Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 146(19): 13445-13454, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708818

RESUMO

An unprecedented caged 2H-benzo-dioxo-pentacycloundecane framework was serendipitously obtained in a single transformation via triple-dearomative photocycloaddition of chromone esters with furans. This caged structure was generated as part of an effort to access a tricyclic, oxygen-bridged intermediate enroute to the dihydroxanthone natural product nidulalin A. Reaction scope and limitations were thoroughly investigated, revealing the ability to access a multitude of synthetically challenging caged scaffolds in a two-step sequence. Photophysical studies provided key mechanistic insights on the process for formation of the novel caged scaffold.

2.
Angew Chem Int Ed Engl ; 63(4): e202316662, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38059768

RESUMO

Aryl-maleimides undergo a novel [2+4]-photodimerization instead of the expected [2+2]-photodimerization under both direct irradiation with visible light and under sensitized energy transfer conditions. This new excited state reactivity in aryl-maleimides is deciphered through photochemical, photophysical, and spectroscopic studies. The stereochemistry of the photodimer depends on the type of non-bonding interactions prevalent during photodimerization which is in turn dictated by the substituents on the maleimide ring. More importantly, the stereochemistry of the photodimer formed is complementary to the product observed under thermal conditions.

3.
Photochem Photobiol Sci ; 21(8): 1333-1340, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35610462

RESUMO

Crossed [2 + 2] photocycloaddition is a specific case of intramolecular photocycloaddition reaction. Recently, the term "crossed [2 + 2] photocycloaddition" is interchangeably used to represent intermolecular [2 + 2] photocycloaddition reactions of two dissimilar double bonds/alkenes. To avoid confusion and to help researchers use the correct terminologies, this perspective clarifies the terminology used for different [2 + 2] photocycloaddition processes based on prior literature with the hope of establishing a standard for addressing the diverse set of photocycloaddition reactions that will be helpful to the chemical community.


Assuntos
Alcenos , Alcenos/química , Ciclização , Fotoquímica , Estereoisomerismo
4.
Angew Chem Int Ed Engl ; 61(31): e202203353, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35545813

RESUMO

Photodegradable, recyclable, and renewable, crosslinked polymers from bioresources show promise towards developing a sustainable strategy to address the issue of plastics degradability and recyclability. Photo processes are not widely exploited for upcycling polymers in spite of the potential to have spatial and temporal control of the degradation in addition to being a green process. In this report we highlight a methodology in which biomass-derived crosslinked polymers can be programmed to degrade at ≈300 nm with ≈60 % recovery of the monomer. The recovered monomer was recycled back to the crosslinked polymer.


Assuntos
Plásticos , Polímeros , Biomassa
5.
J Am Chem Soc ; 143(10): 3677-3681, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33657321

RESUMO

An unprecedented and previously unknown photochemical reactivity of 1,3-dicarbonyl compounds is observed with amino-alkenes leading to dihydropyrans. This novel photochemical reactivity changes the established paradigm related to the De Mayo reaction between 1,3-dicarbonyl compounds and alkenes. This new reaction allows convenient access to the Marmycin core in a single step from commercially available reactants. The origin and scope of this new photoreaction is detailed with preliminary photophysical and mechanistic investigations.

6.
Environ Res ; 197: 111121, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823193

RESUMO

Endoxifen is the main active metabolite of a common cytostatic drug, tamoxifen. Endoxifen has been recently detected in the final effluent of municipal wastewater treatment plants. The antiestrogenic activity of endoxifen could bring negative effects to aquatic life if released to the water environment. This study elucidated the fate and susceptibility of (E)- and (Z)-endoxifen (2 µg mL-1, 1:1 wt ratio between the two easily interchangeable isomers) in wastewater and receiving surface water to sunlight. Phototransformation by-products (PBPs) and their toxicity were determined. Sunlight reduced at least 83% of endoxifen concentration in wastewater samples, whereas in surface water samples, 60% of endoxifen was photodegraded after 180 min of the irradiation. In ultrapure water samples spiked with endoxifen, PBPs were mainly generated via con-rotatory 6π-photocyclization, followed by oxidative aromatization. These PBPs underwent secondary reactions leading to a series of PBPs with different molecular weights. Eight PBPs were identified and the toxicity analysis via the Toxicity Estimation Software Tool revealed that seven of these PBPs are more toxic than endoxifen itself. This is likely due to the formation of poly-aromatic core in the PBPs due to exposure to sunlight. Therefore, highly toxic PBPs may be generated if endoxifen is present in water and wastewater exposed to sunlight. The presence, fates and activities of these PBPs in surface water especially at locations close to treated wastewater discharge points should be investigated.


Assuntos
Neoplasias da Mama , Águas Residuárias , Feminino , Humanos , Luz Solar , Tamoxifeno/análogos & derivados , Tamoxifeno/toxicidade , Água
7.
J Am Chem Soc ; 141(28): 11315-11321, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264859

RESUMO

Regiodivergent photocyclization of dearomatized acylphloroglucinol substrates has been developed to produce type A polycyclic polyprenylated acylphloroglucinol (PPAP) derivatives using an excited-state intramolecular proton transfer (ESIPT) process. Using this strategy, we achieved the enantioselective total syntheses of the type A PPAPs (-)-nemorosone and (-)-6-epi-garcimultiflorone A. Diverse photocyclization substrates have been investigated leading to divergent photocyclization processes as a function of tether length. Photophysical studies were performed, and photocyclization mechanisms were proposed based on investigation of various substrates as well as deuterium-labeling experiments.


Assuntos
Benzofenonas/síntese química , Compostos Heterocíclicos com 3 Anéis/síntese química , Floroglucinol/síntese química , Benzofenonas/química , Compostos Heterocíclicos com 3 Anéis/química , Conformação Molecular , Floroglucinol/análogos & derivados , Floroglucinol/química , Processos Fotoquímicos , Estereoisomerismo
8.
J Am Chem Soc ; 141(35): 13941-13947, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31401832

RESUMO

Direct activation of H-phosphine oxide to react with an unsaturated carbon-carbon bond is a straightforward approach for accessing alkenylphosphine oxides, which shows significant applications in both synthetic and material fields. However, expensive metals and strong oxidants are typically required to realize the transformation. Here, we demonstrate the utility of earth-abundant cobaloxime to convert H-phosphine oxide into its reactive radical species under visible light irradiation. The radical species thus generated can be utilized to functionalize alkenes and alkynes without any external photosensitizer and oxidant. The coupling with terminal alkene generates E-alkenylphosphine oxide with excellent chemo- and stereoselectivity. The reaction with terminal alkyne yields linear E-alkenylphosphine oxide via neutral radical addition, while addition with internal ones generates cyclic benzophosphine oxides and hydrogen. Mechanistic studies on radical trapping experiments, electron spin resonance studies, and spectroscopic measurements confirm the formation of phosphinoyl radical and cobalt intermediates that are from capturing the electron and proton eliminated from H-phosphine oxide. The highlight of our mechanistic investigation is the dual role played by cobaloxime, viz., both as the visible light absorber to activate the P(O)-H bond as well as a hydrogen transfer agent to influence the reaction pathway. This synergetic feature of the cobaloxime catalyst preforming multiple functions under ambient condition provides a convergent synthetic approach to vinylphosphine oxides directly from H-phosphine oxides and alkenes (or alkynes).

9.
J Nanosci Nanotechnol ; 19(4): 1951-1958, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486935

RESUMO

We have prepared a core-shell magnetic silica-coated hydroxyapatite, Fe3O4@SiO2@HAp composite materials for pH-responsive drug delivery applications. Captopril (Cap) and ibuprofen (Ibu) were chosen as model hydrophilic and hydrophobic drugs, respectively. The drugs were encapsulated into the Fe3O4@SiO2@HAp composite via electrostatic interactions with existing amine and carboxylic acid groups during calcium phosphate shell formation. The formation of calcium phosphate shell not only protects the encapsulated drugs from leaching but also controls the release rate of drugs from the composite system depending on various pH conditions. We have tested the release behavior of Cap and Ibu drugs under different pH conditions such as neutral pH (pH 7.4) and acidic pH (pH 5.0), respectively. The study result reveals that the synthesized Fe3O4@SiO2@HAp composite is suitable for release of both water soluble and water insoluble drugs based on a pH-responsive controlled manner.


Assuntos
Preparações Farmacêuticas , Dióxido de Silício , Sistemas de Liberação de Medicamentos , Durapatita , Fenômenos Magnéticos , Magnetismo
10.
J Am Chem Soc ; 140(41): 13185-13189, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30256105

RESUMO

The textbook photoreaction between two alkenes is the [2 + 2]-photocycloaddition resulting in functionalized cyclobutanes. Herein, we disclose an unusual reactivity of alkenes that favor photoene reaction over the [2 + 2]-photocycloaddition.

11.
Chem Rev ; 116(17): 9914-93, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27254154

RESUMO

Photochemistry, bearing significant applications in natural and man-made events such as photosynthesis, vision, photolithography, photodynamic therapy, etc., is yet to become a common tool during the synthesis of small molecules in a laboratory. Among other rationale, the inability to influence photochemical reactions with temperature, solvent, additives, etc., dissuades chemists from employing light-initiated reactions as a routine synthetic tool. This review highlights how diverse, highly organized structures such as solvent-free crystals and water-soluble host-guest assemblies can be employed to control and manipulate photoreactions and thereby serve as an efficient tool for chemists, including those interested in synthesis. The efficacy of the media in modifying the excited-state behavior of organic molecules is illustrated with photocycloaddition in general and [2 + 2] photocycloaddition in particular, reactions widely employed in the synthesis of complex natural products as well as highly constrained molecules, as exemplars. The reaction media, highly pertinent in the context of green sustainable chemistry, include solvent-free crystals and solids such as silica, clay, and zeolite and water-soluble hosts that can solubilize and preorganize hydrophobic reactants in water. Since no other reagent would be more sustainable than light and no other medium greener than water, we believe that the supramolecular photochemistry expounded here has a momentous role as a synthetic tool in the future.


Assuntos
Reação de Cicloadição , Processos Fotoquímicos , Cristalização , Cristalografia por Raios X
12.
Acc Chem Res ; 49(12): 2713-2724, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993011

RESUMO

Photochemical transformations are a powerful tool in organic synthesis to access structurally complex and diverse synthetic building blocks. However, this great potential remains untapped in the mainstream synthetic community due to the challenges associated with stereocontrol originating from excited state(s). The finite lifetime of an excited state and nearly barrierless subsequent processes present significant challenges in manipulating the stereochemical outcome of a photochemical reaction. Several methodologies were developed to address this bottleneck including photoreactions in confined media and preorganization through noncovalent interactions resulting in stereoenhancement. Yet, stereocontrol in photochemical reactions that happen in solution in the absence of organized assemblies remained largely unaddressed. In an effort to develop a general and reliable methodology, our lab has been exploring non-biaryl atropisomers as an avenue to perform asymmetric phototransformations. Atropisomers are chiral molecules that arise due to the restricted rotation around a single bond (chiral axis) whose energy barrier to rotation is determined by nonbonding interactions (most often by steric hindrance) with appropriate substituents. Thus, atropisomeric substrates are chirally preorganized during the photochemical transformation and translate their chiral information to the expected photoproducts. This strategy, where "axial to point chirality transfer" occurs during the photochemical reaction, is a hybrid of the successful Curran's prochiral auxiliary approach involving atropisomers in thermal reactions and the Havinga's NEER principle (nonequilibrating excited-state rotamers) for photochemical transformations. We have investigated this strategy in order to probe various aspects such as regio-, enantio-, diastereo-, and chemoselectivity in several synthetically useful phototransformations including 6π-photocyclization, 4π-ring closure, Norrish-Yang photoreactions, Paternò-Büchi reaction, and [2 + 2]- and [5 + 2]-photocycloaddition. The investigations detailed in this Account clearly signify the scope of our strategy in accessing chirally enriched products during phototransformations. Simple design modifications such as tailoring the steric handle in atropisomers to hold reactive units resulted in permanently locked/traceless axial chirality in addition to incorporating multiple stereocenters in already complex scaffolds obtained from phototransformation. Further improvements allowed us to employ low energy visible light rather than high energy UV light without compromising the stereoenrichment in the photoproducts. Continued investigations on atropisomeric scaffolds have unraveled new design features, with outcomes that are unique and unprecedented for excited state reactivity. For example, we have established that reactive spin states (singlet or triplet excited state) profoundly influence the stereochemical outcome of an atropselective phototransformation. In general, the photochemistry and photophysics of atropisomeric substrates differ significantly from their achiral counterparts irrespective of having the same chromophore initiating the excited state reactivity. The ability of axially chiral chromophores to impart stereoenrichment in the intramolecular photoreactions appears to be promising. A challenging endeavor for the "axial to point chirality transfer" strategy is to enhance stereoenrichment or alter chemical reactivity in intermolecular photoreactions. Insights gained from our investigations will serve as a platform to venture into more complicated yet fruitful research in terms of broad synthetic utility.

13.
Angew Chem Int Ed Engl ; 56(25): 7056-7061, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28452104

RESUMO

Intramolecular atropselective aza Paternò-Büchi reaction involving atropisomeric enamide and imine functionalities under sensitized irradiation leads to azetidine products in good yield and selectivity (ee >96 %). A mechanistic model based on detailed photophysical and isomerization kinetic studies is provided that shed light into the reactivity of enamides leading to aza Paternò-Büchi reaction.

14.
Angew Chem Int Ed Engl ; 56(46): 14479-14482, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28950418

RESUMO

Selective excited-state intramolecular proton-transfer (ESIPT) photocycloaddition of 3-hydroxyflavones with trans, trans-1,4-diphenyl-1,3-butadiene is described. Using this methodology, total syntheses of the natural products (±)-foveoglin A and (±)-perviridisin B were accomplished. Enantioselective ESIPT photocycloaddition using TADDOLs as chiral hydrogen-bonding additives provided access to (+)-foveoglin A. Mechanistic studies have revealed the possibility for a photoinduced electron-transfer (PET) pathway.


Assuntos
Produtos Biológicos/síntese química , Processos Fotoquímicos , Produtos Biológicos/química , Cristalografia por Raios X , Reação de Cicloadição , Ligação de Hidrogênio , Isomerismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Prótons
15.
Chemistry ; 22(32): 11339-48, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381436

RESUMO

Light-induced transformation of atropisomeric and achiral enones displays divergent reactivity. Photocyclization leading to 3,4-dihydroquinolin-2-one was observed with achiral enone carboxamide, whereas the atropisomeric enone carboxamides underwent hydrogen abstraction leading to spiro-ß-lactams. Detailed photochemical, photophysical, and theoretical investigations have provided insight into this divergent reactivity and selectivity.


Assuntos
Quinolonas/química , beta-Lactamas/química , Luz , Estrutura Molecular , Fotoquímica , Estereoisomerismo
16.
J Org Chem ; 81(16): 7191-200, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382920

RESUMO

Atropisomeric enone-imides and enone-amides featuring N-CAryl bond rotation were evaluated for intramolecular [2 + 2] photocycloaddition. Straight addition product was observed over cross-addition product with good control over reactivity. The atropselectivity was found to be dependent on the substituent on the aryl ring. Substitution-dependent atropselectivity was rationalized on the basis of a divergent mechanistic pathway.

17.
Angew Chem Int Ed Engl ; 55(18): 5446-51, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27005562

RESUMO

Mechanistic investigations of the intermolecular [2+2] photocycloaddition of coumarin with tetramethylethylene mediated by thiourea catalysts reveal that the reaction is enabled by a combination of minimized aggregation, enhanced intersystem crossing, and altered excited-state lifetime(s). These results clarify how the excited-state reactivity can be manipulated through catalyst-substrate interactions and reveal a third mechanistic pathway for thiourea-mediated organo-photocatalysis.


Assuntos
Alcenos/química , Cumarínicos/química , Tioureia/química , Catálise , Reação de Cicloadição , Luz , Modelos Moleculares , Processos Fotoquímicos
18.
Angew Chem Int Ed Engl ; 54(4): 1159-63, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25394266

RESUMO

Renewable polymeric materials derived from biomass with built-in phototriggers were synthesized and evaluated for degradation under irradiation of UV light. Complete decomposition of the polymeric materials was observed with recovery of the monomer that was used to resynthesize the polymers.


Assuntos
Polímeros/química , Furanos/química , Química Verde , Fotólise , Raios Ultravioleta
20.
Angew Chem Int Ed Engl ; 53(22): 5604-8, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24740511

RESUMO

Can photocatalysis be performed without electron or energy transfer? To address this, organo-photocatalysts that are based on atropisomeric thioureas and display lower excited-state energies than the reactive substrates have been developed. These photocatalysts were found to be efficient in promoting the [2+2] photocycloaddition of 4-alkenyl-substituted coumarins, which led to the corresponding products with high enantioselectivity (77-96% ee) at low catalyst loading (1-10 mol%). The photocatalytic cycle proceeds by energy sharing via the formation of both static and dynamic complexes (exciplex formation), which is aided by hydrogen bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA