Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785676

RESUMO

Addressing the challenges posed by the complexity of the structure and the multitude of sensor types installed in space application fluid loop systems, this paper proposes a fault diagnosis method based on an improved D-S evidence theory. The method first employs the Gaussian affiliation function to convert the information acquired by sensors into BPA functions. Subsequently, it utilizes a pignistic probability transformation to convert the multiple subset focal elements into single subset focal elements. Finally, it comprehensively evaluates the credibility and uncertainty factors between evidences, introducing Bray-Curtis dissimilarity and belief entropy to achieve the fusion of conflicting evidence. The proposed method is initially validated on the classic Iris dataset, demonstrating its reliability. Furthermore, when applied to fault diagnosis in space application fluid circuit loop pumps, the results indicate that the method can effectively fuse multiple sensors and accurately identify faults.

2.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392390

RESUMO

Few-shot learning aims to solve the difficulty in obtaining training samples, leading to high variance, high bias, and over-fitting. Recently, graph-based transductive few-shot learning approaches supplement the deficiency of label information via unlabeled data to make a joint prediction, which has become a new research hotspot. Therefore, in this paper, we propose a novel ensemble semi-supervised few-shot learning strategy via transductive network and Dempster-Shafer (D-S) evidence fusion, named ensemble transductive propagation networks (ETPN). First, we present homogeneity and heterogeneity ensemble transductive propagation networks to better use the unlabeled data, which introduce a preset weight coefficient and provide the process of iterative inferences during transductive propagation learning. Then, we combine the information entropy to improve the D-S evidence fusion method, which improves the stability of multi-model results fusion from the pre-processing of the evidence source. Third, we combine the L2 norm to improve an ensemble pruning approach to select individual learners with higher accuracy to participate in the integration of the few-shot model results. Moreover, interference sets are introduced to semi-supervised training to improve the anti-disturbance ability of the mode. Eventually, experiments indicate that the proposed approaches outperform the state-of-the-art few-shot model. The best accuracy of ETPN increases by 0.3% and 0.28% in the 5-way 5-shot, and by 3.43% and 7.6% in the 5-way 1-shot on miniImagNet and tieredImageNet, respectively.

3.
BMC Med Imaging ; 24(1): 19, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238662

RESUMO

BACKGROUND: Human vision has inspired significant advancements in computer vision, yet the human eye is prone to various silent eye diseases. With the advent of deep learning, computer vision for detecting human eye diseases has gained prominence, but most studies have focused only on a limited number of eye diseases. RESULTS: Our model demonstrated a reduction in inherent bias and enhanced robustness. The fused network achieved an Accuracy of 0.9237, Kappa of 0.878, F1 Score of 0.914 (95% CI [0.875-0.954]), Precision of 0.945 (95% CI [0.928-0.963]), Recall of 0.89 (95% CI [0.821-0.958]), and an AUC value of ROC at 0.987. These metrics are notably higher than those of comparable studies. CONCLUSIONS: Our deep neural network-based model exhibited improvements in eye disease recognition metrics over models from peer research, highlighting its potential application in this field. METHODS: In deep learning-based eye recognition, to improve the learning efficiency of the model, we train and fine-tune the network by transfer learning. In order to eliminate the decision bias of the models and improve the credibility of the decisions, we propose a model decision fusion method based on the D-S theory. However, D-S theory is an incomplete and conflicting theory, we improve and eliminate the existed paradoxes, propose the improved D-S evidence theory(ID-SET), and apply it to the decision fusion of eye disease recognition models.


Assuntos
Aprendizado Profundo , Oftalmopatias , Humanos , Redes Neurais de Computação
4.
Sensors (Basel) ; 23(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896567

RESUMO

The conventional trust model employed in satellite network security routing algorithms exhibits limited accuracy in detecting malicious nodes and lacks adaptability when confronted with unknown attacks. To address this challenge, this paper introduces a secure satellite network routing technology founded on deep learning and trust management. The approach embraces the concept of distributed trust management, resulting in all satellite nodes in this paper being equipped with trust management and anomaly detection modules for assessing the security of neighboring nodes. In a more detailed breakdown, this technology commences by preprocessing the communication behavior of satellite network nodes using D-S evidence theory, effectively mitigating interference factors encountered during the training of VAE modules. Following this preprocessing step, the trust vector, which has undergone prior processing, is input into the VAE module. Once the VAE module's training is completed, the satellite network can assess safety factors by employing the safety module during the collection of trust evidence. Ultimately, these security factors can be integrated with the pheromone component within the ant colony algorithm to guide the ants in discovering pathways. Simulation results substantiate that the proposed satellite network secure routing algorithm effectively counters the impact of malicious nodes on data transmission within the network. When compared to the traditional trust management model of satellite network secure routing algorithms, the algorithm demonstrates enhancements in average end-to-end delay, packet loss rate, and throughput.

5.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679656

RESUMO

High-sensitivity early fire detection is an essential prerequisite to intelligent building safety. However, due to the small changes and erratic fluctuations in environmental parameters in the initial combustion phase, it is always a challenging task. To address this challenge, this paper proposes a hybrid feature fusion-based high-sensitivity early fire detection and warning method for in-building environments. More specifically, the temperature, smoke concentration, and carbon monoxide concentration were first selected as the main distinguishing attributes to indicate an in-building fire. Secondly, the propagation neural network (BPNN) and the least squares support vector machine (LSSVM) were employed to achieve the hybrid feature fusion. In addition, the genetic algorithm (GA) and particle swarm optimization (PSO) were also introduced to optimize the BPNN and the LSSVM, respectively. After that, the outputs of the GA-BPNN and the PSO-LSSVM were fused to make a final decision by means of the D-S evidence theory, achieving a highly sensitive and reliable early fire detection and warning system. Finally, an early fire warning system was developed, and the experimental results show that the proposed method can effectively detect an early fire with an accuracy of more than 96% for different types and regions of fire, including polyurethane foam fire, alcohol fire, beech wood smolder, and cotton woven fabric smolder.


Assuntos
Incêndios , Redes Neurais de Computação , Máquina de Vetores de Suporte , Análise dos Mínimos Quadrados , Temperatura , Algoritmos
6.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679519

RESUMO

A single sensor is prone to decline recognition accuracy in the face of a complex environment, while the existing multi-sensor evidence theory fusion methods do not comprehensively consider the impact of evidence conflict and fuzziness. In this paper, a new evidence weight combination and probability allocation method is proposed, which calculated the degree of evidence fuzziness through the maximum entropy principle, and also considered the impact of evidence conflict on fusing results. The two impact factors were combined to calculate the trusted discount and reallocate the probability function. Finally, Dempster's combination rule was used to fuse every piece of evidence. On this basis, experiments were first conducted to prove that the existing weight combination methods produce results contrary to common sense when handling high-conflicting and high-clarity evidence, and then comparative experiments were conducted to prove the effectiveness of the proposed evidence weight combination and probability allocation method. Moreover, it was verified, on the PAMAP2 data set, that the proposed method can obtain higher fusing accuracy and more reliable fusing results in all kinds of behavior recognition. Compared with the traditional methods and the existing improved methods, the weight allocation method proposed in this paper dynamically adjusts the weight of fuzziness and conflict in the fusing process and improves the fusing accuracy by about 3.3% and 1.7% respectively which solved the limitations of the existing weight combination methods.


Assuntos
Reconhecimento Psicológico , Confiança , Funções Verossimilhança , Entropia
7.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236275

RESUMO

At present, the online insulation monitoring and fault diagnosis of mining cables are extensively discussed, while their operation status assessment has not been deeply studied. Considering that mining cables are closely related to the safe and stable operation of coal mine power supply systems, a comprehensive evaluation method including the Analytic Hierarchy Process (AHP), the membership cloud theory, and the D-S evidence theory is proposed in this paper in order to accurately assess the operation status of the mining XLPE cable. Firstly, the membership cloud is introduced to solve the index membership degree and the weights are calculated by an improved weight vector calculation method. Secondly, the conversion from the base layer indicator membership degree to the target layer trust degree is realized based on the D-S evidence theory. Then, the cable operation status is judged via the trust degree maximum and the distribution of conflict coefficients is further analyzed to warn the indicators with a bad status in the base layer. Finally, the feasibility of the proposed evaluation method is verified by a sufficient and detailed case analysis.


Assuntos
Carvão Mineral , Mineração
8.
Comput Biol Med ; 150: 106181, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36240596

RESUMO

Aiming at the problem that the single CT image signal feature recognition method in the self-diagnosis of diseases cannot accurately and reliably classify COVID-19, and it is easily confused with suspected cases. The collected CT signals and experimental indexes are extracted to construct different feature vectors. The support vector machine is optimized by the improved whale algorithm for the preliminary diagnosis of COVID-19, and the basic probability distribution function of each evidence is calculated by the posterior probability modeling method. Then the similarity measure is introduced to optimize the basic probability distribution function. Finally, the multi-domain feature fusion prediction model is established by using the weighted D-S evidence theory. The experimental results show that the fusion of multi-domain feature information by whale optimized support vector machine and improved D-S evidence theory can effectively improve the accuracy and the precision of COVID-19 autonomous diagnosis. The method of replacing a single feature parameter with multi-modal indicators (CT, routine laboratory indexes, serum cytokines and chemokines) provides a more reliable signal source for the diagnosis model, which can effectively distinguish COVID-19 from the suspected cases.


Assuntos
COVID-19 , Animais , Humanos , COVID-19/diagnóstico por imagem , Baleias , Máquina de Vetores de Suporte , Algoritmos , Probabilidade , Teste para COVID-19
9.
Front Comput Neurosci ; 16: 1006361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313812

RESUMO

Background: Rapid serial visual presentation (RSVP) has become a popular target detection method by decoding electroencephalography (EEG) signals, owing to its sensitivity and effectiveness. Most current research on EEG-based RSVP tasks focused on feature extraction algorithms developed to deal with the non-stationarity and low signal-to-noise ratio (SNR) of EEG signals. However, these algorithms cannot handle the problem of no event-related potentials (ERP) component or miniature ERP components caused by the attention lapses of human vision in abnormal conditions. The fusion of human-computer vision can obtain complementary information, making it a promising way to become an efficient and general way to detect objects, especially in attention lapses. Methods: Dynamic probability integration (DPI) was proposed in this study to fuse human vision and computer vision. A novel basic probability assignment (BPA) method was included, which can fully consider the classification capabilities of different heterogeneous information sources for targets and non-targets and constructs the detection performance model for the weight generation based on classification capabilities. Furthermore, a spatial-temporal hybrid common spatial pattern-principal component analysis (STHCP) algorithm was designed to decode EEG signals in the RSVP task. It is a simple and effective method of distinguishing target and non-target using spatial-temporal features. Results: A nighttime vehicle detection based on the RSVP task was performed to evaluate the performance of DPI and STHCP, which is one of the conditions of attention lapses because of its decrease in visual information. The average AUC of DPI was 0.912 ± 0.041 and increased by 11.5, 5.2, 3.4, and 1.7% compared with human vision, computer vision, naive Bayesian fusion, and dynamic belief fusion (DBF), respectively. A higher average balanced accuracy of 0.845 ± 0.052 was also achieved using DPI, representing that DPI has the balanced detection capacity of target and non-target. Moreover, STHCP obtained the highest AUC of 0.818 ± 0.06 compared with the other two baseline methods and increased by 15.4 and 23.4%. Conclusion: Experimental results indicated that the average AUC and balanced accuracy of the proposed fusion method were higher than individual detection methods used for fusion, as well as two excellent fusion methods. It is a promising way to improve detection performance in RSVP tasks, even in abnormal conditions.

10.
Interdiscip Sci ; 14(3): 722-744, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35484463

RESUMO

If the samples, features and information values in a real-valued information system are cells, genes and gene expression values, respectively, then for convenience, this system is said to be a single cell gene space. In the era of big data, people are faced with high dimensional gene expression data with redundancy and noise causing its strong uncertainty. D-S evidence theory excels at tackling the problem of uncertainty, and its conditions to be met are weaker than Bayesian probability theory. Therefore, this paper studies the gene selection in a single cell gene space to remove noise and redundancy with D-S evidence theory. The distance between two cells in each gene is first defined. Then, the tolerance relation is established according to the defined distance. In addition, the belief and plausibility functions to grasp the uncertainty of a single cell gene space are introduced on the basis of the tolerance classes. Statistical analysis shows that they can effectively measure the uncertainty of a single cell gene space. Furthermore, several gene selection algorithms in a single cell gene space are presented using the proposed belief and plausibility. Finally, the performance of the proposed algorithm is compared to other algorithms on some published single-cell data sets. Experimental results and statistical tests show that the classification and clustering performance of the presented algorithm not only exceeds the other three state-of-the-art algorithms, but also its gene reduction rate is very high.


Assuntos
Algoritmos , Teorema de Bayes , Análise por Conglomerados , Humanos
11.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770414

RESUMO

The uncertainties in quality evaluations of rock mass are embedded in the underlying multi-source data composed by a variety of testing methods and some specialized sensors. To mitigate this issue, a proper method of data-driven computing for quality evaluation of rock mass based on the theory of multi-source data fusion is required. As the theory of multi-source data fusion, Dempster-Shafer (D-S) evidence theory is applied to the quality evaluation of rock mass. As the correlation between different rock mass indices is too large to be ignored, belief reinforcement and Murphy's average belief theory are introduced to process the multi-source data of rock mass. The proposed method is designed based on RMR14, one of the most widely used quality-evaluating methods for rock mass in the world. To validate the proposed method, the data of rock mass is generated randomly to realize the data fusion based on the proposed method and the conventional D-S theory. The fusion results based on these two methods are compared. The result of the comparison shows the proposed method amplifies the distance between the possibilities at different ratings from 0.0666 to 0.5882, which makes the exact decision more accurate than the other. A case study is carried out in Daxiagu tunnel in China to prove the practical value of the proposed method. The result shows the rock mass rating of the studied section of the tunnel is in level III with the maximum possibility of 0.9838, which agrees with the geological survey report.

12.
Entropy (Basel) ; 23(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681989

RESUMO

Interval type-2 fuzzy sets (IT2 FS) play an important part in dealing with uncertain applications. However, how to measure the uncertainty of IT2 FS is still an open issue. The specific objective of this study is to present a new entropy named fuzzy belief entropy to solve the problem based on the relation among IT2 FS, belief structure, and Z-valuations. The interval of membership function can be transformed to interval BPA [Bel,Pl]. Then, Bel and Pl are put into the proposed entropy to calculate the uncertainty from the three aspects of fuzziness, discord, and nonspecificity, respectively, which makes the result more reasonable. Compared with other methods, fuzzy belief entropy is more reasonable because it can measure the uncertainty caused by multielement fuzzy subsets. Furthermore, when the membership function belongs to type-1 fuzzy sets, fuzzy belief entropy degenerates to Shannon entropy. Compared with other methods, several numerical examples are demonstrated that the proposed entropy is feasible and persuasive.

13.
Sensors (Basel) ; 21(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696102

RESUMO

In the actual fault diagnosis process of an analog circuit, there is often a problem due to the lack of fault samples, leading to the low-accuracy of diagnostic models. Therefore, using positive samples that are easy to obtain to establish diagnostic models became a research hotspot in the field of analog circuit fault diagnosis. This paper proposes a method based on Support Vector Data Description (SVDD) and Dempster-Shafer evidence theory (D-S evidence theory) for fault diagnosis of modular analog circuit. Firstly, the principle of circuit module partition is proposed to divide the analog circuit under test, and the output port of each module is selected as test point. Secondly, the paper extracts the feature of the time-domain and frequency-domain output signals of the circuit module through Principal Component Analysis (PCA). Thirdly, four state detection models based on SVDD are established to judge the working state of each circuit module, including TSG, TSP, FSG, and FSP state detection model. Finally, the D-S theory is introduced to integrate the test results of each model for locating fault circuit module. To verify the effectiveness of the proposed method, the dual bandpass filter circuit is selected for simulation and hardware experiment. The results show that the proposed method can locate the analog fault effectively and has a higher diagnosis accuracy.


Assuntos
Análise de Componente Principal , Simulação por Computador
14.
Entropy (Basel) ; 23(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672527

RESUMO

Most conventional wind turbine fault diagnosis techniques only use a single type of signal as fault feature and their performance could be limited to such signal characteristics. In this paper, multiple types of signals including vibration, temperature, and stator current are used simultaneously for wind turbine misalignment diagnosis. The model is constructed by integrated methods based on Dempster-Shafer (D-S) evidence theory. First, the time domain, frequency domain, and time-frequency domain features of the collected vibration, temperature, and stator current signal are respectively taken as the inputs of the least square support vector machine (LSSVM). Then, the LSSVM outputs the posterior probabilities of the normal, parallel misalignment, angular misalignment, and integrated misalignment of the transmission systems. The posterior probabilities are used as the basic probabilities of the evidence fusion, and the fault diagnosis is completed according to the D-S synthesis and decision rules. Considering the correlation between the inputs, the vibration and current feature vectors' dimensionalities are reduced by t-distributed stochastic neighbor embedding (t-SNE), and the improved artificial bee colony algorithm is used to optimize the parameters of the LSSVM. The results of the simulation and experimental platform demonstrate the accuracy of the proposed model and its superiority compared with other models.

15.
ISA Trans ; 113: 210-221, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32507346

RESUMO

The condition of a high-voltage circuit breaker (HVCB) may have a major effect on a power system. In the practical application of artificial intelligence, many advanced technologies have been applied to the assessment of the state of health of a HVCB or the identification of a fault. To date, most related research related to the improvement of a feature extraction process or a classification method intended to attain a higher level of precision have been based on a single sensor. However, any method that relies on data from a single sensor cannot exceed a given level of precision. Most studies have neglected to consider whether the information provided by a single vibration signal is sufficient and effective. Therefore, this study proposes a multi-vibration Information joint diagnosis method to improve the diagnosis of HVCB faults. The procedure has two key steps: 1) the basic probability assigns an acquisition using a classification and regression tree (CART); and 2) a combination rule design based on the Gini index in the CART. By comparing the results of eight typical classifiers and three traditional fusion methods in a case of HVCB system, the validity and superiority of the proposed method has been verified.

16.
Sensors (Basel) ; 19(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609699

RESUMO

Deep learning has been an important topic in fault diagnosis of motor bearings, which can avoid the need for extensive domain expertise and cumbersome artificial feature extraction. However, existing neural networks have low fault recognition rates and low adaptability under variable load conditions. In order to solve these problems, we propose a one-dimensional fusion neural network (OFNN), which combines Adaptive one-dimensional Convolution Neural Networks with Wide Kernel (ACNN-W) and Dempster-Shafer (D-S) evidence theory. Firstly, the original vibration time-domain signals of a motor bearing acquired by two sensors are resampled. Then, four frameworks of ACNN-W optimized by RMSprop are utilized to learn features adaptively and pre-classify them with Softmax classifiers. Finally, the D-S evidence theory is used to comprehensively determine the class vector output by the Softmax classifiers to achieve fault detection of the bearing. The proposed method adapts to different load conditions by incorporating complementary or conflicting evidences from different sensors through experiments on the Case Western Reserve University (CWRU) motor bearing database. Experimental results show that the proposed method can effectively enhance the cross-domain adaptive ability of the model and has a better diagnostic accuracy than other existing experimental methods.

17.
Entropy (Basel) ; 21(7)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-33267401

RESUMO

In order to realize single fault detection (SFD) from the multi-fault coupling bearing data and further research on the multi-fault situation of bearings, this paper proposes a method based on features self-extraction of a Sparse Auto-Encoder (SAE) and results fusion of improved Dempster-Shafer evidence theory (D-S). Multi-fault signal compression features of bearings were extracted by SAE on multiple vibration sensors' data. Data sets were constructed by the extracted compression features to train the Support Vector Machine (SVM) according to the rule of single fault detection (R-SFD) this paper proposed. Fault detection results were obtained by the improved D-S evidence theory, which was implemented via correcting the 0 factor in the Basic Probability Assignment (BPA) and modifying the evidence weight by Pearson Correlation Coefficient (PCC). Extensive evaluations of the proposed method on the experiment platform datasets showed that the proposed method could realize single fault detection from multi-fault bearings. Fault detection accuracy increases as the output feature dimension of SAE increases; when the feature dimension reached 200, the average detection accuracy of the three sensors for bearing inner, outer, and ball faults achieved 87.36%, 87.86% and 84.46%, respectively. The three types' fault detection accuracy-reached to 99.12%, 99.33% and 98.46% by the improved Dempster-Shafer evidence theory (IDS) to fuse the sensors' results-is respectively 0.38%, 2.06% and 0.76% higher than the traditional D-S evidence theory. That indicated the effectiveness of improving the D-S evidence theory by evidence weight calculation of PCC.

18.
Sensors (Basel) ; 17(10)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035341

RESUMO

In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster-Shafer evidence theory (D-S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D-S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method.

19.
Sensors (Basel) ; 17(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788099

RESUMO

Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster-Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA