Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1245510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487210

RESUMO

Streptococcus thermophilus is of major importance for cheese manufacturing to ensure rapid acidification; however, studies indicate that intensive use of commercial strains leads to the loss of typical characteristics of the products. To strengthen the link between the product and its geographical area and improve the sensory qualities of cheeses, cheese-producing protected designations of origin (PDO) are increasingly interested in the development of specific autochthonous starter cultures. The present study is therefore investigating the genetic and functional diversity of S. thermophilus strains isolated from a local cheese-producing PDO area. Putative S. thermophilus isolates were isolated and identified from milk collected in the Saint-Nectaire cheese-producing PDO area and from commercial starters. Whole genomes of isolates were sequenced, and a comparative analysis based on their pan-genome was carried out. Important functional properties were studied, including acidifying and proteolytic activities. Twenty-two isolates representative of the diversity of the geographical area and four commercial strains were selected for comparison. The resulting phylogenetic trees do not correspond to the geographical distribution of isolates. The clustering based on the pan-genome analysis indicates that isolates are divided into five distinct groups. A Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation of the accessory genes indicates that the accessory gene contents of isolates are involved in different functional categories. High variability in acidifying activities and less diversity in proteolytic activities were also observed. These results indicate that high genetic and functional variabilities of the species S. thermophilus may arise from a small (1,800 km2) geographical area and may be exploited to meet demand for use as autochthonous starters.

2.
Front Microbiol ; 13: 951182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983334

RESUMO

Biopreservation is a sustainable approach to improve food safety and maintain or extend food shelf life by using beneficial microorganisms or their metabolites. Over the past 20 years, omics techniques have revolutionised food microbiology including biopreservation. A range of methods including genomics, transcriptomics, proteomics, metabolomics and meta-omics derivatives have highlighted the potential of biopreservation to improve the microbial safety of various foods. This review shows how these approaches have contributed to the selection of biopreservation agents, to a better understanding of the mechanisms of action and of their efficiency and impact within the food ecosystem. It also presents the potential of combining omics with complementary approaches to take into account better the complexity of food microbiomes at multiple scales, from the cell to the community levels, and their spatial, physicochemical and microbiological heterogeneity. The latest advances in biopreservation through omics have emphasised the importance of considering food as a complex and dynamic microbiome that requires integrated engineering strategies to increase the rate of innovation production in order to meet the safety, environmental and economic challenges of the agri-food sector.

3.
Microorganisms ; 9(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069983

RESUMO

Adding massive amounts of lactic starters to raw milk to manage the sanitary risk in the cheese-making process could be detrimental to microbial diversity. Adjusting the amount of the lactic starter used could be a key to manage these adverse impacts. In uncooked pressed cheeses, we investigated the impacts of varying the doses of a lactic starter (the recommended one, 1×, a 0.1× lower and a 2× higher) on acidification, growth of Staphylococcus aureus SA15 and Shiga-toxin-producing Escherichia coli (STEC) O26:H11 F43368, as well as on the bacterial community patterns. We observed a delayed acidification and an increase in the levels of pathogens with the 0.1× dose. This dose was associated with increased richness and evenness of cheese bacterial community and higher relative abundance of potential opportunistic bacteria or desirable species involved in cheese production. No effect of the increased lactic starter dose was observed. Given that sanitary criteria were paramount to our study, the increase in the pathogen levels observed at the 0.1× dose justified proscribing such a reduction in the tested cheese-making process. Despite this, the effects of adjusting the lactic starter dose on the balance of microbial populations of potential interest for cheese production deserve an in-depth evaluation.

4.
Microorganisms ; 8(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570901

RESUMO

The design of multiscale strategies integrating in vitro and in vivo models is necessary for the selection of new probiotics. In this regard, we developed a screening assay based on the investigation of the potential of yeasts from cheese as probiotics against the pathogen Salmonella Typhimurium UPsm1 (ST). Two yeasts isolated from raw-milk cheese (Saccharomyces cerevisiae 16, Sc16; Debaryomyces hansenii 25, Dh25), as well as S. cerevisiae subspecies boulardii (CNCM I-1079, Sb1079), were tested against ST by applying in vitro and in vivo tests. Adherence measurements to Caco-2 and HT29-MTX intestinal cells indicated that the two tested cheese yeasts presented a better adhesion than the probiotic Sb1079 as the control strain. Further, the Dh25 was the cheese yeast most likely to survive in the gastrointestinal tract. What is more, the modulation of the TransEpithelial Electrical Resistance (TEER) of differentiated Caco-2 cell monolayers showed the ability of Dh25 to delay the deleterious effects of ST. The influence of microorganisms on the in vivo model Caenorhabditis elegans was evaluated by measuring the longevity of the worm. This in vivo approach revealed that this yeast increased the worm's lifespan and protected it against ST infection, confirming that this in vivo model can be useful for screening probiotic cheese yeasts.

5.
Food Microbiol ; 53(Pt B): 63-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26678131

RESUMO

Bio-preservation could be a valuable way to control Shigatoxin-producing Escherichia coli (STEC) in cheese. To this end, 41 strains were screened for their inhibitory potential on model cheese curd and on pasteurized and raw milk uncooked pressed cheeses. Strains of Lactococcus lactis, Lactococcus garvieae, Leuconostoc pseudomesenteroides, Leuconostoc citreum, Lactobacillus sp, Carnobacterium mobile, Enterococcus faecalis, Enterococcus faecium, Macrococcus caseolyticus and Hafnia alvei reduced STEC O26:H11 counts by 1.4-2.5 log cfu g(-1) and to a lesser extent STEC O157:H7 counts in pasteurized milk cheeses. Some strains can act in synergy to inhibit STEC in raw milk uncooked pressed cheeses. Inhibitory associations had no adverse effect on the sensory characteristics of these cheeses. The association of H. alvei, Lactobacillus plantarum and Lc. lactis was the most inhibitory: after inoculation of this consortium into milk, STEC O26:H11 and O157:H7, inoculated at 2 log cfu ml(-1), were reduced by up to 3 log cfu g(-1) in ripened cheese. Inhibition in cheese cannot be predicted from H2O2 production in BHI medium, decreased pH or milk reduction. It is not clear what role the rapid decrease in pH during the first 6 h may play in the inhibition. Further studies will be needed to determine the nature of the inhibition.


Assuntos
Antibiose , Queijo/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Lactobacillales/fisiologia , Leite/microbiologia , Animais , Queijo/análise , Escherichia coli O157/fisiologia , Lactobacillales/genética , Lactobacillales/isolamento & purificação
6.
Int J Food Microbiol ; 174: 98-109, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24463156

RESUMO

The study set out to determine how changes in the microbial diversity of a complex antilisterial consortium from the surface of St-Nectaire cheese modify its antilisterial activities. On the basis of the microbial composition of a natural complex consortium named TR15 (Truefood consortium 15), three new consortia of different species and strain compositions were defined: TR15-SC (58 isolates from TR15 collection), TR15-M (pools of isolates from selective counting media) and TR15-BHI (pools of isolates from BHI medium). Their antilisterial activities on the surfaces of uncooked pressed cheese made with pasteurised milk were compared with the activity of complex consortium TR15 and a control cheese inoculated only with starter culture (Streptococcus thermophilus, Lactobacillus delbrueckii). The natural consortium TR15 was the most inhibitory, followed by reconstituted consortium TR15-BHI. The dynamics of the cheese rind microbial flora were monitored by counting on media and by isolate identification using 16S rDNA sequencing and direct 16S rDNA Single Strand Conformation Polymorphism analysis. The combination of these methods showed that rind with natural consortium TR15 had greater microbial diversity and different microbial dynamics than cheese rinds with reconstituted consortia. Cheese rind with the natural consortium showed higher citrate consumption and the highest concentrations of lactic and acetic acids, connected with high levels of lactic acid bacteria such as Carnobacterium maltaromaticum, Vagococcus fluvialis, Enterococcus gilvus, Leuconostoc mesenteroides, Brochothrix thermosphacta and Lactococcus lactis, ripening bacteria such as Arthrobacter nicotianae/arilaitensis, and Gram negative bacteria (Pseudomonas psychrophila and Enterobacter spp.). The highest L. monocytogenes count was on rind with TR15-M and was positively associated with the highest pH value, high succinic and citric acid contents, and the highest levels of Marinilactibacillus psychrotolerans and Gram positive catalase positive bacteria represented by Staphylococcus vitulinus, Brevibacterium linens, Microbacterium gubbeenense and Brachybacterium tyrofermentans. The results show that the species composition of consortium is more important than the number of species. It is likely that inhibition mechanisms differ from one consortium to another; investigating gene expression will be an effective way to elucidate microbial interactions in cheese.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Queijo/microbiologia , Listeria/fisiologia , Animais , Antibiose , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Queijo/análise , Contagem de Colônia Microbiana , Concentração de Íons de Hidrogênio , Listeria/crescimento & desenvolvimento , Leite/microbiologia , Pressão , Leveduras/crescimento & desenvolvimento , Leveduras/fisiologia
7.
Int J Food Microbiol ; 172: 40-8, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24361831

RESUMO

Shiga toxin producing Escherichia coli (STEC) are an important cause of human foodborne outbreaks. The consumption of raw milk dairy products may be an important route of STEC infection. For successful foodborne transmission, STEC strains must survive stress conditions met during gastrointestinal transit in humans. The aim of this study was to evaluate the survival of two STEC strains of serotypes O157:H7 and O26:H11 during simulated human digestion in the TNO gastro-Intestinal tract Model (TIM) of contaminated uncooked pressed cheeses. The survival of cheese microflora during in vitro gastrointestinal transit was also determined for the first time. The level of STEC increased from 2 log10 CFU/ml to 4 log10 CFU/g during the first 24h of cheese making and remained stable at around 4 log10 CFU/g during cheese ripening and conservation. During transit through the artificial stomach and duodenum, levels of STEC decreased: 0.2% of E. coli O157:H7 and 1.8% of E. coli O26:H11 were recovered at 150 min in the gastric compartment, compared with 14.3% for the transit marker. Bacterial resumption was observed in the jejunum and ileum: 35.8% of E. coli O157:H7 and 663.2% of E. coli O26:H11 were recovered at 360 min in the ileal compartment, compared with 12.6% for the transit marker. The fate of STEC was strain-dependent, the survival of E. coli O26:H11 being 13 times greater than that of E. coli O157:H7 at the end of digestion in the cumulative ileal deliveries. These data provide a better understanding of STEC behavior during gastrointestinal transit in humans after ingestion of contaminated cheese.


Assuntos
Queijo/microbiologia , Digestão , Escherichia coli O157/fisiologia , Escherichia coli/fisiologia , Microbiologia de Alimentos , Viabilidade Microbiana , Animais , Proteínas de Escherichia coli , Humanos , Leite/microbiologia , Escherichia coli Shiga Toxigênica
8.
Int J Food Microbiol ; 156(2): 91-101, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22483401

RESUMO

The purpose of this study was to characterize microbial biofilms from 'gerles' (wooden vats for making PDO Salers cheese) and identify their role in milk inoculation and in preventing pathogen development. Gerles from ten farms producing PDO Salers cheese were subjected to microbial analysis during at least 4 periods spread over two years. They were distinguished by their levels of Lactobacillus (between 4.50 and 6.01 log CFU/cm(2)), Gram negative bacteria (between 1.45 and 4.56 log CFU/cm(2)), yeasts (between 2.91 and 5.57 log CFU/cm(2)), and moulds (between 1.72 and 4.52 log CFU/cm(2)). They were then classed into 4 groups according their microbial characteristics. These 4 groups were characterized by different milk inoculations (with either sour whey or starter culture, daily or not), and different washing procedures (with water or whey from cheese making). The farm gerles were not contaminated by Salmonella, Listeria monocytogenes or Staphylococcus aureus. Only one slight, punctual contamination was found on one gerle among the ten studied. Even when the milk was deliberately contaminated with L. monocytogenes and S. aureus in the 40 L experimental gerles, these pathogens were found neither on the gerle surfaces nor in the cheeses. Using 40 L experimental gerles it was shown that the microbial biofilms on the gerle surfaces formed in less than one week and then remained stable. They were mainly composed of a great diversity of lactic acid bacteria (Leuconostoc pseudomesenteroides, Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus hilgardii,…), Gram positive catalase positive bacteria (Curtobacterium flaccumfaciens, Curtobacterium oceanosedimentum Citrococcus spp., Brachybacterium rhamnosum, Kocuria rhizophila, Arthrobacter spp.…) and yeast (Kluyveromyces lactis, Kluyveromyces marxianus). In less than 1 min, even in a 500 L farm gerle, the gerle's microbial biofilm can inoculate pasteurized milk with micro-organisms at levels superior to those in raw milk.


Assuntos
Biofilmes/crescimento & desenvolvimento , Queijo/microbiologia , Manipulação de Alimentos/métodos , Leite/microbiologia , Animais , Contagem de Células , Queijo/análise , Contagem de Colônia Microbiana , Fungos , Lactobacillaceae , Lactobacillus/crescimento & desenvolvimento , Lactococcus lactis/isolamento & purificação , Leuconostoc/isolamento & purificação , Listeria monocytogenes/crescimento & desenvolvimento , Salmonella , Staphylococcus aureus , Leveduras/crescimento & desenvolvimento
9.
Int J Food Microbiol ; 145(2-3): 379-89, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21255857

RESUMO

A complex microbial consortium derived from raw milk and composed of populations classified in 4 groups (lactic acid bacteria (A), Gram positive catalase positive bacteria (B), Gram negative bacteria (C) and yeasts (D)) can contribute to the inhibition of Listeria monocytogenes in the core of an uncooked pressed cheese. To identify what groups may be involved in the inhibition, the consortium was simplified by successively omitting one group at a time. Pasteurized milk was inoculated with these more or less complex consortia and their effects on L. monocytogenes count, pH, acids and volatile compounds in the core of uncooked pressed cheese were evaluated. The growth of L. monocytogenes was the highest in cheeses prepared with pasteurized milk and only St. thermophilus. Inhibition in other cheeses was expressed by comparison with growth in these ones. All the consortia containing both lactic acid bacteria (group A) and Gram positive catalase positive bacteria (group B)--ABCD, ABD, ABC, AB--were more inhibitory than those containing lactic acid bacteria on its own (A) or associated only with yeasts (AD) or/and Gram negative (ADC). Consortia without lactic acid bacteria were weakly inhibitory or had no effect. Gram positive catalase positive bacteria alone were not inhibitory although most of the species became established in the cheeses. The Lactobacillus population (Lb. casei, Lb. plantarum, Lb. curvatus and Lb. farciminis) was predominant in cheeses (9 log CFU/g) with a higher count than Leuconostoc (7 log CFU/g) and Enterococcus (7 log CFU/g). Lactobacillus counts were negatively correlated with those of L. monocytogenes (r=-0.84 at 18 days) and with the level of D-lactic acid. There was no correlation between L. monocytogenes and Leuconostoc or Enterococcus counts. Complex consortium ABCD and AB not only had a stronger inhibitory power in cheeses than consortium AD, they were also associated with the highest levels of L-lactic and acetic acids. All cheeses inoculated with lactic acid bacteria differed from those without by higher levels of ethyl formiate, pentane and alcohols (2-butanol, 2-pentanol), and lower levels of ketones (2-hexanone, 2,3-butanedione) and aldehydes (2-methyl-butanal). Levels of 2-methyl-butanal, 2-butanol and 2-pentanol were higher in ABCD and AB cheeses than in AD cheeses. Beside their contribution to the inhibition, their effect on cheese flavour must be evaluated.


Assuntos
Queijo/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Consórcios Microbianos , Ácido Acético/análise , Álcoois/análise , Animais , Antibiose , Queijo/análise , Contagem de Colônia Microbiana , Ácidos Graxos/análise , Bactérias Gram-Positivas/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Leite/microbiologia , Temperatura , Compostos Orgânicos Voláteis/análise , Leveduras/crescimento & desenvolvimento
10.
Food Microbiol ; 27(7): 924-32, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20688234

RESUMO

The response of Staphylococcus aureus growth inhibition by Lactococcus garvieae to catalase and milk lactoperoxidase, and its efficiency in raw milk cheese were evaluated. S. aureus and L. garvieae were co-cultivated in broth buffered at pH 6.8, and in raw, pasteurized and microfiltered milk, in presence and absence of catalase. Although H2O2 production by L. garvieae was detected only in agitated broth, the inhibition of S. aureus by L. garvieae was reduced by catalase both in static and shaking cultures by 2.7 log, pasteurized milk (approximately 0.7 log), microfiltered milk (approximately 0.6 log) and raw milk (approximately 0.2 log). The growth of S. aureus alone in microfiltered milk was delayed compared with that in pasteurized milk and inhibition of S. aureus by L. garvieae was stronger in microfiltered milk. The inhibition of coagulase-positive staphylococci (CPS) by L. garvieae in raw milk cheese was similar to that in raw milk (approximately 0.8 log), but weaker than that in pasteurized and microfiltered milks. L. garvieae also had an early antagonistic effect on the growth of several other microbial groups, which lastingly affected populations levels and balance during cheese ripening.


Assuntos
Anti-Infecciosos Locais/farmacologia , Peróxido de Hidrogênio/farmacologia , Lactococcus/fisiologia , Leite/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Antibiose , Catalase/metabolismo , Técnicas de Cocultura , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Humanos , Peróxido de Hidrogênio/metabolismo , Lactoperoxidase/metabolismo , Leite/enzimologia
11.
Syst Appl Microbiol ; 30(7): 547-60, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17604934

RESUMO

The microbial communities in milks from one herd were evaluated during 1-year of lactation, using molecular methods to evaluate their stability and the effect of breeding conditions on their composition. The diversity of microbial communities was measured using two approaches: molecular identification by 16S and 18S rDNA sequencing of isolates from counting media (two milks), and direct identification using 16S rDNA from clone libraries (six milks). The stability of these communities was evaluated by counting on selective media and by Single Strand Conformation Polymorphism (SSCP) analysis of variable region V3 of the 16S rRNA gene and variable region V4 of the 18S rRNA gene. One hundred and eighteen milk samples taken throughout the year were analyzed. Wide diversity among bacteria and yeasts in the milk was revealed. In addition to species commonly encountered in milk, such as Lactococcus lactis, Lactococcus garvieae, Enterococcus faecalis, Lactobacillus casei, Leuconostoc mesenteroides, Staphylococcus epidermidis, Staphylococcus simulans, Staphylococcus caprae, Staphylococcus equorum, Micrococcus sp., Kocuria sp., Pantoea agglomerans and Pseudomonas putida, sequences were affiliated to other species only described in cheeses, such as Corynebacterium variabile, Arthrobacter sp., Brachybacterium paraconglomeratum, Clostridium sp. and Rothia sp. Several halophilic species atypical in milk were found, belonging to Jeotgalicoccus psychrophilus, Salinicoccus sp., Dietza maris, Exiguobacterium, Ornithinicoccus sp. and Hahella chejuensis. The yeast community was composed of Debaryomyces hansenii, Kluyveromyces lactis, Trichosporon beigelii, Rhodotorula glutinis, Rhodotorula minuta, Candida pararugosa, Candida intermedia, Candida inconspicua, Cryptococcus curvatus and Cryptococcus magnus. The analyses of microbial counts and microbial SSCP profiles both distinguished four groups of milks corresponding to four periods defined by season and feeding regime. The microbial community was stable within each period. Milks from winter were characterized by Lactococcus and Pseudomonas, those from summer by P. agglomerans and Klebsiella and those from autumn by Chryseobacterium indologenes, Acinetobacter baumanii, Staphylococcus, Corynebacteria and yeasts. However, the composition of the community can vary according to factors other than feeding. This study opens new investigation fields in the field of raw milk microbial ecology.


Assuntos
Bactérias/classificação , Biodiversidade , Fungos/classificação , Leite/microbiologia , Animais , Bactérias/isolamento & purificação , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Métodos de Alimentação , Fungos/isolamento & purificação , Cabras , Lactação , Dados de Sequência Molecular , Filogenia , Polimorfismo Conformacional de Fita Simples , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Estações do Ano , Análise de Sequência de DNA
12.
Syst Appl Microbiol ; 29(2): 172-80, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16464699

RESUMO

Bacteria and yeasts are important sensory factors of raw-milk cheeses as they contribute to the sensory richness and diversity of these products. The diversity and succession of yeast populations in three traditional Registered Designation of Origin (R.D.O.) Salers cheeses have been determined by using phenotypic diagnoses and Single-Strand Conformation Polymorphism (SSCP) analysis. Isolates were identified by phenotypic tests and the sequencing of the D1-D2 domains of the 26S rRNA gene. Ninety-two percent of the isolates were identified as the same species in both tests. Yeast-specific primers were designed to amplify the V4 region of the 18S rRNA gene for SSCP analysis. The yeast species most frequently encountered in the three cheeses were Kluyveromyces lactis, Kluyveromyces marxianus, Saccharomyces cerevisiae, Candida zeylanoides and Debaryomyces hansenii. Detection of less common species, including Candida parapsilosis, Candida silvae, Candida intermedia, Candida rugosa, Saccharomyces unisporus, and Pichia guilliermondii was more efficient with the conventional method. SSCP analysis was accurate and could be used to rapidly assess the proportions and dynamics of the various species during cheese ripening. Each cheese was clearly distinguished by its own microbial community dynamics.


Assuntos
Queijo/microbiologia , Leveduras/classificação , Animais , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie , Leveduras/isolamento & purificação
13.
Int J Food Microbiol ; 103(3): 259-70, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16099311

RESUMO

Raw milk cheeses show a wide diversity of sensorial characteristics, largely determined by the microflora of raw milk. Microbial dynamics in Registered Designation of Origin (R.D.O.) Salers cheese was assessed by DNA and RNA SSCP analysis on nine cheeses. These cheeses showed considerable diversity both in microbial dynamics and sensorial characteristics. Relationships between the sensorial characteristics and the microbial dynamics were studied. A global consideration of bacterial dynamics demonstrated that other bacteria than lactic acid bacteria can play a role in the elaboration of sensorial characteristics. Indeed, high CG% Gram-positive bacteria can be involved. DNA data, as well as RNA data, appeared relevant to attempts to explain sensorial variance. Correlations between sensorial and microbial data were rather complex. Several microbial variables for DNA and RNA analyses, noted at different times of analysis, were correlated to each sensory variable. A global view of cheese microbial community proved to be insufficient in explaining the diversity of the sensorial qualities of R.D.O. Salers cheese.


Assuntos
Queijo/microbiologia , Queijo/normas , DNA Bacteriano/análise , Bactérias Gram-Positivas/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Microbiologia de Alimentos , Reação em Cadeia da Polimerase , Dinâmica Populacional , RNA Ribossômico 16S/análise , Paladar , Fatores de Tempo
14.
J Dairy Res ; 71(2): 231-44, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15190953

RESUMO

The objective of this work was to describe the diversity of lactic acid bacteria in traditional raw milk Salers cheeses at the species and strain levels. The characterization of 381 strains isolated during ripening and various strain collections was investigated using physiological analysis and molecular techniques: Rep-PCR, species and genus specific amplifications and the sequence analysis of 16S rDNA for strain typing and taxonomic identification. The strains belonged to Lactobacillus plantarum, Lactobacillus paracasei, Lactococcus lactis, Lactococcus garviae, Enterococcus faecalis, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Streptococcus salivarius, Streptococcus millieri, Streptococcus macedonicus and Pediococcus pentosaceus. A wide phenotypic and genomic heterogeneity was observed within the different species (Lactobacillus plantarum, Lactobacillus paracasei and Leuconostoc mesenteroides) according to the origin and the time of ripening. The natural microflora was different from strain collection and each method must be combined to identify and characterize natural microflora. This study revealed the low selectivity of selective media used for the isolation of different groups of lactic acid bacteria except the Facultatively Heterofermentative lactobacilli medium selecting mesophile lactobacilli and SB medium selective for Enterococcus. The study reveals, for the first time, the microbial lactic acid bacteria community of Salers cheese and its diversity. A better knowledge of microbial flora will be useful to improve understanding of sensory quality of cheeses.


Assuntos
Queijo/microbiologia , Lactobacillus/isolamento & purificação , Lactococcus/isolamento & purificação , Contagem de Colônia Microbiana , Impressões Digitais de DNA , DNA Bacteriano/análise , Enterococcus/genética , Enterococcus/isolamento & purificação , Fermentação , Lactobacillus/genética , Lactococcus/genética , Leuconostoc/genética , Leuconostoc/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Streptococcus/genética , Streptococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA