción , Rodaminas
12.
J Hazard Mater ; 424(Pt A): 127244, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34583169

RESUMEN

Herein, a novel "waste reclamation for soil remediation" strategy has been developed for both alkaline waste red mud (RM) recycling and heavy metal (HM) polluted soil remediation. Through a direct one-pot hydrothermal reaction process, the Al, Si, alkali, and Fe2O3 components in waste RM have been transferred into ferric oxide decorated ANA-type zeolite (Fe2O3-ANA). As tested by the HMs polluted soil remediation and oilseed rape planting experiment, when 25 g/kg Fe2O3-ANA is added into the Pb2+, Cu2+, Cr3+ and anionic AsO2- polluted soil (HM concentration: 100-200 mg/kg), it can effectively suppress the HMs mobility in soil and reduce the bio-accumulation concentrations of HMs in the harvested oilseed rape (reduce ratio: 37.9-69.5%). The detailed mechanism study using energy dispersive X-ray energy spectroscopy, in-depth X-ray photoelectron spectroscopy and density function theory calculation concludes that the Cu2+, Pb2+ and Cr3+ in soil have been adsorbed and trapped in the framework structure of ANA in Fe2O3-ANA mainly via the cation exchange process. While the anionic AsO2- species are mainly caught by the Fe2O3 component in Fe2O3-ANA via surface adsorption. Overall, this work firstly transforms waste RM into Fe2O3-ANA for soil remediation, which is valuable to waste resource recycling and environmental conservation.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Zeolitas , Compuestos Férricos , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
13.
J Hazard Mater ; 421: 126701, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34339984

RESUMEN

Configuring reactive and stable catalytic interfaces is crucial to design efficient photocatalysts for Cr(VI) reduction. Herein, via the platinum decoration approach based on interfacial engineering, we developed an effective catalytic interface within novel semiconducting chalcopyrite quantum dots (Pt/CuFeS2 QDs). Benefiting from the catalytic merits of the Pt modulated interfacial structure and electronic structure, Pt/CuFeS2 QDs show a broader light absorption capability extending to near-infrared radiation (NIR) range with superior carriers separation performance and faster charge transfer efficiency, which delivers a three-folder faster photocatalytic Cr(VI) reduction efficiency comparing to the original CuFeS2 QDs. Density functional theory (DFT) calculations unravel that Pt atoms prefer to be anchored with the surface S atoms to form a stable interfacial structure with faster electron transfer and Cr(VI) reduction dynamics. This work demonstrates that platinum decoration based on interfacial engineering is an effective strategy to simultaneously modulate the band structure and accelerate the interfacial reaction dynamics for semiconductor photocatalysts, which paves the way for designing highly efficient photocatalysts for light-driven environmental and energy engineering applications.

14.
Inorg Chem ; 60(13): 9496-9503, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34164978

RESUMEN

Developing efficient recycling technologies for large-scale spent batteries is the key to build a zero-waste city. Herein, a [Al8.5Fe0.5P12O48]·[C24H72N16]·[Li·4H2O]·[12H2O] (AlFePO-Li) zeolite, crystallizing in space group I4̅3m with a = 16.6778(3) Å, has been constructed via the hydrothermal treatment of spent LiFePO4 battery. Benefiting from the three-dimensional 12-member-ring channels in its structure and chemical adsorption, excellent Pb2+ removal capacity up to 723.8 mg g-1 has been achieved. Detailed adsorption mechanism study revealed that the cation exchange capacity is significantly contributed by ion exchange of the protonated organic amine cations in the zeolite channel and the protons from the framework dangling phosphate group. This work demonstrates a novel method of reutilizing spent LIBs to construct zeolite for heavy metal removal. It is of great importance to achieve sustainable development based on the "resource utilization" and "trash-to-treasure" strategy.

15.
Nano Lett ; 21(11): 4830-4837, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34010006

RESUMEN

Battery deionization (BDI) offers a powerful platform for integrating water treatment and energy conversion. Exploring novel BDI electrode materials with high energy storage capacity and high efficiency for both cations and anions removal is the key to advancing the BDI technique. Herein, we report the first BDI electrode material capable of simultaneously removing Cl- (58.4 mg g-1) and Na+ (8.7 mg g-1) in water with a reversible capacity of 160 mAh g-1. In situ powder X-ray diffraction (PXRD) unravels that the dual-ion removal capability is attributed to a novel reversible electrochemical driven phase segregation reaction mechanism between NaBi3O4Cl2 and the in situ formed metallic Bi. The unique dual-ion storage capability demonstrated with the NaBi3O4Cl2 electrode indicates that exploring electrochemical reversible phase segregation electrode material holds great promise for advancing the BDI electrode for future desalination techniques and aqueous rechargeable battery systems.

16.
J Hazard Mater ; 412: 125199, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556854

RESUMEN

Both soil erosion and soil contamination pose critical environmental threats to the Chinese Loess Plateau (CLP). Green, efficient and feasible remediation technologies are highly demanded to meet these challenges. Herein we propose a unique "soil for soil-remediation" strategy to remediate the heavy metal polluted soil in CLP by converting loess into zeolite for the first time. With a simple template-free route, the natural loess can be converted into cancrinite (CAN) type of zeolite. A highly crystalline CAN was obtained via hydrothermal treatment at 240 oC for 48 h, with a precursor alkalinity of Na/(Si+Al)> 2.0. The as-synthesized CAN zeolite exhibits excellent remediation performance for Pb(II) and Cu(II) polluted soil. Plant assay experiment demonstrates that CAN can significantly restrain the uptake and accumulation of Pb(II) and Cu(II) ions in vegetables, with a high removal efficiency up to 90.7% and 81.4%, respectively. This work demonstrates a "soil for soil-remediation" strategy to utilize the natural loess for soil remediation in CLP, which paves the way for developing green and sustainable remediation eco-materials with local loess as raw materials.

17.
J Hazard Mater ; 402: 123583, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33254746

RESUMEN

Search for simple and efficient recycling methods to utilize spent lithium-ion batteries is crucial for achieving sustainable resource development and reducing the hazardous materials released from the spent batteries. Herein, we have developed a new strategy to utilize the spent LiFePO4 batteries by utilizing the cathode plate as raw material to synthesize mesoporous core-shell adsorbent Mm@SiO2 (Mm denoted as the magnetic material) through a simple alkaline leaching process. The as-converted material exhibits excellent adsorption capacity when it has been used to remove heavy metal ions in heavy metal polluted water. The adsorption capacities for Cu2+, Cd2+, and Mn2+ have been achieved up to 71.23, 80.31 and 68.73 mg g-1, respectively. The detailed adsorption mechanism has been elucidated with comprehensive characterization techniques, including TEM, XPS, NEXAS, and EXAFS, the edge shared [Cu2O8] bipyramids can be fit against the EXAFS data to represent the atomic-scale local structure after Mm@SiO2 adsorbs Cu2+. The present work demonstrates a novel routine to reutilize the spent lithium batteries, which is of great importance to achieve sustainable development based on the "waste-to-treasure" and "waste-to-control-waste" strategy for simultaneously reducing the hazardous release from industrial solid waste and heavy metal polluted water.

18.
Environ Sci Technol ; 54(13): 8022-8031, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32412745

RESUMEN

Iron-based nanosized ecomaterials for efficient Cr(VI) removal are of great interest to environmental chemists. Herein, inspired by the "mixed redox-couple" cations involved in the crystal structure and the quantum confinement effects resulting from the particle size, a novel type of iron-based ecomaterial, semiconducting chalcopyrite quantum dots (QDs), was developed and used for Cr(VI) removal. A high removal capacity up to 720 mg/g was achieved under optimal pH conditions, which is superior to those of the state-of-the-art nanomaterials for Cr(VI) removal. The mechanism of Cr(VI) removal was elucidated down to an atomic scale by combining comprehensive characterization techniques with adsorption kinetic experiments and DFT calculations. The experimental results revealed that the material was a good electron donor semiconductor attributed to the existence of "mixed redox couple of Cu(I)-S-Fe(III)" in the crystal structure. With the size-dependent quantum confinement effect and the high surface area, the semiconducting chalcopyrite QDs could effectively remove Cr(VI) from aqueous solution through a syngenetic photocatalytic reduction and adsorption mechanism. This study not only reports the design histogram of the iron-based CuFeS2 QD ecomaterial for efficient Cr(VI) removal but also paves the way for understanding the atomic-scale mechanism behind the syngenetic effects of using the QD semiconducting material for Cr(VI) removal.


Asunto(s)
Puntos Cuánticos , Contaminantes Químicos del Agua , Adsorción , Cromo/análisis , Cobre , Compuestos Férricos , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
19.
Inorg Chem ; 59(4): 2379-2386, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32009398

RESUMEN

Ultrathin two-dimensional (2D) nanosheets with efficient light-driven proton reduction activity were obtained through the exfoliation of novel metal-organic frameworks (MOF), which were synthesized by using a bis(4'-carboxy-2,2':6',2″-terpyridine) ruthenium complex as a linker and 3d transition-metal (Mn, Co, Ni, and Zn) anions as nodes. The nanosheet of the Ni2+ node exhibits a photocatalytic hydrogen evolution rate of 923 ± 40 µmol g-1 h-1 at pH = 4.0, without the presence of any cocatalyst or cosensitizer. A combined experimental and theoretical study suggests a reductive quenched pathway for the photocatalytic hydrogen evolution by the nanosheet. The transition-metal nodes at the edge of the nanosheets are proposed as the active sites. Density functional theory (DFT) calculations attributed the different catalytic activities of the nanosheets to the discrepancy of H adsorption free energy at various transition-metal nodes.

20.
Food Chem ; 263: 51-58, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29784327

RESUMEN

Herein, for the first time, thiol-functionalized mesoporous silica (mSiO2-SH) nanofibers with a spirally-curved twisted hexagonal morphology were synthesized via a simple one-pot protocol. 4-Mercaptophenylboronic acids (4-MPBA) were attached onto the mSiO2-SH nanofibers via disulfide bond, serving as boronate affinity sorbent to selectively capture brassinosteroids (BRs) from plant extract. The resulting BRs-MPBA derivatives were easily eluted from the sorbent by cleaving the disulfide bond, which was subsequently subjected to ultra performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Thus, the in situ extraction/derivatization/desorption method coupled with UPLC-MS was established for the fast, sensitive and selective detection of BRs in plant tissues. Finally, based on the developed method, endogenous BRs were successfully detected in leaf of H. lupulus L., silique of A. thaliana, and panicle of O. sativa L.


Asunto(s)
Brasinoesteroides/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Nanofibras/química , Plantas/química , Arabidopsis/química , Ácidos Borónicos/química , Cromatografía Liquida/instrumentación , Humulus/química , Oryza/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Dióxido de Silicio/análisis , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...