Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731950

RESUMO

The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.


Assuntos
Ligamento Periodontal , Análise de Célula Única , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Análise de Célula Única/métodos , Células Cultivadas , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Masculino , Feminino , Perfilação da Expressão Gênica/métodos , Adulto , Transcriptoma , Análise da Expressão Gênica de Célula Única
2.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542188

RESUMO

Induced pluripotent stem cells (iPSCs) and their derivatives have been described to display epigenetic memory of their founder cells, as well as de novo reprogramming-associated alterations. In order to selectively explore changes due to the reprogramming process and not to heterologous somatic memory, we devised a circular reprogramming approach where somatic stem cells are used to generate iPSCs, which are subsequently re-differentiated into their original fate. As somatic founder cells, we employed human embryonic stem cell-derived neural stem cells (NSCs) and compared them to iPSC-derived NSCs derived thereof. Global transcription profiling of this isogenic circular system revealed remarkably similar transcriptomes of both NSC populations, with the exception of 36 transcripts. Amongst these we detected a disproportionately large fraction of X chromosomal genes, all of which were upregulated in iPSC-NSCs. Concurrently, we detected differential methylation of X chromosomal sites spatially coinciding with regions harboring differentially expressed genes. While our data point to a pronounced overall reinstallation of autosomal transcriptomic and methylation signatures when a defined somatic lineage is propagated through pluripotency, they also indicate that X chromosomal genes may partially escape this reinstallation process. Considering the broad application of iPSCs in disease modeling and regenerative approaches, such reprogramming-associated alterations in X chromosomal gene expression and DNA methylation deserve particular attention.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Metilação de DNA , Células-Tronco Neurais/metabolismo , Diferenciação Celular/genética , Epigênese Genética , Reprogramação Celular/genética
3.
Transl Psychiatry ; 13(1): 143, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137886

RESUMO

FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.


Assuntos
Células-Tronco Pluripotentes , Proteômica , Humanos , Proteínas Relacionadas à Autofagia , Axônios/patologia , Neurônios
4.
EMBO J ; 41(23): e110595, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305367

RESUMO

Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.


Assuntos
Diferenciação Celular , Proteínas dos Microfilamentos , Células-Tronco Neurais , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Metabolismo Energético , Mitocôndrias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/citologia
5.
Stem Cell Reports ; 17(10): 2349-2364, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179692

RESUMO

Combining multiple Parkinson's disease (PD) relevant cellular phenotypes might increase the accuracy of midbrain dopaminergic neuron (mDAN) in vitro models. We differentiated patient-derived induced pluripotent stem cells (iPSCs) with a LRRK2 G2019S mutation, isogenic control, and genetically unrelated iPSCs into mDANs. Using automated fluorescence microscopy in 384-well-plate format, we identified elevated levels of α-synuclein (αSyn) and serine 129 phosphorylation, reduced dendritic complexity, and mitochondrial dysfunction. Next, we measured additional image-based phenotypes and used machine learning (ML) to accurately classify mDANs according to their genotype. Additionally, we show that chemical compound treatments, targeting LRRK2 kinase activity or αSyn levels, are detectable when using ML classification based on multiple image-based phenotypes. We validated our approach using a second isogenic patient-derived SNCA gene triplication mDAN model which overexpresses αSyn. This phenotyping and classification strategy improves the practical exploitability of mDANs for disease modeling and the identification of novel LRRK2-associated drug targets.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Aprendizado de Máquina , Mesencéfalo/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/terapia , Serina , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Commun Biol ; 5(1): 541, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35662277

RESUMO

Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology.


Assuntos
Actinas , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
7.
Cell Commun Signal ; 20(1): 47, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392923

RESUMO

BACKGROUND: NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS: Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS: In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS: Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.


Assuntos
Células-Tronco Pluripotentes , Isoformas de RNA , Tetraciclina , Diferenciação Celular , Humanos , Isoenzimas/genética , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
J Neurosci Methods ; 373: 109562, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35292305

RESUMO

BACKGROUND: Transcription factor-based forward programming enables the efficient generation of forebrain excitatory and inhibitory neurons from human pluripotent stem cells (hPSCs). This provides an opportunity to study stimulation-response patterns in highly defined neuronal networks in a controlled and customizable in vitro environment. NEW METHOD: Cell populations composed of defined ratios of excitatory and inhibitory neurons were generated by forward programming genome-edited human hPSCs carrying the inducible transcription factors NGN2 and ASCL1/DLX2, respectively. These populations were cultured on multi-electrode arrays (MEAs), and population responses elicited by distinct spatial and temporal stimulation patterns were analyzed. In parallel, in silico network models fed with neuronal parameters obtained from the in vitro cultures were developed to explore potential mechanisms underlying experimental observations. RESULTS: Neuronal cultures developed network-level electrophysiological activities with pronounced synchronized network bursts (NBs), which responded to synaptic modulators. Interestingly, local electrical pulse stimulation at frequencies ≤ 0.2 Hz reliably elicited NBs, while frequencies of ≥ 1 Hz yielded no homogeneous responses, but only sporadic NBs. In contrast, multi-site stimulation at the same frequency could elicit NBs robustly. Data from computational models suggest that this phenomenon can be explained by exhaustion and presynaptic functional paralysis of targeted circuits by high-frequency local stimulation. COMPARISON WITH EXISTING METHODS: Compared to hPSC-derived neurons generated solely by small molecule treatment, forward-programmed excitatory and inhibitory neurons enable the composition of highly confectionized networks. In silico simulation of induced biological network responses can be directly used to devise and validate mechanistic hypotheses underlying the recorded network dynamics. CONCLUSIONS: The present study demonstrates the prospect of the iPSC technology for conducting personalized in vitro studies of human neuronal networks and their responses to electric stimuli. It also illustrates how the combined use of biological and in silico neuronal networks can support the development of mechanistic hypotheses underlying network responses to specific stimuli.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Prosencéfalo
9.
Front Cell Neurosci ; 16: 1039957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733665

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a promising approach to study neurological and neuropsychiatric diseases. Most methods to record the activity of these cells have major drawbacks as they are invasive or they do not allow single cell resolution. Genetically encoded voltage indicators (GEVIs) open the path to high throughput visualization of undisturbed neuronal activity. However, conventional GEVIs perturb membrane integrity through inserting multiple copies of transmembrane domains into the plasma membrane. To circumvent large add-ons to the plasma membrane, we used a minimally invasive novel hybrid dark quencher GEVI to record the physiological and pathological firing patterns of hiPSCs-derived sensory neurons from patients with inherited erythromelalgia, a chronic pain condition associated with recurrent attacks of redness and swelling in the distal extremities. We observed considerable differences in action potential firing patterns between patient and control neurons that were previously overlooked with other recording methods. Our system also performed well in hiPSC-derived forebrain neurons where it detected spontaneous synchronous bursting behavior, thus opening the path to future applications in other cell types and disease models including Parkinson's disease, Alzheimer's disease, epilepsy, and schizophrenia, conditions associated with disturbances of neuronal activity and synchrony.

10.
Stem Cells Transl Med ; 10(7): 1063-1080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660952

RESUMO

To harness the full potential of human pluripotent stem cells (hPSCs) we combined instrumented stirred tank bioreactor (STBR) technology with the power of in silico process modeling to overcome substantial, hPSC-specific hurdles toward their mass production. Perfused suspension culture (3D) of matrix-free hPSC aggregates in STBRs was applied to identify and control process-limiting parameters including pH, dissolved oxygen, glucose and lactate levels, and the obviation of osmolality peaks provoked by high density culture. Media supplements promoted single cell-based process inoculation and hydrodynamic aggregate size control. Wet lab-derived process characteristics enabled predictive in silico modeling as a new rational for hPSC cultivation. Consequently, hPSC line-independent maintenance of exponential cell proliferation was achieved. The strategy yielded 70-fold cell expansion in 7 days achieving an unmatched density of 35 × 106 cells/mL equivalent to 5.25 billion hPSC in 150 mL scale while pluripotency, differentiation potential, and karyotype stability was maintained. In parallel, media requirements were reduced by 75% demonstrating the outstanding increase in efficiency. Minimal input to our in silico model accurately predicts all main process parameters; combined with calculation-controlled hPSC aggregation kinetics, linear process upscaling is also enabled and demonstrated for up to 500 mL scale in an independent bioreactor system. Thus, by merging applied stem cell research with recent knowhow from industrial cell fermentation, a new level of hPSC bioprocessing is revealed fueling their automated production for industrial and therapeutic applications.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Reatores Biológicos , Diferenciação Celular , Simulação por Computador , Meios de Cultura , Humanos , Células-Tronco Pluripotentes/citologia
11.
Stem Cell Res ; 52: 102180, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556820

RESUMO

APOE genotype is the strongest genetic risk factor for Alzheimer's Disease (AD). The low degree of homology between mouse and human APOE is a concerning issue in preclinical models currently used to study the role of this gene in AD pathophysiology. A key objective of ADAPTED (Alzheimer's Disease Apolipoprotein Pathology for Treatment Elucidation and Development) project was to generate in vitro models that better recapitulate human APOE biology. We describe a new set of induced pluripotent stem cells (iPSC) lines carrying common APOE variants (Ɛ2, Ɛ3, and Ɛ3/Ɛ4) and a knock-out isogenic to the parental APOE Ɛ4/Ɛ4 line (UKBi011-A).


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Animais , Apolipoproteínas E/genética , Biologia , Genótipo , Camundongos
12.
Cell Rep Methods ; 1(1): 100002, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35474694

RESUMO

Mitochondria sustain the energy demand of the cell. The composition and functional state of the mitochondrial oxidative phosphorylation system are informative indicators of organelle bioenergetic capacity. Here, we describe a highly sensitive and reproducible method for a single-cell quantification of mitochondrial CI- and CIV-containing respiratory supercomplexes (CI∗CIV-SCs) as an alternative means of assessing mitochondrial respiratory chain integrity. We apply a proximity ligation assay (PLA) and stain CI∗CIV-SCs in fixed human and mouse brains, tumorigenic cells, induced pluripotent stem cells (iPSCs) and iPSC-derived neural precursor cells (NPCs), and neurons. Spatial visualization of CI∗CIV-SCs enables the detection of mitochondrial lesions in various experimental models, including complex tissues undergoing degenerative processes. We report that comparative assessments of CI∗CIV-SCs facilitate the quantitative profiling of even subtle mitochondrial variations by overcoming the confounding effects that mixed cell populations have on other measurements. Together, our PLA-based analysis of CI∗CIV-SCs is a sensitive and complementary technique for detecting cell-type-specific mitochondrial perturbations in fixed materials.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Células-Tronco Neurais , Camundongos , Animais , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células-Tronco Neurais/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa
13.
Mol Cell Neurosci ; 110: 103568, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068718

RESUMO

The incidence of Alzheimer's disease is increasing with the aging population, and it has become one of the main health concerns of modern society. The dissection of the underlying pathogenic mechanisms and the development of effective therapies remain extremely challenging, also because available animal and cell culture models do not fully recapitulate the whole spectrum of pathological changes. The advent of human pluripotent stem cells and cell reprogramming has provided new prospects for tackling these challenges in a human and even patient-specific setting. Yet, experimental modeling of non-cell autonomous and extracellular disease-related alterations has remained largely inaccessible. These limitations are about to be overcome by advances in the development of 3D cell culture systems including organoids, neurospheroids and matrix-embedded 3D cultures, which have been shown to recapitulate extracellular pathologies such as plaque formation in vitro. Recent xenograft studies have even taken human stem cell-based disease modeling to an in vivo scenario where grafted neurons are probed in a disease background in the context of a rodent brain. Here, we review the latest developments in this emerging field along with their advantages, challenges, and future prospects.


Assuntos
Doença de Alzheimer/metabolismo , Medicina de Precisão/métodos , Cultura Primária de Células/métodos , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Edição de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Transplante Heterólogo/métodos
14.
Mol Autism ; 11(1): 99, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308283

RESUMO

The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.


Assuntos
Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Neurônios/patologia , Animais , Reprogramação Celular/genética , Humanos , Organoides/patologia
15.
Front Bioeng Biotechnol ; 8: 580352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240865

RESUMO

While human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and throughput in the production of hiPSCs is needed, which can only be achieved by implementing automated solutions for cell reprogramming, and hiPSC expansion. Here, we describe the StemCellFactory, an automated, modular platform covering the entire process of hiPSC production, ranging from adult human fibroblast expansion, Sendai virus-based reprogramming to automated isolation, and parallel expansion of hiPSC clones. We have developed a feeder-free, Sendai virus-mediated reprogramming protocol suitable for cell culture processing via a robotic liquid handling unit that delivers footprint-free hiPSCs within 3 weeks with state-of-the-art efficiencies. Evolving hiPSC colonies are automatically detected, harvested, and clonally propagated in 24-well plates. In order to ensure high fidelity performance, we have implemented a high-speed microscope for in-process quality control, and image-based confluence measurements for automated dilution ratio calculation. This confluence-based splitting approach enables parallel, and individual expansion of hiPSCs in 24-well plates or scale-up in 6-well plates across at least 10 passages. Automatically expanded hiPSCs exhibit normal growth characteristics, and show sustained expression of the pluripotency associated stem cell marker TRA-1-60 over at least 5 weeks (10 passages). Our set-up enables automated, user-independent expansion of hiPSCs under fully defined conditions, and could be exploited to generate a large number of hiPSC lines for disease modeling, and drug screening at industrial scale, and quality.

16.
STAR Protoc ; 1(1): 100038, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-33111086

RESUMO

This protocol describes a highly standardized pipeline for transcription factor-mediated forward programming of human pluripotent stem cells into highly enriched glutamatergic or GABAergic neurons followed by a cryopreservation step that enables the generation of large quality-controlled batches. This approach is particularly useful for reducing interexperimental variability in the context of collaborative studies across different locations and time points. For complete details on the use and execution of this protocol, please refer to Meijer et al. (2019) and Rhee et al. (2019).


Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação/métodos , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Prosencéfalo/citologia , Diferenciação Celular , Células Cultivadas , Humanos
17.
Viruses ; 12(11)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121145

RESUMO

Zika virus (ZIKV) is a mosquito-borne virus, which can cause brain abnormalities in newborns, including microcephaly. MicroRNAs (miRNAs) are small non-coding RNAs, which post- transcriptionally regulate gene expression. They are involved in various processes including neurological development and host responses to viral infection, but their potential role in ZIKV pathogenesis remains poorly understood. MiRNAs can be incorporated into extracellular vesicles (EVs) and mediate cell-to-cell communication. While it is well known that in viral infections EVs carrying miRNAs can play a crucial role in disease pathogenesis, ZIKV effects on EV-delivered miRNAs and their contribution to ZIKV pathogenesis have not been elucidated. In the present study, we profiled intracellular and EV-derived miRNAs by next generation sequencing and analyzed the host mRNA transcriptome of neural stem cells during infection with ZIKV Uganda and French Polynesia strains. We identified numerous miRNAs, including miR-4792, which were dysregulated at the intracellular level and had altered levels in EVs during ZIKV infection. Integrated analyses of differentially expressed genes and miRNAs showed that ZIKV infection had an impact on processes associated with neurodevelopment and oxidative stress. Our results provide insights into the roles of intracellular and EV-associated host miRNAs in ZIKV pathogenesis.


Assuntos
Vesículas Extracelulares/virologia , Interações entre Hospedeiro e Microrganismos/genética , MicroRNAs/genética , Células-Tronco Neurais/virologia , Transcriptoma , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Replicação Viral , Zika virus/genética , Zika virus/patogenicidade , Zika virus/fisiologia
18.
Sci Rep ; 9(1): 9615, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270336

RESUMO

Axonal degeneration is a key pathology of neurodegenerative diseases, including hereditary spastic paraplegia (HSP), a disorder characterized by spasticity in the lower limbs. Treatments for HSP and other neurodegenerative diseases are mainly symptomatic. While iPSC-derived neurons are valuable for drug discovery and target identification, these applications require robust differentiation paradigms and rapid phenotypic read-outs ranging between hours and a few days. Using spastic paraplegia type 4 (SPG4, the most frequent HSP subtype) as an exemplar, we here present three rapid phenotypic assays for uncovering neuronal process pathologies in iPSC-derived glutamatergic cortical neurons. Specifically, these assays detected a 51% reduction in neurite outgrowth and a 60% increase in growth cone area already 24 hours after plating; axonal swellings, a hallmark of HSP pathology, was discernible after only 5 days. Remarkably, the identified phenotypes were neuron subtype-specific and not detectable in SPG4-derived GABAergic forebrain neurons. We transferred all three phenotypic assays to a 96-well setup, applied small molecules and found that a liver X receptor (LXR) agonist rescued all three phenotypes in HSP neurons, providing a potential drug target for HSP treatment. We expect this multiparametric and rapid phenotyping approach to accelerate development of therapeutic compounds for HSP and other neurodegenerative diseases.


Assuntos
Biomarcadores , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Diferenciação Celular , Células Cultivadas , Haploinsuficiência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Crescimento Neuronal , Fenótipo , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/etiologia , Paraplegia Espástica Hereditária/metabolismo , Espastina/genética
19.
Cell Rep ; 27(7): 2199-2211.e6, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091456

RESUMO

Synaptic dysfunction is associated with many brain disorders, but robust human cell models to study synaptic transmission and plasticity are lacking. Instead, current in vitro studies on human neurons typically rely on spontaneous synaptic events as a proxy for synapse function. Here, we describe a standardized in vitro approach using human neurons cultured individually on glia microdot arrays that allow single-cell analysis of synapse formation and function. We show that single glutamatergic or GABAergic forebrain neurons differentiated from human induced pluripotent stem cells form mature synapses that exhibit robust evoked synaptic transmission. These neurons show plasticity features such as synaptic facilitation, depression, and recovery. Finally, we show that spontaneous events are a poor predictor of synaptic maturity and do not correlate with the robustness of evoked responses. This methodology can be deployed directly to evaluate disease models for synaptic dysfunction and can be leveraged for drug development and precision medicine.


Assuntos
Neurônios GABAérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/genética , Plasticidade Neuronal/fisiologia , Análise de Célula Única/métodos , Transmissão Sináptica/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Ratos , Sinapses/fisiologia
20.
Cell Rep ; 27(7): 2212-2228.e7, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091457

RESUMO

iPSC-derived human neurons are expected to revolutionize studies on brain diseases, but their functional heterogeneity still poses a problem. Key sources of heterogeneity are the different cell culture systems used. We show that an optimized autaptic culture system, with single neurons on astrocyte feeder islands, is well suited to culture, and we analyze human iPSC-derived neurons in a standardized, systematic, and reproducible manner. Using classically differentiated and transcription factor-induced human glutamatergic and GABAergic neurons, we demonstrate that key features of neuronal morphology and function, including dendrite structure, synapse number, membrane properties, synaptic transmission, and short-term plasticity, can be assessed with substantial throughput and reproducibility. We propose our optimized autaptic culture system as a tool to study functional features of human neurons, particularly in the context of disease phenotypes and experimental therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Neurônios GABAérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Dendritos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Wistar , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA