Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Phytomedicine ; 132: 155860, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38991252

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type that urgently requires effective therapeutic strategies. Andrographolide, a labdane diterpenoid compound abundant in Andrographis paniculata, has anticancer effects against various cancer types, but its anticancer activity and mechanism against PDAC remain largely uncharacterized. PURPOSE: This study explores novel drug target(s) and underlying molecular mechanism of andrographolide against PDAC. STUDY DESIGN AND METHODS: The malignant phenotypes of PDAC cells, PANC-1 and MIA PaCa-2 cells, were measured using MTT, clonogenic assays, and Transwell migration assays. A PDAC xenograft animal model was used to evaluate tumor growth in vivo. Western blot, immunofluorescence and immunohistochemistry were used for measuring protein expression. The TCGA database was analyzed to evaluate promoter methylation status, gene expression, and their relationship with patient survival rates. RT-qPCR was used for detecting mRNA expression. Reporter assays were used for detecting signal transduction pathways. Promoter DNA methylation was determined by sodium bisulfite treatment and methylation-specific PCR (MSP). The biological function and role of specific genes involved in drug effects were measured through gene overexpression. RESULTS: Andrographolide treatment suppressed the proliferation and migration of PDAC cells and impaired tumor growth in vivo. Furthermore, andrographolide induced the mRNA and protein expression of zinc finger protein 382 (ZNF382) in PDAC cells. Overexpression of ZNF382 inhibited malignant phenotypes and cancer-associated signaling pathways (AP-1, NF-κB and ß-catenin) and oncogenes (ZEB-1, STAT-3, STAT-5, and HIF-1α). Overexpression of ZNF382 delayed growth of PANC-1 cells in vivo. ZNF382 mRNA and protein expression was lower in tumor tissues than in adjacent normal tissues of pancreatic cancer patients. Analysis of the TCGA database found the ZNF382 promoter is hypermethylated in primary pancreatic tumors which correlates with its low expression. Furthermore, andrographolide inhibited the expression of DNA methyltransferase 3 beta (DNMT3B) and increased the demethylation of the ZNF382 promoter in PDAC cells. Overexpression of DNMT3B attenuated the andrographolide-suppressed proliferation and migration of PDAC cells. CONCLUSION: Our finding revealed that ZNF382 acts as a tumor suppressor gene in pancreatic cancer and andrographolide restores ZNF382 expression to suppress pancreatic cancer, providing a novel molecular target and a promising therapeutic approach for treating pancreatic cancer.

2.
BMC Cancer ; 24(1): 737, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879516

RESUMO

BACKGROUND: Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS: The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS: Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS: Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Estilbenos , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Invasividade Neoplásica , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , MicroRNAs/genética
3.
Free Radic Biol Med ; 220: 139-153, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705495

RESUMO

Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3B , Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Azacitidina/farmacologia , Modelos Animais de Doenças , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Ferroptose/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Regulação para Cima
4.
Med Oncol ; 41(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743323

RESUMO

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Assuntos
Antraquinonas , Ciclo Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Neoplasias Esofágicas , Humanos , Antraquinonas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rheum/química
5.
Reprod Biol ; 24(2): 100893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754347

RESUMO

Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. As a critical regulator of the Hippo pathway, the phosphorylation status of Yes-associated protein 1 (YAP1), mainly at S127, is critical for its oncogenic function. Herein, we aim to investigate the precise molecular mechanism between long noncoding RNA HOX transcript antisense RNA (HOTAIR) and YAP1 phosphorylation in regulating tumor migration and invasion. In this study, we showed that inhibition of HOTAIR significantly decreased the migration and invasion of cancer cells both in vitro and in vivo through elevating the phosphorylation level of YAP1 on serine 127, demonstrating a tumor suppressive role of YAP1 S127 phosphorylation. Through bisulfite sequencing PCR (BSP), we found that inhibition of HOTAIR dramatically increased Large Tumor Suppressor Kinase 1 (LATS1) expression by regulating LATS1 methylation via DNA methyltransferase 3ß (DNMT3B). In accordance with this observation, DNMT3B just only altered the distribution of YAP1 in the cytoplasm and the nucleus by inhibiting its phosphorylation, but did not change its total expression. Mechanistically, we discovered that HOTAIR suppressed YAP1 S127 phosphorylation by regulating the methylation of LATS1 via DNMT3B, the consequence of which is the translocation of YAP1 into the nucleus, reinforcing its coactivating transcriptional function, which in turn promotes the migration and invasion of cancer cells. Collectively, our data reveal that the phosphorylation of YAP1 S127 plays a vital role in the function of HOTAIR in tumorigenicity, and should be taken into consideration in future therapeutic strategies for cervical cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases , RNA Longo não Codificante , Fatores de Transcrição , Neoplasias do Colo do Útero , Proteínas de Sinalização YAP , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Feminino , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Linhagem Celular Tumoral , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fosforilação , Metilação de DNA , Camundongos Endogâmicos BALB C
6.
FASEB J ; 38(10): e23690, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38795327

RESUMO

Alterations to gene transcription and DNA methylation are a feature of many liver diseases including fatty liver disease and liver cancer. However, it is unclear whether the DNA methylation changes are a cause or a consequence of the transcriptional changes. It is even possible that the methylation changes are not required for the transcriptional changes. If DNA methylation is just a minor player in, or a consequence of liver transcriptional change, then future studies in this area should focus on other systems such as histone tail modifications. To interrogate the importance of de novo DNA methylation, we generated mice that are homozygous mutants for both Dnmt3a and Dnmt3b in post-natal liver. These mice are viable and fertile with normal sized livers. Males, but not females, showed increased adipose depots, yet paradoxically, improved glucose tolerance on both control diet and high-fat diets (HFD). Comparison of the transcriptome and methylome with RNA sequencing and whole-genome bisulfite sequencing in adult hepatocytes revealed that widespread loss of methylation in CpG-rich regions in the mutant did not induce loss of homeostatic transcriptional regulation. Similarly, extensive transcriptional changes induced by HFD did not require de novo DNA methylation. The improved metabolic phenotype of the Dnmt3a/3b mutant mice may be mediated through the dysregulation of a subset of glucose and fat metabolism genes which increase both glucose uptake and lipid export by the liver. However, further work is needed to confirm this.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3A , DNA Metiltransferase 3B , Dieta Hiperlipídica , Intolerância à Glucose , Fígado , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/genética , Feminino , Camundongos Endogâmicos C57BL
7.
J Clin Med ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541782

RESUMO

Background/Objectives: Preferentially expressed antigen in melanoma (PRAME), a member of the cancer testis antigen family, is a promising target for cancer immunotherapy. Understanding the epigenetic mechanisms involved in the regulation of PRAME expression might be crucial for optimizing anti-PRAME treatments. Methods: Three malignancies of different lineages (sinonasal melanoma, testicular seminoma, and synovial sarcoma), in which immunohistochemical (IHC) reactivity for PRAME is a common yet variable feature, were studied. The expression of PRAME, ten-eleven translocation demethylase 1 (TET1), and DNA methyltransferase (DNMT) 3A and 3B were evaluated using immunohistochemistry. Moreover, the expression of two epigenetic marks, 5-hydroxymethylcytosine (5hmC) and histone 3 acetylation (H3ac), was tested. Results: All PRAME-positive tumors expressed medium-to-high levels of H3ac but differed considerably with respect to other markers. In seminomas, PRAME expression correlated with TET1, but in melanomas and synovial sarcomas, it correlated with both DNMTs and DNMT3A, respectively. Conclusions: PRAME expression was not determined by a balance between the global expression of DNA methylating/demethylating enzymes. However, histone acetylation may be one of the epigenetic mechanisms involved in PRAME regulation. Thus, the therapeutic combination of histone deacetylase inhibitors and PRAME immunotherapy merits further investigation.

8.
Mol Biol Res Commun ; 13(2): 65-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504781

RESUMO

Bladder cancer (BC) is a multifactorial disease with a poorly understood main cause. In this study, we aimed to evaluate the effect of the polymorphisms rs2228611 of the DNMT1 gene and rs1569686 of the DNMT3B gene on the susceptibility to develop Bladder Cancer in the Algerian population. A case-control study design was adopted, with DNA samples of 114 BC patients and 123 healthy controls. We found that the rs2228611 of the DNMT1 gene was strongly associated with an increased risk of BC development under genetic models: Codominant AG vs. GG (OR=2.54, 95% CI=1.21-5.51, adj p=0.015) and dominant AA+AG vs. GG (OR=2.24, 95% CI=1.12-4.60, adj p=0.023). However, no statistically significant association was observed between the rs1569686 of the DNMT3B gene and the predisposition to BC. To the best of our knowledge, this is the first peer-reviewed study to evaluate the effect of the rs2228611 polymorphism on bladder cancer occurrence. Our results suggest that the rs2228611 might be a potential biomarker for BC development risk. Additional studies are needed to validate our findings.

9.
BMC Musculoskelet Disord ; 25(1): 180, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413962

RESUMO

PURPOSE: Previous studies have shown that DNA methyltransferase 3b (Dnmt3b) is the only Dnmt responsive to fracture repair and Dnmt3b ablation in Prx1-positive stem cells and chondrocyte cells both delayed fracture repair. Our study aims to explore the influence of Dnmt3b ablation in Gli1-positive stem cells in fracture healing mice and the underlying mechanism. METHODS: We generated Gli1-CreERT2; Dnmt3bflox/flox (Dnmt3bGli1ER) mice to operated tibia fracture. Fracture callus tissues of Dnmt3bGli1ER mice and control mice were collected and analyzed by X-ray, micro-CT, biomechanical testing, histopathology and TUNEL assay. RESULTS: The cartilaginous callus significantly decrease in ablation of Dnmt3b in Gli1-positive stem cells during fracture repair. The chondrogenic and osteogenic indicators (Sox9 and Runx2) in the fracture healing tissues in Dnmt3bGli1ER mice much less than control mice. Dnmt3bGli1ER mice led to delayed bone callus remodeling and decreased biomechanical properties of the newly formed bone during fracture repair. Both the expressions of Caspase-3 and Caspase-8 were upregulated in Dnmt3bGli1ER mice as well as the expressions of BCL-2. CONCLUSIONS: Our study provides an evidence that Dnmt3b ablation Gli1-positive stem cells can affect fracture healing and lead to poor fracture healing by regulating apoptosis to decrease chondrocyte hypertrophic maturation.


Assuntos
Calo Ósseo , Fraturas da Tíbia , Animais , Camundongos , Apoptose , Calo Ósseo/patologia , Consolidação da Fratura/fisiologia , Fraturas da Tíbia/cirurgia , Proteína GLI1 em Dedos de Zinco
10.
Mol Neurobiol ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368287

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumor and has the poorest prognosis attributed to its chemoresistance to temozolomide (TMZ), the first-line drug for treating GBM. TMZ resistance represents a significant obstacle to successful GBM treatment, necessitating the development of new strategies to overcome this resistance and augment the chemosensitivity of GBM cells to TMZ. This study established a TMZ-resistant U251 (U251-TMZ) cell line by exposing it to increasing doses of TMZ in vitro. We focused on the DNA methyltransferase 3B (DNMT3B) gene, phosphorylated Akt (p-Akt), total Akt (t-Akt), phosphorylated PI3K (p-PI3K), and total PI3K (t-PI3K) protein expression. Results showed that the DNMT3B gene was significantly upregulated in the U251-TMZ cell line. The p-Akt and p-PI3K protein expression in U251-TMZ cells was also significantly elevated. Moreover, we found that DNMT3B downregulation was correlated with the increased chemosensitivity of GBM cells to TMZ. LY294002 suppressed the PI3K/Akt signaling pathway, leading to a notable inhibition of PI3K phosphorylation and a significant decrease in DNMT3B expression in U251-TMZ cells. Given that DNMT3B expression is mediated by the PI3K/Akt signaling pathway, its downregulation further increased the chemosensitivity of GBM cells to TMZ and therefore is a promising therapeutic for GBM treatment. Our results suggested that DNMT3B downregulation can inhibit the proliferation of GBM cells and induce GBM cell apoptosis in vitro. In addition, the PI3K/Akt signaling pathway plays an important role in the chemosensitivity of GBM cells to TMZ by regulating DNMT3B expression.

11.
Biomolecules ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275760

RESUMO

Telomere repeats protect linear chromosomes from degradation, and telomerase has a prominent role in their maintenance. Telomerase has telomere-independent effects on cell proliferation, DNA replication, differentiation, and tumorigenesis. TERT (telomerase reverse transcriptase enzyme), the catalytic subunit of telomerase, is required for enzyme activity. TERT promoter mutation and methylation are strongly associated with increased telomerase activation in cancer cells. TERT levels and telomerase activity are downregulated in stem cells during differentiation. The link between differentiation and telomerase can provide a valuable tool for the study of the epigenetic regulation of TERT. Oxygen levels can affect cellular behaviors including proliferation, metabolic activity, stemness, and differentiation. The role of oxygen in driving TERT promoter modifications in embryonic stem cells (ESCs) is poorly understood. We adopted a monolayer ESC differentiation model to explore the role of physiological oxygen (physoxia) in the epigenetic regulation of telomerase and TERT. We further hypothesized that DNMTs played a role in physoxia-driven epigenetic modification. ESCs were cultured in either air or a 2% O2 environment. Physoxia culture increased the proliferation rate and stemness of the ESCs and induced a slower onset of differentiation than in ambient air. As anticipated, downregulated TERT expression correlated with reduced telomerase activity during differentiation. Consistent with the slower onset of differentiation in physoxia, the TERT expression and telomerase activity were elevated in comparison to the air-oxygen-cultured ESCs. The TERT promoter methylation levels increased during differentiation in ambient air to a greater extent than in physoxia. The chemical inhibition of DNMT3B reduced TERT promoter methylation and was associated with increased TERT gene and telomerase activity during differentiation. DNMT3B ChIP (Chromatin immunoprecipitation) demonstrated that downregulated TERT expression and increased proximal promoter methylation were associated with DNMT3B promoter binding. In conclusion, we have demonstrated that DNMT3B directly associates with TERT promoter, is associated with differentiation-linked TERT downregulation, and displays oxygen sensitivity. Taken together, these findings help identify novel aspects of telomerase regulation that may play a role in better understanding developmental regulation and potential targets for therapeutic intervention.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Epigênese Genética , Diferenciação Celular/genética , Metilação de DNA , Células-Tronco Embrionárias/metabolismo
12.
Biochem Genet ; 62(1): 176-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37306827

RESUMO

Bone defects have remained a clinical problem in current orthopedics. Bone marrow mesenchymal stem cells (BM-MSCs) with multi-directional differentiation ability have become a research hotspot for repairing bone defects. In vitro and in vivo models were constructed, respectively. Alkaline phosphatase (ALP) staining and alizarin red staining were performed to detect osteogenic differentiation ability. Western blotting (WB) was used to detect the expression of osteogenic differentiation-related proteins. Serum inflammatory cytokine levels were detected by ELISA. Fracture recovery was evaluated by HE staining. The binding relationship between FOXC1 and Dnmt3b was verified by dual-luciferase reporter assay. The relationship between Dnmt3b and CXCL12 was explored by MSP and ChIP assays. FOXC1 overexpression promoted calcium nodule formation, upregulated osteogenic differentiation-related protein expression, promoted osteogenic differentiation, and decreased inflammatory factor levels in BM-MSCs, and promoted callus formation, upregulated osteogenic differentiation-related protein expression, and downregulated CXCL12 expression in the mouse model. Furthermore, FOXC1 targeted Dnmt3b, with Dnmt3b knockdown decreasing calcium nodule formation and downregulating osteogenic differentiation-related protein expression. Additionally, inhibiting Dnmt3b expression upregulated CXCL12 protein expression and inhibited CXCL12 methylation. Dnmt3b could be binded to CXCL12. CXCL12 overexpression attenuated the effects of FOXC1 overexpression and inhibited BM-MSCs osteogenic differentiation. This study confirmed that the FOXC1-mediated regulation of the Dnmt3b/CXCL12 axis had positive effects on the osteogenic differentiation of BM-MSCs.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , Osteogênese , Cálcio/metabolismo , Cálcio/farmacologia , Diferenciação Celular , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , MicroRNAs/metabolismo
13.
Acta Histochem ; 126(1): 152118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039796

RESUMO

BACKGROUND: Dysregulated inflammation and osteoblast differentiation are implicated in osteoporosis. Exploring the activity of catalpol in inflammation and osteoblast differentiation deepens the understanding of osteoporosis pathogenesis. METHODS: LPS was used to treated hFOB1.19 cells to induce inflammation and repress osteoblast differentiation. FOB1.19 cells were induced in osteoblast differentiation medium and treated with LPS and catalpol. Cell viability was assessed using CCK-8. ALP and Alizarin red S staining were conducted for analyzing osteoblast differentiation. The levels of IL-1ß, TNF-α and IL-6 were examined by ELISA. The methylation of TRAF6 promoter was examined through MS-PCR. The binding of miR-124-3p to DNMT3b and DNMT3b to TRAF6 promoter was determined with dual luciferase reporter and ChIP assays. RESULTS: LPS enhanced secretion of inflammatory cytokines and suppressed osteoblast differentiation. MiR-124-3p and TRAF6 were upregulated and DNMT3b was downregulated in LPS-induced hFOB1.19 cells. Catalpol protected hFOB1.19 cells against LPS via inhibiting inflammation and promoting osteoblast differentiation. MiR-124-3p targeted DNMT3b, and its overexpression abrogated catalpol-mediated protection in LPS-treated hFOB1.19 cells. In addition, DNMT3b methylated TRAF6 promoter to restrain its expression. Catalpol exerted protective effects through suppression of the miR-124-3p/DNMT3b/TRAF6 axis in hFOB1.19 cells. CONCLUSION: Catalpol antagonizes LPS-mediated inflammation and suppressive osteoblast differentiation via controlling the miR-124-3p/DNMT3b/TRAF6 axis.


Assuntos
Glucosídeos Iridoides , MicroRNAs , Osteoporose , Humanos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Osteoblastos
14.
Cell Mol Gastroenterol Hepatol ; 17(1): 59-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37703946

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease is the most prevalent chronic liver disease and threats to human health. Gut dysbiosis caused by lipopolysaccharide (LPS) leakage has been strongly related to nonalcoholic fatty liver disease progression, although the underlying mechanisms remain unclear. METHODS: Previous studies have shown that low-grade LPS administration to mice on a standard, low-fat chow diet is sufficient to induce symptoms of fatty liver. This study confirmed these findings and supported LPS as a lipid metabolism regulator in the liver. RESULTS: Mechanically, LPS induced dysregulated lipid metabolism by inhibiting the expression of DNA methyltransferases 3B (DNMT3B). Genetic overexpression of DNMT3B alleviated LPS-induced lipid accumulation, whereas its knockdown increased steatosis in mice and human hepatocytes. LPS-induced lower expression of DNMT3B led to hypomethylation in promoter region of CIDEA, resulting in increased binding of SREBP-1c to its promoter and activated CIDEA expression. Hepatic interference of CIDEA reversed the effect of LPS on lipogenesis. These effects were independent of a high-fat diet or high fatty acid action. CONCLUSIONS: Overall, these findings sustain the conclusion that LPS is a lipogenic factor and could be involved in hepatic steatosis progression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Lipopolissacarídeos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
15.
Biomolecules ; 13(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136588

RESUMO

Parent-of-origin-dependent gene expression of a few hundred human genes is achieved by differential DNA methylation of both parental alleles. This imprinting is required for normal development, and defects in this process lead to human disease. Induced pluripotent stem cells (iPSCs) serve as a valuable tool for in vitro disease modeling. However, a wave of de novo DNA methylation during reprogramming of iPSCs affects DNA methylation, thus limiting their use. The DNA methyltransferase 3B (DNMT3B) gene is highly expressed in human iPSCs; however, whether the hypermethylation of imprinted loci depends on DNMT3B activity has been poorly investigated. To explore the role of DNMT3B in mediating de novo DNA methylation at imprinted DMRs, we utilized iPSCs generated from patients with immunodeficiency, centromeric instability, facial anomalies type I (ICF1) syndrome that harbor biallelic hypomorphic DNMT3B mutations. Using a whole-genome array-based approach, we observed a gain of methylation at several imprinted loci in control iPSCs but not in ICF1 iPSCs compared to their parental fibroblasts. Moreover, in corrected ICF1 iPSCs, which restore DNMT3B enzymatic activity, imprinted DMRs did not acquire control DNA methylation levels, in contrast to the majority of the hypomethylated CpGs in the genome that were rescued in the corrected iPSC clones. Overall, our study indicates that DNMT3B is responsible for de novo methylation of a subset of imprinted DMRs during iPSC reprogramming and suggests that imprinting is unstable during a specific time window of this process, after which the epigenetic state at these regions becomes resistant to perturbation.


Assuntos
Síndromes de Imunodeficiência , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Mutação , Síndromes de Imunodeficiência/genética , Impressão Genômica
16.
Mol Biol Rep ; 50(12): 10005-10013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902910

RESUMO

BACKGROUND: Cancer bladder is the most common malignant tumor affecting the urinary tract. Genetic alterations are tightly associated with the development of cancer bladder. MicroRNAs (miRNA) are small, noncoding single-stranded RNA molecules that have been linked to bladder cancer. miR-124-3pa exhibits altered expression in various types of human malignancies. DNA methyltransferase 3B (DNMT3B) is responsible for de novo DNA methylation which is a fundamental epigenetic process in carcinogenesis. This work was performed to study the expression of DNMT3B and miR 124-3pa in bladder cancer tissues, and investigate their significance in the diagnosis and prognosis of the disease. SUBJECTS & METHODS: This case-control study included one hundred and six tissue samples of patients with primary urothelial bladder cancer. The tissues were separated into two parts. The first part was immediately frozen and kept at - 80 °C for total RNA extraction with subsequent detection of miR 124-3pa and DNMT3B expressions. The other part was preserved in formalin solution for histopathological examination. RESULTS: There was a highly statistically significant difference between the cancerous and the normal tissues as regarding miRNA-124-3pa and DNMT3B expression (P < 0.001) for each. Also, there was a highly statistically significant strong negative correlation between miRNA-124-3pa and DNMT3B expression (r=-0.750, P < 0.001). The combined performance of miR-124-3pa and DNMT3B revealed that the cutoff point of ≥ 3.3 can be used as a predictor of the presence of cancer bladder with sensitivity of 98.1% and specificity of 80%. CONCLUSION: miR-124-3pa and DNMT3B can be used as predictors of the presence of cancer bladder.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Estudos de Casos e Controles , MicroRNAs/genética , MicroRNAs/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , DNA Metiltransferase 3B
17.
J Transl Med ; 21(1): 621, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705098

RESUMO

Cancer is a complex disease with many contributing factors, and researchers have gained extensive knowledge that has helped them understand the diverse and varied nature of cancer. The altered patterns of DNA methylation found in numerous types of cancer imply that they may play a part in the disease's progression. The human cancer condition involves dysregulation of the DNA methyltransferase 3 beta (DNMT3B) gene, a prominent de novo DNA methyltransferase, and its abnormal behavior serves as an indicator for tumor prognosis and staging. The expression of non-coding RNAs (ncRNAs), which include microRNAs (miRNA), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), is critical in controlling targeted gene expression and protein translation and their dysregulation correlates with the onset of tumors. NcRNAs dysregulation of is a critical factor that influences the modulation of several cellular characteristics in cancerous cells. These characteristics include but are not limited to, drug responsiveness, angiogenesis, metastasis, apoptosis, proliferation, and properties of tumor stem cell. The reciprocal regulation of ncRNAs and DNMT3B can act in synergy to influence the destiny of tumor cells. Thus, a critical avenue for advancing cancer prevention and treatment is an inquiry into the interplay between DNMT3B and ncRNAs. In this review, we present a comprehensive overview of the ncRNAs/DNMT3B axis in cancer pathogenesis. This brings about valuable insights into the intricate mechanisms of tumorigenesis and provides a foundation for developing effective therapeutic interventions.


Assuntos
Relevância Clínica , Neoplasias , Humanos , DNA , Metilases de Modificação do DNA , Neoplasias/genética , RNA não Traduzido/genética , DNA Metiltransferase 3B
18.
Clin Immunol ; 256: 109779, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741519

RESUMO

BACKGROUND: ICF syndrome is a rare autosomal recessive condition characterized by immunodeficiency, centromeric instability, and facial abnormalities. It is a clinical condition that depends on the mutation of a few particular genes and is caused by methylation disruption in chromosomes 1, 9, and 16 to varying degrees. CASE PRESENTATION: The 9-months old, female patient was admitted to our clinic for treatment-resistant thrombocytopenia, chronic diarrhea and sepsis. Immunological investigations revealed agammaglobulinemia. In the genetic analysis by NGS of the patient, who had dysmorphic facial findings as well as a history of parental consanguinity, it was determined that she had a novel mutation in the DNMT3B gene, which is one of the responsible genes of ICF, as homozygous. The patient, who was started on regular immunoglobulin replacement therapy and antibiotic therapy, was referred to a center with a stem cell transplant unit to continue her follow-up. CONCLUSIONS: Although autoimmunity has not been commonly reported in previous studies in ICF syndrome, which has a varied clinical presentation, a homozygous mutation in the DNMT3B gene was discovered in a 9-month-old patient with refractory thrombocytopenia and agammaglobulinemia. Examining the literature reveals that this mutation is a novel mutation.


Assuntos
Agamaglobulinemia , Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Trombocitopenia , Humanos , Lactente , Feminino , Agamaglobulinemia/genética , Doenças da Imunodeficiência Primária/genética , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Mutação , Trombocitopenia/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA
19.
ACS Synth Biol ; 12(9): 2536-2545, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572041

RESUMO

Methylation of cytosines in CG dinucleotides (CpGs) within promoters has been shown to lead to gene silencing in mammals in natural contexts. Recently, engineered recruitment of methyltransferases (DNMTs) at specific loci was shown to be sufficient to silence synthetic and endogenous gene expression through this mechanism. A critical parameter for DNA methylation-based silencing is the distribution of CpGs within the target promoter. However, how the number or density of CpGs in the target promoter affects the dynamics of silencing by DNMT recruitment has remained unclear. Here, we constructed a library of promoters with systematically varying CpG content, and analyzed the rate of silencing in response to recruitment of DNMT. We observed a tight correlation between silencing rate and CpG content. Further, methylation-specific analysis revealed a constant accumulation rate of methylation at the promoter after DNMT recruitment. We identified a single CpG site between TATA box and transcription start site (TSS) that accounted for a substantial part of the difference in silencing rates between promoters with differing CpG content, indicating that certain residues play disproportionate roles in controlling silencing. Together, these results provide a library of promoters for synthetic epigenetic and gene regulation applications, as well as insights into the regulatory link between CpG content and silencing rate.


Assuntos
Metilação de DNA , Inativação Gênica , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Mamíferos/genética
20.
Ecotoxicol Environ Saf ; 263: 115273, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480691

RESUMO

Lung cancer primarily arises from exposure to various environmental factors, particularly airborne pollutants. Among the various lung carcinogens, benzo(a)pyrene and its metabolite B[a]PDE are the strongest ones that actively contribute to lung cancer development. ATG7 is an E1-like activating enzyme and contributes to activating autophagic responses in mammal cells. However, the potential alterations of ATG7 and its role in B[a]PDE-caused lung carcinogenesis remain unknown. Here, we found that B[a]PDE exposure promoted ATG7 expression in mouse lung tissues, while B[a]PDE exposure resulted in ATG7 induction in human normal bronchial epithelial cells. Our studies also demonstrated a significant correlation between high ATG7 expression levels and poor overall survival in lung cancer patients. ATG7 knockdown significantly repressed Beas-2B cell transformation upon B[a]PDE exposure, and such promotive effect of ATG7 on cell transformation mediated the p27 translation inhibition. Further studies revealed that miR-373 inhibition was required to stabilize ATG7 mRNA, therefore increasing ATG7 expression following B[a]PDE exposure, while ATG7 induction led to the autophagic degradation of the DNA methyltransferase 3 Beta (DNMT3B) protein, in turn promoted miR-494 transcription via its promoter region methylation status suppression. We also found that the miR-494 upregulation inhibited p27 protein translation and promoted bronchial epithelial cell transformation via its directly targeting p27 mRNA 3'-UTR region. Current studies, to the best of our knowledge, are for the first time to identify that ATG7 induction and its mediated autophagy is critical for B[a]PDE-induced transformation of human normal epithelial cells.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Proteólise , Metilação , Regulação para Cima , Células Epiteliais , Regiões Promotoras Genéticas , MicroRNAs/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA