Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 433(2): 113819, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852349

RESUMO

Communication between adipocytes and endothelial cells (EC) is suggested to play an important role in the metabolic function of white adipose tissue. In order to generate tools to investigate in detail the physiology and communication of EC and adipocytes, a method for isolation of adipose microvascular EC from visceral adipose tissue (VAT) biopsies of subjects with obesity was developed. Moreover, mature white adipocytes were isolated from the VAT biopsies by a method adapted from a previously published Membrane aggregate adipocytes culture (MAAC) protocol. The identity and functionality of the cultivated and isolated adipose microvascular EC (AMvEC) was validated by imaging their morphology, analyses of mRNA expression, fluorescence activated cell sorting (FACS), immunostaining, low-density lipoprotein (LDL) uptake, and in vitro angiogenesis assays. Finally, we established a new trans filter co-culture system (membrane aggregate adipocyte and endothelial co-culture, MAAECC) for the analysis of communication between the two cell types. EC-adipocyte communication in this system was validated by omics analyses, revealing several altered proteins belonging to pathways such as metabolism, intracellular transport and signal transduction in adipocytes co-cultured with AMvEC. In reverse experiments, induction of several pathways including endothelial development and functions was found in AMvEC co-cultured with adipocytes. In conclusion, we developed a robust method to isolate EC from small quantities of human VAT. Furthermore, the MAAECC system established during the study enables one to study the communication between primary white adipocytes and EC or vice-versa and could also be employed for drug screening.


Assuntos
Adipócitos Brancos , Células Endoteliais , Humanos , Técnicas de Cocultura , Células Endoteliais/metabolismo , Gordura Intra-Abdominal , Tecido Adiposo Branco/metabolismo , Comunicação Celular , Tecido Adiposo
2.
Clin Immunol ; 254: 109687, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419296

RESUMO

Pulmonary fibrosis, a serious complication of systemic lupus erythematosus (SLE) and coronavirus disease 2019 (COVID-19), leads to irreversible lung damage. However, the underlying mechanism of this condition remains unclear. In this study, we revealed the landscape of transcriptional changes in lung biopsies from individuals with SLE, COVID-19-induced pulmonary fibrosis, and idiopathic pulmonary fibrosis (IPF) using histopathology and RNA sequencing, respectively. Despite the diverse etiologies of these diseases, lung expression of matrix metalloproteinase genes in these diseases showed similar patterns. Particularly, the differentially expressed genes were significantly enriched in the pathway of neutrophil extracellular trap formation, showing similar enrichment signature between SLE and COVID-19. The abundance of Neutrophil extracellular traps (NETs) was much higher in the lungs of individuals with SLE and COVID-19 compared to those with IPF. In-depth transcriptome analyses revealed that NETs formation pathway promotes epithelial-mesenchymal transition (EMT). Furthermore, stimulation with NETs significantly up-regulated α-SMA, Twist, Snail protein expression, while decreasing the expression of E-cadherin protein in vitro. This indicates that NETosis promotes EMT in lung epithelial cells. Given drugs that are efficacious in degrading damaged NETs or inhibiting NETs production, we identified a few drug targets that were aberrantly expressed in both SLE and COVID-19. Among these targets, the JAK2 inhibitor Tofacitinib could effectively disrupted the process of NETs and reversed NET-induced EMT in lung epithelial cells. These findings support that the NETs/EMT axis, activated by SLE and COVID-19, contributes to the progression of pulmonary fibrosis. Our study also highlights that JAK2 as a potential target for the treatment of fibrosis in these diseases.


Assuntos
COVID-19 , Lúpus Eritematoso Sistêmico , Fibrose Pulmonar , Humanos , Neutrófilos/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , COVID-19/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Inflamação/metabolismo , Fibrose
3.
Allergy ; 78(3): 714-730, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181709

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E2 (PGE2 ). However, the respective roles for the PGE2 receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. METHODS: The roles of PGE2 receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33-induced lung allergy model. The effects of PGE2 receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. RESULTS: Deficiency of EP2 rather than EP4 augments IL-33-induced mouse lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 and EP2 or inhibition of phosphodiesterase markedly restricts IL-33-induced lung ILC2 responses. Mechanistically, PGE2 directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice where endogenous PG synthesis or EP2 signaling is blocked but not in mice with intact PGE2 -EP2 signaling. CONCLUSION: We have defined a mechanism for optimal suppression of mouse lung ILC2 responses by endogenous PGE2 -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE2 -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating the ILC2-initiated lung inflammation in asthma and NERD.


Assuntos
Asma , Imunidade Inata , Camundongos , Animais , Interleucina-33/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Linfócitos/metabolismo , Dinoprostona/metabolismo , Pulmão/metabolismo
4.
Cell Mol Life Sci ; 79(4): 220, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35368213

RESUMO

During angiogenesis, endothelial cells form protrusive sprouts and migrate towards the angiogenic stimulus. In this study, we investigate the role of the endoplasmic reticulum (ER)-anchored protein, Protrudin, in endothelial cell protrusion, migration and angiogenesis. Our results demonstrate that Protrudin regulates angiogenic tube formation in primary endothelial cells, Human umbilical vein endothelial cells (HUVECs). Analysis of RNA sequencing data and its experimental validation revealed cell migration as a prominent cellular function affected in HUVECs subjected to Protrudin knockdown. Further, our results demonstrate that knockdown of Protrudin inhibits focal adhesion kinase (FAK) activation in HUVECs and human aortic endothelial cells (HAECs). This is associated with a loss of polarized phospho-FAK distribution upon Protrudin knockdown as compared to Protrudin expressing HUVECs. Reduction of Protrudin also results in a perinuclear accumulation of mTOR and a decrease in VEGF-mediated S6K activation. However, further experiments suggest that the observed inhibition of angiogenesis in Protrudin knockdown cells is not affected by mTOR disturbance. Therefore, our findings suggest that defects in FAK activation and its abnormal subcellular distribution upon Protrudin knockdown are associated with a detrimental effect on endothelial cell migration and angiogenesis. Furthermore, mice with global Protrudin deletion demonstrate reduced retinal vascular progression. To conclude, our results provide evidence for a novel key role of Protrudin in endothelial cell migration and angiogenesis.


Assuntos
Neovascularização Patológica , Neovascularização Fisiológica , Animais , Movimento Celular/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Proteínas de Transporte Vesicular
5.
Bioorg Med Chem Lett ; 50: 128335, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425201

RESUMO

Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Camundongos , Estrutura Molecular , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mikrochim Acta ; 187(1): 78, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31894420

RESUMO

A polyaniline composite doped with etched multi-walled carbon nanotubes and UiO-66-NH2 was prepared by electropolymerization. It was used as a sorbent to extract the polycyclic aromatic hydrocarbons (PAHs) phenanthrene, fluoranthene and pyrene. Its surface morphology, crystal structure and capability of adsorbing PAHs were characterized by scanning electron microscopy, X-ray photoelectron spectrometry, Fourier transform infrared spectrometry and zeta potentiometry. The π stacking and anion-π interactions are shown to play dominant roles in the sorption mechanism. Coupled with high performance liquid chromatography, the composite-modified fiber was applied to detect PAHs in lake water samples by direct immersion extraction. The method excels by (a) wide linear range (0.05-20 ng mL-1), (b) low limits of detection (10 pg mL-1), (c) satisfactory recovery from spiked samples (84.7-113.8%), and (d) good reproducibility (relative standard deviations of <6.5%). The method is superior in terms of costs and reproducibility compared to some pretreatment methods with mass spectrometric detection. Graphical abstractSchematic representation for interaction between PANI-etched MWCNT/UiO-66-NH2 and polycyclic aromatic hydrocarbons (phenanthrene, fluoranthene, pyrene).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Nanocompostos/química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Poluentes da Água/isolamento & purificação , Adsorção , Compostos de Anilina/química , Cromatografia Líquida de Alta Pressão/normas , Fluorenos/isolamento & purificação , Lagos/química , Limite de Detecção , Estruturas Metalorgânicas/química , Nanotubos de Carbono/química , Fenantrenos/isolamento & purificação , Pirenos/isolamento & purificação , Reprodutibilidade dos Testes
7.
Bioorg Med Chem Lett ; 29(7): 905-911, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732944

RESUMO

Despite tremendous progress made in the understanding of the ERα signaling pathway and the approval of many therapeutic agents, ER+ breast cancer continues to be a leading cause of cancer death in women. We set out to discover compounds with a dual mechanism of action in which they not only compete with estradiol for binding with ERα, but also can induce the degradation of the ERα protein itself. We were attracted to the constrained chromenes containing a tetracyclic benzopyranobenzoxepine scaffold, which were reported as potent selective estrogen receptor modulators (SERMs). Incorporation of a fluoromethyl azetidine side chain yielded highly potent and efficacious selective estrogen receptor degraders (SERDs), such as 16aa and surprisingly, also its enantiomeric pair 16ab. Co-crystal structures of the enantiomeric pair 16aa and 16ab in complex with ERα revealed default (mimics the A-D rings of endogenous ligand estradiol) and core-flipped binding modes, rationalizing the equivalent potency observed for these enantiomers in the ERα degradation and MCF-7 anti-proliferation assays.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Receptor alfa de Estrogênio/química , Antineoplásicos/química , Benzopiranos/química , Cristalização , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 29(16): 2090-2093, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311734

RESUMO

Phenolic groups are responsible for the high clearance and low oral bioavailability of the estrogen receptor alpha (ERα) clinical candidate GDC-0927. An exhaustive search for a backup molecule with improved pharmacokinetic (PK) properties identified several metabolically stable analogs, although in general at the expense of the desired potency and degradation efficiency. C-8 hydroxychromene 30 is the first example of a phenol-containing chromene that not only maintained excellent potency but also exhibited 10-fold higher oral exposure in rats. The improved in vivo clearance in rat was hypothesized to be the result of C-8 hydroxy group being sterically protected from glucuronide conjugation. The excellent potency underscores the possibility of replacing the presumed indispensable phenolic group at C-6 or C-7 of the chromene core. Co-crystal structures were obtained to highlight the change in key interactions and rationalize the retained potency.


Assuntos
Azetidinas/farmacologia , Receptor alfa de Estrogênio/metabolismo , Flavonoides/farmacologia , Administração Oral , Animais , Azetidinas/administração & dosagem , Azetidinas/metabolismo , Azetidinas/farmacocinética , Cristalografia por Raios X , Descoberta de Drogas , Estabilidade de Medicamentos , Flavonoides/administração & dosagem , Flavonoides/metabolismo , Flavonoides/farmacocinética , Humanos , Células MCF-7 , Microssomos Hepáticos/metabolismo , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 27(18): 4370-4376, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830649

RESUMO

Herein we report identification of an imidazopyridine class of potent and selective TYK2 inhibitors, exemplified by prototype 6, through constraint of the rotatable amide bond connecting the pyridine and aryl rings of compound 1. Further optimization led to generation of compound 30 that potently inhibits the TYK2 enzyme and the IL-23 pathway in cells, exhibits selectivity against cellular JAK2 activity, and has good pharmacokinetic properties. In mice, compound 30 demonstrated dose-dependent reduction of IL-17 production in a PK/PD model as well as in an imiquimod-induced psoriasis model. In this efficacy model, the IL-17 decrease was accompanied by a reduction of ear thickness indicating the potential of TYK2 inhibition as a therapeutic approach for psoriasis patients.


Assuntos
Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , TYK2 Quinase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , TYK2 Quinase/metabolismo
10.
Bioorg Med Chem Lett ; 27(13): 2974-2981, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512031

RESUMO

A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C-C bond between the pyrrolidine and pyridine. Replacing this with a C-N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (LogD) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5mg/kg resulted in unbound Cmax ∼2-fold of its cell potency (PC9 H3K4Me3 0.96µM), meeting our criteria for an in vivo tool compound from a new scaffold.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Pirazóis/farmacologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/administração & dosagem , Pirazóis/química , Ratos , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 26(16): 4036-41, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27406798

RESUMO

Starting with a lead [1,5-a]pyrimidin-7(4H)-one-containing molecule (1), we generated potent, selective and orally bioavailable KDM5 inhibitors. Using structure- and property-based approaches, we designed 48 with improved cell potency (PC9 H3K4Me3 EC50=0.34µM). Furthermore, 48 maintained suitable physiochemical properties and displayed an excellent pharmacokinetic (PK) profile in mice. When dosed orally in mice at 50mg/kg twice a day (BID), 48 showed an unbound maximal plasma concentration (Cmax) >15-fold over its cell EC50, thereby providing a robust chemical probe for studying KDM5 biological functions in vivo.


Assuntos
Pirazóis/química , Pirimidinonas/química , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Administração Oral , Animais , Sítios de Ligação , Cristalografia por Raios X , Feminino , Meia-Vida , Histonas/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Pirazóis/síntese química , Pirazóis/farmacocinética , Pirimidinonas/sangue , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Ratos , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
12.
J Immunol ; 191(5): 2205-16, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23894201

RESUMO

TYK2 is a JAK family protein tyrosine kinase activated in response to multiple cytokines, including type I IFNs, IL-6, IL-10, IL-12, and IL-23. Extensive studies of mice that lack TYK2 expression indicate that the IFN-α, IL-12, and IL-23 pathways, but not the IL-6 or IL-10 pathways, are compromised. In contrast, there have been few studies of the role of TYK2 in primary human cells. A genetic mutation at the tyk2 locus that results in a lack of TYK2 protein in a single human patient has been linked to defects in the IFN-α, IL-6, IL-10, IL-12, and IL-23 pathways, suggesting a broad role for TYK2 protein in human cytokine responses. In this article, we have used a panel of novel potent TYK2 small-molecule inhibitors with varying degrees of selectivity against other JAK kinases to address the requirement for TYK2 catalytic activity in cytokine pathways in primary human cells. Our results indicate that the biological processes that require TYK2 catalytic function in humans are restricted to the IL-12 and IL-23 pathways, and suggest that inhibition of TYK2 catalytic activity may be an efficacious approach for the treatment of select autoimmune diseases without broad immunosuppression.


Assuntos
Citocinas/imunologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/imunologia , TYK2 Quinase/imunologia , TYK2 Quinase/metabolismo , Animais , Citocinas/metabolismo , Humanos , Immunoblotting , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-23/imunologia , Interleucina-23/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos
13.
Mol Metab ; 90: 102040, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362599

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) can perform tasks of key relevance in fat cells, contributing, when defective, to the burden of obesity and its sequelae. Here, scrutiny of adipose tissue transcriptomes before and after bariatric surgery (GSE53378) granted identification of 496 lncRNAs linked to the obese phenotype. Only expression of linc-GALNTL6-4 displayed an average recovery over 2-fold and FDR-adjusted p-value <0.0001 after weight loss. The aim of the present study was to investigate the impact on adipocyte function and potential clinical value of impaired adipose linc-GALNTL6-4 in obese subjects. METHODS: We employed transcriptomic analysis of public dataset GSE199063, and cross validations in two large transversal cohorts to report evidence of a previously unknown association of adipose linc-GALNTL6-4 with obesity. We then performed functional analyses in human adipocyte cultures, genome-wide transcriptomics, and untargeted lipidomics in cell models of loss and gain of function to explore the molecular implications of its associations with obesity and weight loss. RESULTS: The expression of linc-GALNTL6-4 in human adipose tissue is adipocyte-specific and co-segregates with obesity, being normalized upon weight loss. This co-segregation is demonstrated in two longitudinal weight loss studies and two cross-sectional samples. While compromised expression of linc-GALNTL6-4 in obese subjects is primarily due to the inflammatory component in the context of obesity, adipogenesis requires the transcriptional upregulation of linc-GALNTL6-4, the expression of which reaches an apex in terminally differentiated adipocytes. Functionally, we demonstrated that the knockdown of linc-GALNTL6-4 impairs adipogenesis, induces alterations in the lipidome, and leads to the downregulation of genes related to cell cycle, while propelling in adipocytes inflammation, impaired fatty acid metabolism, and altered gene expression patterns, including that of apolipoprotein C1 (APOC1). Conversely, the genetic gain of linc-GALNTL6-4 ameliorated differentiation and adipocyte phenotype, putatively by constraining APOC1, also contributing to the metabolism of triglycerides in adipose. CONCLUSIONS: Current data unveil the unforeseen connection of adipocyte-specific linc-GALNTL6-4 as a modulator of lipid homeostasis challenged by excessive body weight and meta-inflammation.

14.
Cell Signal ; 109: 110741, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268162

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a complex disease that is considered as the next major health epidemic with alarmingly increasing global prevalence. To explore the pathogenesis of NAFLD, data from GSE118892 were analyzed. High mobility group AT-hook 2 (HMGA2), a member of the high mobility group family, is declined in liver tissues of NAFLD rats. However, its role in NAFLD remains unknown. This study attempted to identify the multiple roles of HMGA2 in NAFLD process. NAFLD was induced in rats using a high-fat diet (HFD). In vivo, HMGA2 knockdown using adenovirus system attenuated liver injury and liver lipid deposition, accompanied by decreased NAFLD score, increased liver function, and decreased CD36 and FAS, indicating the deceleration of NAFLD progression. Moreover, HMGA2 knockdown restrained liver inflammation by decreasing the expression of related inflammatory factors. Importantly, HMGA2 knockdown attenuated liver fibrosis via downregulating the expression of fibrous proteins, and inhibiting the activation of TGF-ß1/SMAD signaling pathway. In vitro, HMGA2 knockdown relieved palmitic acid (PA)-induced hepatocyte injury and attenuated TGF-ß1-induced liver fibrosis, consistent with in vivo findings. Strikingly, HMGA2 activated the transcription of SNAI2, which was evidenced by the dual luciferase assays. Moreover, HMGA2 knockdown largely downregulated SNAI2 levels. Indeed, SNAI2 overexpression effectively blocked the inhibitory effect of HMGA2 knockdown on NAFLD. Totally, our findings reveal that HMGA2 knockdown alleviates the progression of NAFLD by directly regulating the transcription of SNAI2. HMGA2 inhibition may emerge as a potential therapeutic target for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Hepatócitos/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
15.
Front Immunol ; 14: 1204224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441083

RESUMO

Background: Intracellular communication within the tumour is complex and extracellular vesicles (EVs) have been identified as major contributing factors for the cell-to-cell communication in the local and distant tumour environments. Here, we examine the differential effects of breast cancer (BC) subtype-specific patient serum and cell-line derived EVs in the regulation of T cell mediated immune responses. Methods: Ultracentrifugation was used to isolate EVs from sera of 63 BC patients, 15 healthy volunteers and 4 human breast cancer cell lines. Longitudinal blood draws for EV isolation for patients on neoadjuvant chemotherapy was also performed. Characterization of EVs was performed by Nanoparticle Tracking Analysis (NTA), transmission electron microscopy (TEM) and immunoblotting. CD63 staining was performed on a tissue microarray of 218 BC patients. In-house bioinformatics algorithms were utilized for the computation of EV associated expression scores within The Cancer Genome Atlas (TCGA) and correlated with tumour infiltrating lymphocyte (TIL) scores. In vitro stimulation of PBMCs with EVs from serum and cell-line derived EVs was performed and changes in the immune phenotypes characterized by flow cytometry. Cytokine profiles were assessed using a 105-plex immunoassay or IL10 ELISA. Results: Patients with triple negative breast cancers (TNBCs) exhibited the lowest number of EVs in the sera; whilst the highest was detected in ER+HER2+ cancers; reflected also in the higher level of CD63+ vesicles found within the ER+HER2+ local tumour microenvironment. Transcriptomic analysis of the TCGA data identified that samples assigned with lower EV scores had significantly higher abundance of CD4+ memory activated T cells, T follicular cells and CD8 T cells, plasma, and memory B cells; whilst samples with high EV scores were more enriched for anti-inflammatory M2 macrophages and mast cells. A negative correlation between EV expression scores and stromal TIL counts was also observed. In vitro experiments confirmed that circulating EVs within breast cancer subtypes have functionally differing immunomodulatory capabilities, with EVs from patients with the most aggressive breast cancer subtype (TNBCs) demonstrating the most immune-suppressive phenotype (decreased CD3+HLA-DR+ but increased CD3+PD-L1 T cells, increased CD4+CD127-CD25hi T regulatory cells with associated increase in IL10 cytokine production). In depth assessment of the cytokine modulation triggered by the serum/cell line derived exosomes confirmed differential inflammatory cytokine profiles across differing breast cancer subtypes. Studies using the MDA-231 TNBC breast cancer cell-line derived EVs provided further support that TNBC EVs induced the most immunosuppressive response within PBMCs. Discussion: Our study supports further investigations into how tumour derived EVs are a mechanism that cancers can exploit to promote immune suppression; and breast cancer subtypes produce EVs with differing immunomodulatory capabilities. Understanding the intracellular/extracellular pathways implicated in alteration from active to suppressed immune state may provide a promising way forward for restoring immune competence in specific breast cancer patient populations.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Interleucina-10/metabolismo , Citocinas/metabolismo , Células MCF-7 , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
16.
J Med Chem ; 64(16): 11841-11856, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34251202

RESUMO

Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carbolinas/uso terapêutico , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Carbolinas/química , Carbolinas/farmacocinética , Cães , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacocinética , Feminino , Humanos , Células MCF-7 , Macaca fascicularis , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Chromatogr A ; 1633: 461627, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33128970

RESUMO

A Poly (3,4-ethylenedioxothiophene) (PEDOT)/UiO-66 composite was electrodeposited on an etched stainless-steel wire as head-space solid-phase microextraction (HS-SPME) coating. A robust, well controlled thickness, and uniform coating of metal organic framework composites can be realized by the electrodeposited strategy. The incorporated UiO-66 not only enhanced the uniformity and stability of the composite coating, but also effectively decreased the stacking phenomenon of PEDOT and improved its extraction efficiency, which was over 100 times higher than that of the PEDOT coating without UiO-66. The composite coating was used to enrich seven types of volatile organic compounds (VOCs) in ion-exchange resins, including methyl cyclohexane, benzene, toluene, ortho-xylene, styrene, para-xylene and divinyl-benzene. The results of adsorption isotherm analysis showed that π stacking effect played dominant role between the composite coating and VOCs in the extraction process. The composite coating was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared and thermogravimetric analysis, respectively. A determination method for seven kinds of VOCs was established by HS-SPME coupled with gas chromatography-flame ionization detection (GC-FID). Under the optimal experimental conditions, the detection linear range (LRs) was 0.09-100 ng mL-1, and the detection limit (LODs) was 0.03-0.06 ng mL-1 (S/N = 3). The method was applied for the migration detection of VOCs in four types of ion-exchange resin, which showed satisfactory recovery (84.5-117.2%).


Assuntos
Técnicas de Química Analítica/métodos , Estruturas Metalorgânicas/química , Compostos Organometálicos/química , Ácidos Ftálicos/química , Polímeros/química , Tiofenos/química , Compostos Orgânicos Voláteis/isolamento & purificação , Adsorção , Benzeno/análise , Benzeno/isolamento & purificação , Cromatografia Gasosa , Ionização de Chama , Resinas de Troca Iônica/química , Limite de Detecção , Microextração em Fase Sólida , Aço Inoxidável/química , Tolueno/análise , Tolueno/isolamento & purificação , Compostos Orgânicos Voláteis/análise , Xilenos/análise , Xilenos/isolamento & purificação
18.
ACS Med Chem Lett ; 11(6): 1342-1347, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551022

RESUMO

Estrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure. Through lead optimization, we discovered a tool molecule 12 (GNE-149) with improved degradation and antiproliferative activity in both MCF7 and T47D cells. To illustrate the binding mode and key interactions of this scaffold with ERα, we obtained a cocrystal structure of 6 that showed ionic interaction of azetidine with Asp351 residue. Importantly, 12 showed favorable metabolic stability and good oral exposure. 12 exhibited antagonist effect in the uterus and demonstrated robust dose-dependent efficacy in xenograft models.

19.
Zhonghua Fu Chan Ke Za Zhi ; 40(11): 732-4, 2005 Nov.
Artigo em Zh | MEDLINE | ID: mdl-16324244

RESUMO

OBJECTIVE: To determine the reliability of the fetal abdominal circumference (FAC) measured by ultrasound as a predictor of birth weight. METHODS: FAC was measured by ultrasound within 0-7 days of delivery and the birth weight were followed in 1475 pregnant women. Statistics analysis was carried out to determine the relationship between FAC and birth weight. RESULTS: Ultrasound measurement of FAC had a linear relation with birth weight, and the correlation coefficient was 0.85. Among the fetuses with FAC < 34 cm, no newborn had a weight more than 4000 g; the macrosomia rate was only 1.1% when FAC was between 34-34.9 cm. Among the fetuses with FAC between 35-35.9 cm, the average birth weight was (3691 +/- 277) g, the macrosomia rate was 14.6%; when FAC was between 36-36.9 cm, the average birth weight was (3957 +/- 256) g, the macrosomia rate was 51.0%. The macrosomia rate was 84.4% with FAC between 37-37.9 cm. When FAC > or = 38 cm the macrosomia rate was 100%. The cesarean section rate for the newborn weighing between 4000-4500 g was 71.4%, and for the fetuses weighing > or = 4500 g the cesarean section rate was 93.8%, which was significantly higher than that of fetuses weighing less than 4000 g. Only one baby who weighed 4350 g had shoulder dystocia with Erb's palsy and clavicle fracture, but recovered 2 months later. CONCLUSIONS: FAC measured by ultrasound can help to evaluate the birth weight. It is useful in screening macrosomia and avoiding shoulder dystocia.


Assuntos
Abdome/anatomia & histologia , Peso ao Nascer , Ultrassonografia Pré-Natal , Abdome/diagnóstico por imagem , Tamanho Corporal , Feminino , Macrossomia Fetal/diagnóstico por imagem , Peso Fetal , Idade Gestacional , Humanos , Recém-Nascido , Gravidez , Terceiro Trimestre da Gravidez
20.
J Med Chem ; 56(11): 4521-36, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23668484

RESUMO

Herein we report our lead optimization effort to identify potent, selective, and orally bioavailable TYK2 inhibitors, starting with lead molecule 3. We used structure-based design to discover 2,6-dichloro-4-cyanophenyl and (1R,2R)-2-fluorocyclopropylamide modifications, each of which exhibited improved TYK2 potency and JAK1 and JAK2 selectivity relative to 3. Further optimization eventually led to compound 37 that showed good TYK2 enzyme and interleukin-12 (IL-12) cell potency, as well as acceptable cellular JAK1 and JAK2 selectivity and excellent oral exposure in mice. When tested in a mouse IL-12 PK/PD model, compound 37 showed statistically significant knockdown of cytokine interferon-γ (IFNγ), suggesting that selective inhibition of TYK2 kinase activity might be sufficient to block the IL-12 pathway in vivo.


Assuntos
4-Aminopiridina/análogos & derivados , 4-Aminopiridina/síntese química , Aminopiridinas/síntese química , Benzamidas/síntese química , TYK2 Quinase/antagonistas & inibidores , 4-Aminopiridina/farmacocinética , 4-Aminopiridina/farmacologia , Administração Oral , Aminopiridinas/farmacocinética , Aminopiridinas/farmacologia , Animais , Benzamidas/farmacocinética , Benzamidas/farmacologia , Disponibilidade Biológica , Cristalografia por Raios X , Interferon gama/antagonistas & inibidores , Interferon gama/biossíntese , Interleucina-12/metabolismo , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Ligação Proteica , Ratos , Fator de Transcrição STAT4/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA