Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Neuroendocrinol ; 71: 101102, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689249

RESUMEN

The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.


Asunto(s)
Epigénesis Genética , Neuroesteroides , Femenino , Masculino , Humanos , Neuronas/metabolismo , Neuroesteroides/metabolismo , Testosterona/metabolismo
2.
Front Neuroendocrinol ; 55: 100787, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31513774

RESUMEN

Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Estradiol/metabolismo , Estradiol/farmacología , Inflamación/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuroprotección/fisiología , Receptores de Estrógenos/metabolismo , Caracteres Sexuales , Transducción de Señal/fisiología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Femenino , Humanos , Masculino , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Nat Rev Neurosci ; 16(1): 17-29, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25423896

RESUMEN

Hormones regulate homeostasis by communicating through the bloodstream to the body's organs, including the brain. As homeostatic regulators of brain function, some hormones exert neuroprotective actions. This is the case for the ovarian hormone 17ß-oestradiol, which signals through oestrogen receptors (ERs) that are widely distributed in the male and female brain. Recent discoveries have shown that oestradiol is not only a reproductive hormone but also a brain-derived neuroprotective factor in males and females and that ERs coordinate multiple signalling mechanisms that protect the brain from neurodegenerative diseases, affective disorders and cognitive decline.


Asunto(s)
Encéfalo/metabolismo , Estradiol , Neuroprostanos , Receptores de Estrógenos/fisiología , Animales , Encéfalo/efectos de los fármacos , Encefalopatías/tratamiento farmacológico , Encefalopatías/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Estradiol/uso terapéutico , Femenino , Humanos , Masculino , Neuroprostanos/metabolismo , Neuroprostanos/farmacología , Neuroprostanos/uso terapéutico
4.
Glia ; 66(3): 522-537, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29139169

RESUMEN

Sex differences in the incidence, clinical manifestation, disease course, and prognosis of neurological diseases, such as autism spectrum disorders or Alzheimer's disease, have been reported. Obesity has been postulated as a risk factor for cognitive decline and Alzheimer's disease and, during pregnancy, increases the risk of autism spectrum disorders in the offspring. Obesity is associated with increased serum and brain levels of free fatty acids, such as palmitic acid, which activate microglial cells triggering a potent inflammatory cascade. In this study, we have determined the effect of palmitic acid in the inflammatory profile, motility, and phagocytosis of primary male and female microglia, both in basal conditions and in the presence of a pro-inflammatory stimulus (interferon-γ). Male microglia in vitro showed higher migration than female microglia under basal and stimulated conditions. In contrast, female microglia had higher basal and stimulated phagocytic activity than male microglia. Palmitic acid did not affect basal migration or phagocytosis, but abolished the migration and phagocytic activity of male and female microglia in response to interferon-γ. These findings extend previous observations of sex differences in microglia and suggest that palmitic acid impairs the protective responses of these cells.


Asunto(s)
Movimiento Celular/fisiología , Microglía/metabolismo , Ácido Palmítico/toxicidad , Fagocitosis/fisiología , Caracteres Sexuales , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Femenino , Inflamación/metabolismo , Inflamación/patología , Interferón gamma/administración & dosificación , Interferón gamma/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/patología , Fagocitosis/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patología , ARN Mensajero/metabolismo , Ratas Wistar
5.
J Neurogenet ; 31(4): 300-306, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29078716

RESUMEN

Female mouse hippocampal and hypothalamic neurons growing in vitro show a faster development of neurites than male mouse neurons. This sex difference in neuritogenesis is determined by higher expression levels of the neuritogenic factor neurogenin 3 in female neurons. Experiments with the four core genotype mouse model, in which XX and XY animals with male gonads and XX and XY animals with female gonads are generated, indicate that higher levels of neurogenin 3 in developing neurons are determined by the presence of the XX chromosome complement. Female XX neurons express higher levels of estrogen receptors than male XY neurons. In female XX neurons, neuronal derived estradiol increases neurogenin 3 expression and neuritogenesis. In contrast, neuronal-derived estradiol is not able to upregulate neurogenin 3 in male XY neurons, resulting in decreased neuritogenesis compared to female neurons. However, exogenous testosterone increases neurogenin 3 expression and neuritogenesis in male XY neurons. These findings suggest that sex differences in neuronal development are determined by the interaction of sex chromosomes, neuronal derived estradiol and gonadal hormones.


Asunto(s)
Estradiol/biosíntesis , Neuronas/metabolismo , Cromosomas Sexuales/fisiología , Diferenciación Sexual/fisiología , Animales , Femenino , Masculino , Ratones , Neuritas/metabolismo , Neurogénesis/fisiología
6.
Horm Behav ; 74: 19-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25921586

RESUMEN

This article is part of a Special Issue "Estradiol and Cognition". Estradiol participates in the regulation of the function and plasticity of synaptic circuits in key cognitive brain regions, such as the prefrontal cortex and the hippocampus. The mechanisms elicited by estradiol are mediated by the regulation of transcriptional activity by nuclear estrogen receptors and by intracellular signaling cascades activated by estrogen receptors associated with the plasma membrane. In addition, the mechanisms include the interaction of estradiol with the signaling of other factors involved in the regulation of cognition, such as brain derived neurotrophic factor, insulin-like growth factor-1 and Wnt. Modifications in these signaling pathways by aging or by a long-lasting ovarian hormone deprivation after menopause may impair the enhancing effects of estradiol on synaptic plasticity and cognition.


Asunto(s)
Estradiol/farmacología , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Cognición/efectos de los fármacos , Cognición/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Masculino , Plasticidad Neuronal/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Horm Behav ; 63(2): 216-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22401743

RESUMEN

Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and ß, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.


Asunto(s)
Lesiones Encefálicas/complicaciones , Gliosis/etiología , Gliosis/prevención & control , Hormonas Gonadales/fisiología , Animales , Lesiones Encefálicas/fisiopatología , Gliosis/fisiopatología , Hormonas Gonadales/metabolismo , Hormonas Gonadales/farmacología , Humanos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
8.
Cereb Cortex ; 21(9): 2046-55, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21258044

RESUMEN

The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.


Asunto(s)
Lesiones Encefálicas/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Estradiol/farmacología , Gliosis/patología , Gliosis/prevención & control , Receptores de Cannabinoides/efectos de los fármacos , Animales , Moduladores de Receptores de Cannabinoides/biosíntesis , Cannabinoides/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Indoles/farmacología , Masculino , Piperidinas/farmacología , Pirazoles/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Técnicas Estereotáxicas , Fijación del Tejido , Vimentina/farmacología , Heridas Punzantes/patología
9.
Nat Commun ; 13(1): 3913, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798748

RESUMEN

Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity.


Asunto(s)
Aromatasa , Parvalbúminas , Animales , Aromatasa/genética , Estradiol/farmacología , Femenino , Hipocampo/fisiología , Interneuronas/fisiología , Masculino , Ratones , Parvalbúminas/genética , Parvalbúminas/metabolismo , Sinapsis/metabolismo
10.
Biochim Biophys Acta ; 1800(10): 1106-12, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19818384

RESUMEN

Glial cells are directly or indirectly affected by estradiol and by different estrogenic compounds, such as selective estrogen receptor modulators. Acting on oligodendrocytes, astrocytes and microglia, estrogens regulate remyelination, edema formation, extracellular glutamate levels and the inflammatory response after brain injury. In addition, estradiol induces the expression and release of growth factors by glial cells that promote neuronal survival. Therefore, glial cells are important players in the neuroprotective and reparative mechanisms of estrogenic compounds.


Asunto(s)
Astrocitos/metabolismo , Estrógenos/farmacología , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Oligodendroglía/metabolismo , Animales , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Supervivencia Celular/efectos de los fármacos , Ácido Glutámico/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Vaina de Mielina/metabolismo , Neuronas/metabolismo
11.
Glia ; 59(1): 94-107, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20967884

RESUMEN

Astrocytes react to brain injury triggering neuroinflammatory processes that determine the degree of neuronal damage. However, the signaling events associated to astrocyte activation remain largely undefined. The nuclear factor of activated T-cells (NFAT) is a transcription factor family implicated in activation of immune cells. We previously characterized the expression of NFAT isoforms in cultured astrocytes, and NFAT activation in response to mechanical lesion. Here we analyze NFATc3 in two mouse models of inflammatory brain damage: hippocampal excitotoxicity induced by intracerebral kainic acid (KA) injection and cortical mechanical lesion. Immunofluorescence results demonstrated that NFATc3 is specifically induced in a subset of reactive astrocytes, and not in microglia or neurons. In KA-treated brains, NFATc3 expression is transient and NFATc3-positive astrocytes concentrate around damaged neurons in areas CA3 and CA1. Complementary Western blot and RT-PCR analysis revealed an NFAT-dependent induction of RCAN1-4 and COX-2 in hippocampus as soon as 6 h after KA exposure, indicating that NFAT activation precedes NFATc3 over-expression. Moreover, activation of NFAT by ATP increased NFATc3 mRNA levels in astrocyte cultures, suggesting that NFATc3 expression is controlled through an auto-regulatory loop. Meanwhile, stab wound enhanced NFATc3 expression specifically in a subclass of reactive astrocytes confined within the proximal layer of the glial scar, and GFAP immunoreactivity was attenuated in NFATc3-expressing astrocytes. In conclusion, our work establishes NFATc3 as a marker of activation for a specific population of astrocytes in response to brain damage, which may have consequences for neuronal survival.


Asunto(s)
Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Factores de Transcripción NFATC/metabolismo , Análisis de Varianza , Animales , Astrocitos/patología , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Muerte Celular , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Ácido Kaínico/farmacología , Ratones , Microscopía Confocal , Factores de Transcripción NFATC/genética , Neuronas/metabolismo , Neuronas/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Androg Clin Res Ther ; 2(1): 189-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35024691

RESUMEN

The aromatase cytochrome P450 (P450arom) enzyme, or estrogen synthase, which is coded by the CYP19A1 gene, is widely expressed in a subpopulation of excitatory and inhibitory neurons, astrocytes, and other cell types in the human brain. Experimental studies in laboratory animals indicate a prominent role of brain aromatization of androgens to estrogens in regulating different brain functions. However, the consequences of aromatase expression in the human brain remain poorly understood. Here, we summarize the current knowledge about aromatase expression in the human brain, abundant in the thalamus, amygdala, hypothalamus, cortex, and hippocampus and discuss its role in the regulation of sensory integration, body homeostasis, social behavior, cognition, language, and integrative functions. Since brain aromatase is affected by neurodegenerative conditions and may participate in sex-specific manifestations of autism spectrum disorders, major depressive disorder, multiple sclerosis, stroke, and Alzheimer's disease, we discuss future avenues for research and potential clinical and therapeutic implications of the expression of aromatase in the human brain.

13.
Eur J Neurosci ; 32(12): 1995-2002, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143654

RESUMEN

Astrocyte-neuron cross-talk is an essential component of the mechanisms involved in the neuroendocrine and neuroprotective actions of estradiol. Astrocytes express estrogen receptors, show morphological and functional modifications in response to estradiol and participate in the hormonal regulation of synaptic plasticity and neuroendocrine events. In addition, estradiol interferes with the activation of astrocytes under pathological conditions, modulating the release of neurotrophic factors and inflammatory molecules by these cells. Furthermore, under neurodegenerative conditions, astrocytes synthesize estradiol, which acts as a local neuroprotectant. The actions of estradiol on astrocytes can be imitated by selective estrogen receptor modulators. Some of these molecules, which are free of the peripheral risks associated with estrogen therapy, exert estradiol-like anti-inflammatory actions on astrocytes and are potential therapeutic candidates for the control of reactive astrogliosis.


Asunto(s)
Astrocitos/fisiología , Estradiol/metabolismo , Plasticidad Neuronal/fisiología , Fármacos Neuroprotectores/metabolismo , Animales , Astrocitos/efectos de los fármacos , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/metabolismo , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transducción de Señal/fisiología , Sinapsis/metabolismo , Sinapsis/ultraestructura
14.
Brain ; 132(Pt 11): 3152-64, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19805493

RESUMEN

Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies. Activation of neuronal CB(1) cannabinoid receptors attenuates excitotoxic glutamatergic neurotransmission, triggers prosurvival signalling pathways and palliates motor symptoms in animal models of neurodegenerative disorders. However, in Huntington's disease there is a very early downregulation of CB(1) receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB(1) receptor activation, foster the search for alternative pharmacological treatments. Here, we show that CB(2) cannabinoid receptor expression increases in striatal microglia of Huntington's disease transgenic mouse models and patients. Genetic ablation of CB(2) receptors in R6/2 mice, that express human mutant huntingtin exon 1, enhanced microglial activation, aggravated disease symptomatology and reduced mice lifespan. Likewise, induction of striatal excitotoxicity in CB(2) receptor-deficient mice by quinolinic acid administration exacerbated brain oedema, microglial activation, proinflammatory-mediator state and medium-sized spiny neuron degeneration. Moreover, administration of CB(2) receptor-selective agonists to wild-type mice subjected to excitotoxicity reduced neuroinflammation, brain oedema, striatal neuronal loss and motor symptoms. Studies on ganciclovir-induced depletion of astroglial proliferation in transgenic mice expressing thymidine kinase under the control of the glial fibrillary acidic protein promoter excluded the participation of proliferating astroglia in CB(2) receptor-mediated actions. These findings support a pivotal role for CB(2) receptors in attenuating microglial activation and preventing neurodegeneration that may pave the way to new therapeutic strategies for neuroprotection in Huntington's disease as well as in other neurodegenerative disorders with a significant excitotoxic component.


Asunto(s)
Enfermedad de Huntington , Microglía/metabolismo , Fármacos Neuroprotectores/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Antibacterianos/farmacología , Biomarcadores/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Minociclina/farmacología , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Quinolínico/farmacología , Receptor Cannabinoide CB2/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Convulsiones/fisiopatología
15.
Cell Death Discov ; 5: 85, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30962951

RESUMEN

In the nervous system, Notch pathway has a prominent role in the control of neuronal morphology and in the determination of the astrocyte fate. However, the role of Notch in morphological astrocyte plasticity is unknown. Here, we have explored the role of Notch activity on the morphological reactivity of primary astrocytes in response to LPS, an inflammatory stimulus. We found that LPS induces reactive astrocyte morphology by the inhibition of Notch signaling via NFκB activation and Jagged upregulation. In contrast, IGF-1, an anti-inflammatory molecule, inhibits LPS-induced reactive astrocyte morphological phenotype by enhancing Notch signaling through the inhibition of NFκB and the activation of MAPK. Therefore, Notch signaling pathway emerges as a mediator of the regulation of astrocyte morphology by inflammatory and anti-inflammatory stimuli.

16.
Brain Res ; 1209: 115-27, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18402929

RESUMEN

Numerous studies have shown that neuronal plasticity in the hippocampus and neocortex is regulated by estrogen and that aromatase, the key enzyme for estrogen biosynthesis, is present in cerebral cortex. Although the expression pattern of aromatase mRNA has been described in the monkey brain, its precise cellular distribution has not been determined. In addition, the degree to which neuronal aromatase is affected by gonadal estrogen has not been investigated. In this study, we examined the immunohistochemical distribution of aromatase in young ovariectomized female rhesus monkeys with or without long-term cyclic estradiol treatment. Both experimental groups showed that aromatase is localized in a large population of CA1-3 pyramidal cells, in granule cells of the dentate gyrus and in some interneurons in which it was co-expressed with the calcium-binding proteins calbindin, calretinin, and parvalbumin. Moreover, numerous pyramidal cells were immunoreactive for aromatase in the neocortex, whereas only small subpopulations of neocortical interneurons were immunoreactive for aromatase. The widespread expression of the protein in a large neuronal population suggests that local intraneuroral estrogen synthesis may contribute to estrogen-induced synaptic plasticity in monkey hippocampus and neocortex of female rhesus monkeys. In addition, the apparent absence of obvious differences in aromatase distribution between the two experimental groups suggests that these localization patterns are not dependent on plasma estradiol levels.


Asunto(s)
Aromatasa/metabolismo , Hipocampo/enzimología , Macaca mulatta , Neocórtex/enzimología , Lóbulo Temporal/enzimología , Animales , Proteínas de Unión al Calcio/metabolismo , Giro Dentado/citología , Giro Dentado/enzimología , Estradiol/metabolismo , Estradiol/farmacología , Estrógenos/biosíntesis , Femenino , Hipocampo/citología , Interneuronas/citología , Interneuronas/enzimología , Neocórtex/citología , Plasticidad Neuronal , Células Piramidales/citología , Células Piramidales/enzimología , Especificidad de la Especie , Lóbulo Temporal/citología
17.
J Chem Neuroanat ; 89: 53-59, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28414121

RESUMEN

In addition to be an ovarian hormone, estradiol is a neurosteroid synthesized by neural cells. The brain is a steroidogenic tissue that metabolizes testosterone to estradiol. The last step in the synthesis of estradiol is catalyzed by the enzyme aromatase, which is widely expressed in the brain of male and female animals and humans. Studies that have manipulated the expression or the activity of aromatase have revealed that brain-derived estradiol acts as a neuromodulator and regulates different forms of brain plasticity in male and female animals. The regulation of neuroplastic events by brain-derived estradiol probably participates in the effects of brain aromatase on behavior and cognition.


Asunto(s)
Encéfalo/fisiología , Estradiol/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Animales , Humanos
18.
Mol Neurobiol ; 55(11): 8651-8667, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29582398

RESUMEN

Previous studies have shown that estradiol reduces reactive gliosis after a stab wound injury in the cerebral cortex. Since the therapeutic use of estradiol is limited by its peripheral hormonal effects, it is of interest to determine whether synthetic estrogenic compounds with tissue-specific actions regulate reactive gliosis. Tibolone is a synthetic steroid that is widely used for the treatment of climacteric symptoms and/or the prevention of osteoporosis. In this study, we have assessed the effect of tibolone on reactive gliosis in the cerebral cortex after a stab wound brain injury in ovariectomized adult female mice. By 7 days after brain injury, tibolone reduced the number of glial fibrillary acidic protein (GFAP) immunoreactive astrocytes, the number of ionized calcium binding adaptor molecule 1 (Iba1) immunoreactive microglia, and the number of microglial cells with a reactive phenotype in comparison to vehicle-injected animals. These effects on gliosis were associated with a reduction in neuronal loss in the proximity to the wound, suggesting that tibolone exerts beneficial homeostatic actions in the cerebral cortex after an acute brain injury.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Corteza Cerebral/patología , Gliosis/tratamiento farmacológico , Neuronas/patología , Norpregnenos/uso terapéutico , Heridas Punzantes/tratamiento farmacológico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Muerte Celular/efectos de los fármacos , Proteínas de Unión al ADN , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/etiología , Gliosis/patología , Procesamiento de Imagen Asistido por Computador , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Norpregnenos/farmacología , Proteínas Nucleares/metabolismo , Fenotipo , Heridas Punzantes/complicaciones , Heridas Punzantes/patología
19.
Prog Neurobiol ; 71(1): 31-41, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14611865

RESUMEN

Estradiol, in addition to its participation in neuroendocrine regulation and sexual behavior, has neuroprotective properties. Different types of brain injury induce the expression of the enzyme aromatase in reactive astroglia. This enzyme catalyzes the conversion of testosterone and other C19 steroids to estradiol. Genetic or pharmacological inhibition of brain aromatase results in marked neurodegeneration after different forms of mild neurodegenerative stimuli that do not compromise neuronal survival under control conditions. Furthermore, aromatase mediates neuroprotective effects of precursors of estradiol such as pregnenolone, dehydroepiandrosterone (DHEA) and testosterone. These findings strongly suggest that local formation of estradiol in the brain is neuroprotective and that the induction of aromatase and the consecutive increase in the local production of estradiol are part of the program triggered by the neural tissue to cope with neurodegenerative insults. Aromatase may thus represent an important pharmacological target for therapies conducted to prevent aging-associated neurodegenerative disorders.


Asunto(s)
Aromatasa/fisiología , Encéfalo/enzimología , Encéfalo/patología , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores , Animales , Estradiol/metabolismo , Femenino , Humanos , Masculino
20.
Neurobiol Aging ; 26(5): 697-703, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15708445

RESUMEN

Decline of growth hormone (GH) with aging is associated to memory and cognitive alterations. In this study, the number of neurons in the hilus of the dentate gyrus has been assessed in male and female Wistar rats at 3, 6, 12, 14, 18, 22 and 24 months of age, using the optical fractionator method. Male rats had more neurons than females at all the ages studied. Significant neuronal loss was observed in both sexes between 22 and 24 months of age. In a second experiment, 22 month-old male and female rats were treated for 10 weeks with 2 mg/kg/day of GH or saline. At 24 months of age, animals treated with GH had more neurons in the hilus than animals treated with saline. These findings indicate that GH is neuroprotective in old animals and that its administration may ameliorate neuronal alterations associated to aging.


Asunto(s)
Envejecimiento/fisiología , Muerte Celular/efectos de los fármacos , Hormona del Crecimiento/farmacología , Hipocampo/citología , Neuronas/efectos de los fármacos , Factores de Edad , Animales , Recuento de Células , Muerte Celular/fisiología , Femenino , Hipocampo/fisiología , Humanos , Inmunohistoquímica/métodos , Neuronas/fisiología , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Endogámicas WF , Factores Sexuales , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA