Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Biomolecules ; 9(9)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443418

RESUMO

Hemocyanins are respiratory dioxygen carrier proteins found in many arthropods including ancient terrestrial species such as spiders and scorpions as well as marine horseshoe crabs. As hemocyanins are highly conserved in this lineage, it is possible to observe an evolutionary descent through its subunits and their overall structure. Unfortunately, little is known about the structure and function of hexapod hemocyanins. Using recent springtail taxa (Collembola) as models for basal hexapods, and the help of electron microscopy, light scattering, SDS PAGE, and Western blot, we could demonstrate for the first time the presence of 2 × 6-meric hemocyanins in the hemolymph of hexapods. The quaternary structure is composed of at least two different subunits and looks nearly identical to the hemocyanin found in decapod crustaceans. In addition, homology modeling and western blotting suggest a close structural relationship between collembolan and crustacean hemocyanin. Such a respiratory protein was possibly helpful in the early terrestrialization process of ancient Collembola. In addition, physiological adaptations to hypoxic or temporarily anoxic conditions could be a possible explanation for the presence of this respiratory protein. Nevertheless, it has to be concluded that the primary benefit of hemocyanin for springtails remains unclear.


Assuntos
Proteínas de Artrópodes/química , Artrópodes , Hemocianinas/química , Multimerização Proteica , Animais , Estrutura Quaternária de Proteína
2.
Angew Chem Int Ed Engl ; 56(46): 14352-14354, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28990327

RESUMO

Show your metal: l-Tyrosine is converted into the protective antioxidative polymer melanin in a sequence of reactions. In humans, the catalytic pathway starts with the tyrosinase HsTYR and two tyrosinase-related proteins HsTYRP1 and HsTYRP2. All three enzymes have the same active site but the latter two contain two zinc ions instead of copper ions.


Assuntos
Glicoproteínas de Membrana/química , Oxirredutases/química , Antioxidantes/química , Catálise , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Humanos , Melaninas/química , Glicoproteínas de Membrana/fisiologia , Oxirredutases/fisiologia , Conformação Proteica , Tirosina/química , Zinco/química
3.
Plant Physiol Biochem ; 118: 64-70, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28618374

RESUMO

Grapevine is one of the most important fruit plants throughout the world. Sequencing of the grape genome in 2007 enabled in-depth analyses of the grape proteome. Whereas many studies addressed changes in proteomic composition of grapes during ripening, we focused on the proteome of mature grape berries from Dornfelder, a characteristic red wine grape for Germany. Current data-independent acquisition proteomics technology enables the analysis of proteomic compositions in a degree of accuracy that was unreachable only a few years ago. Using a label-free proteomics approach, we quantified 712 proteins in mature Dornfelder grape berries, of which 650 could be annotated by the Blast2GO software. Besides identification of proteins, our analysis provides protein amounts using the TOP3 absolute quantification approach. Most of the proteins (200) in mature Dornfelder grape berries are involved in stress response. In addition, all glycolytic key enzymes were detected in mature grape berries suggesting that glycolysis is still active, whereas sugar accumulation through gluconeogenesis utilizing malate as substrate seems to play a minor role.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteômica , Vitis/crescimento & desenvolvimento
4.
Food Chem ; 229: 779-789, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28372244

RESUMO

Phenolic components (PCs) are well-known for their positive impact on human health. In addition to their action as radical scavengers, they act as activators for the intrinsic cellular antioxidant system. Polyphenol oxidases (PPOs) such as tyrosinase and laccase catalyze the enzymatic oxidation of PCs and thus, can alter their scavenging and antioxidative capacity. In this study, oxidation by tryosinase was shown to increase the antioxidant capacity of many PCs, especially those that lack adjacent aromatic hydroxyl groups. In contrast, oxidation by laccase tended to decrease the antioxidant capacity of red wine and distinct PCs. This was clearly demonstrated for p-coumaric acid and resveratrol, which is associated with many health benefits. While oxidation by tyrosinase increased their antioxidant activity laccase treatment resulted in a decreased activity and also of that for red wines.


Assuntos
Antioxidantes/metabolismo , Botrytis/metabolismo , Lacase/metabolismo , Fenóis/metabolismo , Vitis/metabolismo , Vinho , Antioxidantes/análise , Botrytis/química , Linhagem Celular , Humanos , Lacase/análise , Monofenol Mono-Oxigenase/análise , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Fenóis/análise , Vitis/química , Vinho/análise
5.
Cell Mol Life Sci ; 74(2): 293-317, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27518203

RESUMO

It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte-pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.


Assuntos
Hemeritrina/imunologia , Hemocianinas/imunologia , Hemoglobinas/imunologia , Oxigênio/metabolismo , Animais , Transporte Biológico , Humanos , Imunidade Inata
7.
Food Chem ; 200: 38-45, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830558

RESUMO

Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine.


Assuntos
Polissacarídeos/química , Vinho/análise , Agregação Patológica de Proteínas
8.
Angew Chem Int Ed Engl ; 55(8): 2884-8, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26773413

RESUMO

Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities.


Assuntos
Asparagina/química , Catecol Oxidase/química , Monofenol Mono-Oxigenase/química , Modelos Moleculares
9.
Molecules ; 20(9): 17194-207, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393557

RESUMO

Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO), including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells) delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.


Assuntos
Antioxidantes/farmacologia , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Polifenóis/farmacologia , Antioxidantes/análise , Linhagem Celular , Proteínas Fúngicas/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/análise
10.
Proteins ; 83(10): 1887-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248608

RESUMO

Macromolecular oligomeric assemblies are involved in many biochemical processes of living organisms. The benefits of such assemblies in crowded cellular environments include increased reaction rates, efficient feedback regulation, cooperativity and protective functions. However, an atom-level structural determination of large assemblies is challenging due to the size of the complex and the difference in binding affinities of the involved proteins. In this study, we propose a novel combinatorial greedy algorithm for assembling large oligomeric complexes from information on the approximate position of interaction interfaces of pairs of monomers in the complex. Prior information on complex symmetry is not required but rather the symmetry is inferred during assembly. We implement an efficient geometric score, the transformation match score, that bypasses the model ranking problems of state-of-the-art scoring functions by scoring the similarity between the inferred dimers of the same monomer simultaneously with different binding partners in a (sub)complex with a set of pregenerated docking poses. We compiled a diverse benchmark set of 308 homo and heteromeric complexes containing 6 to 60 monomers. To explore the applicability of the method, we considered 48 sets of parameters and selected those three sets of parameters, for which the algorithm can correctly reconstruct the maximum number, namely 252 complexes (81.8%) in, at least one of the respective three runs. The crossvalidation coverage, that is, the mean fraction of correctly reconstructed benchmark complexes during crossvalidation, was 78.1%, which demonstrates the ability of the presented method to correctly reconstruct topology of a large variety of biological complexes.


Assuntos
Biologia Computacional/métodos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Algoritmos , Ligação Proteica , Conformação Proteica , Software
11.
Clin Transl Allergy ; 5: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101585

RESUMO

BACKGROUND: In a recently performed survey with 4000 randomly selected persons, 68 (7.2 %) of 948 respondents reported intolerance and/or allergy-like symptoms to wine. The aim of this study was to analyze whether a real sensitization to wine proteins could be confirmed by diagnostic and/or immunological settings. FINDINGS: For this purpose, 19 subjects with self-reported intolerance to wine of the invited subjects and 10 controls without a history of intolerance participated in an allergological examination (skin prick test, ImmunoCAP for determination of specific IgE antibodies, CAST for testing basophil activation, ImmunoBlot for testing specificity of IgE-antibodies). For the allergological work-up red and white grapes, selected wines, and the purified lipid transfer protein (LTP), a known grape allergen, were used. 7 subjects showed evidence of IgE sensitization to wine or grape extracts, including one control. One participant with symptoms of intolerance showed a positive skin prick test to red grape, a positive ImmunoCAP to grape, a positive cellular antigen stimulation test (CAST) and inhibition of Western blot by removal of cross-reactive carbohydrate determinants (CCD). CONCLUSION: The presented study focused on the grape protein-related IgE-mediated cause of intolerance to wine (true allergy) and not on other wine components or fining agents (other forms of intolerance). A sensitization to grape and wine proteins was observed in our cohort. In one case, this reactivity could be explained by cross-reactivity to CCD. The results of this pilot study need to be validated in greater cohorts.

12.
J Pharm Sci ; 104(7): 2213-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25964103

RESUMO

A set of biorelevant media "fasted-state simulated intestinal fluid with cholesterol (FaSSIF-C)" for the in vitro study of intestinal drug dissolution in the duodenum was developed. These contain cholesterol at the same levels as in human bile: the cholesterol content of FaSSIF-7C is equivalent to healthy female, FaSSIF-10C to healthy male persons, and FaSSIF-13C to several disease cases that lead to gallstones. The fluids were studied in three aspects: biocompatibility, intestinal nanostructure, and solubilizing power of hydrophobic drugs of the BCS class II. The biocompatibility study showed no toxic effects in a Caco-2 cell system. The drug-solubilizing capacity toward Fenofibrate, Danazol, Griseofulvin, and Carbamazepine was assessed as example. It varied with the cholesterol content widely from a fourfold improvement to a twofold reduction. The nanostructure study by dynamic light scattering and small-angle neutron scattering indicated vesicles as the main component of FaSSIF-C in equilibrium (>1 h), but at high cholesterol content, larger particles were observed as a minor contribution. The neutron experiments indicated the presence of complex micelle-vesicle mixtures, even after 1 h development of fed-state bile model to FaSSIF. The results indicate that cholesterol affects some drugs in solubilization and particle size in intestinal model fluids.


Assuntos
Líquidos Corporais/metabolismo , Colesterol/metabolismo , Jejum/metabolismo , Mucosa Intestinal/metabolismo , Células CACO-2 , Carbamazepina/metabolismo , Danazol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fenofibrato/metabolismo , Griseofulvina/metabolismo , Humanos , Absorção Intestinal/fisiologia , Masculino , Modelos Teóricos , Tamanho da Partícula , Solubilidade
13.
Food Chem ; 183: 49-57, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863609

RESUMO

Polyphenoloxidases (PPO) of the type-3 copper protein family are considered to be catecholoxidases catalyzing the oxidation of o-diphenols to their corresponding quinones. PPO from Grenache grapes has recently been reported to display only diphenolase activity. In contrast, we have characterized PPOs from Dornfelder and Riesling grapes which display both monophenolase and diphenolase activity. Ultracentrifugation and size exclusion chromatography indicated that both PPOs occur as monomers with Mr of about 38kDa. Non-reducing SDS-PAGE shows two bands of about 38kDa exhibiting strong activity. Remarkably, three bands up to 60kDa displayed only very weak PPO activity, supporting the hypothesis that the C-terminal domain covers the entrance to the active site. Molecular dynamic analysis indicated that the hydroxyl group of monophenolic substrates can bind to CuA after the flexible but sterically hindering Phe 259 swings away on a picosecond time scale.


Assuntos
Catecol Oxidase/química , Vitis/química , Vinho/análise , Catálise , Cobre/análise , Oxirredução
14.
Biochim Biophys Acta ; 1854(8): 939-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25817204

RESUMO

Phenoloxidases play vital roles in invertebrate innate immune reactions, wound closure and sclerotization processes in arthropods. In chelicerates, where phenoloxidases are lacking, phenoloxidase-activity can be induced in the oxygen carrier hemocyanin in vitro by proteolytic cleavage, incubation with the artificial inducer SDS, or lipids. The role of protein-protein interaction has up to now received little attention. This is remarkable, as lipoproteins - complexes of proteins and lipids - are present at high concentrations in arthropod hemolymph. We characterized the three lipoproteins present in tarantula hemolymph, two high-density lipoproteins and one very high-density lipoprotein, and show that the two high-density lipoproteins have distinct structures: the more abundant high-density lipoprotein is an ellipsoid particle with axes of ~22.5 nm and ~16.8 nm, respectively. The second high-density lipoprotein, present only in trace amount, is a large discoidal lipoprotein with a diameter of ~38.4 nm and an on-edge thickness of ~7.1 nm. We further demonstrate that the interaction between lipoproteins and hemocyanin induces phenoloxidase activity in hemocyanin, and propose that this activation is due to protein-protein interaction rather than protein-lipid interaction, as neither lipid micelles nor lipid monomers were found to be activating. Activation was strongest in the presence of high-density lipoproteins; very high-density lipoproteins were found to be non-activating. This is the first time that the ability of lipoproteins to induce phenoloxidase activity of hemocyanin has been demonstrated, thus adding novel aspects to the function of lipoproteins apart from their known role in nutrient supply.


Assuntos
Proteínas de Artrópodes/química , Hemocianinas/química , Lipoproteínas/química , Monofenol Mono-Oxigenase/química , Complexos Multiproteicos/química , Aranhas/enzimologia , Animais
15.
Neurobiol Dis ; 62: 479-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24200866

RESUMO

Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) are responsible for a subset of amyotrophic lateral sclerosis cases presumably by the acquisition of as yet unknown toxic properties. Additional overexpression of wild-type SOD1 in mutant SOD1 transgenic mice did not improve but rather accelerated the disease course. Recently, it was documented that the presence of wild-type SOD1 (SOD(WT)) reduced the aggregation propensity of mutant SOD1 by the formation of heterodimers between mutant and SOD1(WT) and that these heterodimers displayed at least a similar toxicity in cellular and animal models. In this study we investigated the biochemical and biophysical properties of obligate SOD1 dimers that were connected by a peptide linker. Circular dichroism spectra indicate an increased number of unstructured residues in SOD1 mutants. However, SOD1(WT) stabilized the folding of heterodimers compared to mutant homodimers as evidenced by an increase in resistance against proteolytic degradation. Heterodimerization also reduced the affinity of mutant SOD1 to antibodies detecting misfolded SOD1. In addition, the formation of obligate dimers resulted in a detection of substantial dismutase activity even of the relatively labile SOD1(G85R) mutant. These data indicate that soluble, dismutase-active SOD1 dimers might contribute at least partially to mutant SOD1 toxicity.


Assuntos
Superóxido Dismutase/química , Células HEK293 , Humanos , Mutação , Multimerização Proteica , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
17.
Biotechnol Bioeng ; 110(7): 1849-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23381872

RESUMO

The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2-fold improvement in k(cat), 5.2-fold lower K(m) and 16-fold improvement in catalytic efficiency for D-tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased k(cat) for D-tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher k(cat) and K(m) value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D-tyrosine. Single mutation variant 145_V153A exhibited the highest (6.9-fold) improvement in k(cat) and a 2.4-fold increase in K(m) compared to the WT. Two single mutation variants, C10_N322S and C10_T183I reduced the K(m) up to 2.6-fold for D-tyrosine but one variant 145_V153A increased the K(m) 2.4-fold compared to the WT. Homology based modeling of R. solanacearum tyrosinase showed that mutation V153A disrupts the van der Waals interactions with an α-helix providing one of the conserved histidine residues of the active site. The k(cat) and K(m) values for L-tyrosine decreased for RV145 and RVC10 compared to the WT. RV145 exhibited a 2.1-fold high catalytic efficiency compared to the WT which is a 7.6-fold lower improvement compared to D-tyrosine. RV145 exhibited a threefold higher monophenolase:diphenolase activity ratio for D-tyrosine:D-DOPA and a 1.4-fold higher L-tyrosine:L-DOPA activity ratio compared to the WT.


Assuntos
Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Engenharia de Proteínas , Ralstonia solanacearum/enzimologia , Tirosina/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Cinética , Dados de Sequência Molecular , Mutagênese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica , Ralstonia solanacearum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
18.
Food Chem ; 138(1): 263-9, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265486

RESUMO

Lipid transfer proteins (LTP) play a major role in plant defence and are of particular interest due to their known ability to cause allergic reactions. These proteins are expressed in grapes and also remain detectable after vinification, especially in red wine. However, it remains unknown whether the protein undergoes any changes during the vinification process. Here, we present a purification method for LTPs from Dornfelder grapes and wine. By liquid-chromatography-mass spectroscopy (LC-MS/MS) we identified LTPs from two different species (Vitis vinifera and Vitis aestivalis). Additionally, the purified LTPs were characterised using spectrometric methods, confirming their high purity and structural stability during vinification. We conclude that LTPs are resistant to the alcohol content (13.5 vol%), acidic milieu of wine and other ingredients present during the vinification process, indicating that the allergenic potential of grape LTP is not diminished by the vinification process.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Vitis/química , Vinho/análise , Conformação Proteica , Espectrometria de Massas em Tandem
19.
Dtsch Arztebl Int ; 109(25): 437-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22787508

RESUMO

BACKGROUND: Wine is an ancient food product, ubiquitous across cultures all over the world. Its effects on health have been extensively studied, yet there have been only a few case reports of wine intolerance or wine allergy. We studied the prevalence of self-reported wine intolerance in the adult population of Mainz, Germany. METHODS: In 2010, a questionnaire-based cross-sectional study was conducted to assess the prevalence of wine intolerance among adults in Mainz, a city in the wine-cultivating area of Rhine-Hesse. 4000 persons randomly chosen from population lists were asked to fill out a questionnaire about their alcohol intake and the occurrence of various intolerance reactions and allergy-like symptoms after drinking wine. RESULTS: Of the 4000 who received the questionnaire, 948 (23.7%) filled it out and returned it to us. 68 (7.2% of respondents) reported intolerance to wine and/or allergy-like symptoms after drinking wine. Self-reported wine intolerance was more prevalent in women than in men (8.9% vs. 5.2%, p = 0.026). Wine-intolerant persons also more commonly reported intolerance to beer and alcohol in general. Allergy-like symptoms were more common after the consumption of red wine. The most commonly reported reactions to wine were cutaneous flushing, itch, and nasal congestion. CONCLUSION: Wine intolerance was found to be more common than expected. The data reported here are less suggestive of an immunologically mediated allergy than of intolerance to alcohol, biogenic amines, or other ingredients of wine.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Hipersensibilidade Alimentar/epidemiologia , Vinho/estatística & dados numéricos , Adulto , Feminino , Alemanha/epidemiologia , Inquéritos Epidemiológicos , Humanos , Masculino , Prevalência , Medição de Risco
20.
PLoS One ; 7(3): e32548, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403673

RESUMO

Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (M(W) = 1.8 MDa) of emperor scorpion (Pandinus imperator), which diffract to a resolution of 6.5 Å. The crystals are monoclinc with space group C 1 2 1 and cell dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å (α = 90.00°, ß = 90.02°, γ = 90.00°). The asymmetric unit contains one molecule of the 24-meric hemocyanin and the solvent content of the crystals is 56%. A preliminary analysis of the hemocyanin structure reveals that emperor scorpion hemocyanin crystallizes in the same oxygenated conformation, which is also present in solution as previously shown by cryo-EM reconstruction and small angle x-ray scattering experiments.


Assuntos
Proteínas de Artrópodes/química , Hemocianinas/química , Multimerização Proteica , Escorpiões , Animais , Cristalização , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA