Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216386

RESUMEN

Variants in MFSD8 can cause neuronal ceroid lipofuscinoses (NCLs) as well as nonsyndromic retinopathy. The mutation spectrum includes mainly missense and stop variants, but splice sites and frameshift variants have also been reported. To date, apparently synonymous substitutions have not been shown to cause MFSD8-associated diseases. We report two closely related subjects from a consanguineous Turkish family who presented classical features of NCLs but demonstrated marked intrafamilial variability in age at the onset and severity of symptoms. In fact, the difference in the onset of first neurologic symptoms was 15 years and that of ophthalmologic symptoms was 12 years. One subject presented an intellectual disability and a considerable cerebellar ataxia syndrome, while the other subject showed no intellectual disability and only a mild atactic syndrome. The diagnostic genetic testing of both subjects based on genome sequencing prioritized a novel, apparently synonymous variant in MFSD8, which was found in homozygosity in both subjects. The variant was not located within an integral part of the splice site consensus sequences. However, the bioinformatic analyses suggested that the mutant allele is more likely to cause exon skipping due to an altered ratio of exonic splice enhancer and silencer motifs. Exon skipping was confirmed in vitro by minigene assays and in vivo by RNA analysis from patient lymphocytes. The mutant transcript is predicted to result in a frameshift and, if translated, in a truncated protein. Synonymous variants are often given a low priority in genetic diagnostics because of their expected lack of functional impact. This study highlights the importance of investigating the impact of synonymous variants on splicing.


Asunto(s)
Mutación del Sistema de Lectura/genética , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Adolescente , Adulto , Femenino , Homocigoto , Humanos , Masculino , Linaje , Adulto Joven
2.
Clin Genet ; 97(3): 426-436, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31721179

RESUMEN

Biallelic MFSD8 variants are an established cause of severe late-infantile subtype of neuronal ceroid lipofuscinosis (v-LINCL), a severe lysosomal storage disorder, but have also been associated with nonsyndromic adult-onset maculopathy. Here, we functionally characterized two novel MFSD8 variants found in a child with juvenile isolated maculopathy, in order to establish a refined prognosis. ABCA4 locus resequencing was followed by the analysis of other inherited retinal disease genes by whole exome sequencing (WES). Minigene assays and cDNA sequencing were used to assess the effect of a novel MFSD8 splice variant. MFSD8 expression was quantified with qPCR and overexpression studies were analyzed by immunoblotting. Transmission electron microscopy (TEM) was performed on a skin biopsy and ophthalmological and neurological re-examinations were conducted. WES revealed two novel MFSD8 variants: c.[590del];[439+3A>C] p.[Gly197Valfs*2];[Ile67Glufs*3]. Characterization of the c.439+3A>C variant via splice assays showed exon-skipping (p.Ile67Glufs*3), while overexpression studies of the corresponding protein indicated expression of a truncated polypeptide. In addition, a significantly reduced MFSD8 RNA expression was noted in patient's lymphocytes. TEM of a skin biopsy revealed typical v-LINCL lipopigment inclusions while neurological imaging of the proband displayed subtle cerebellar atrophy. Functional characterization demonstrated the pathogenicity of two novel MFSD8 variants, found in a child with an initial diagnosis of juvenile isolated maculopathy but likely evolving to v-LINCL with a protracted disease course. Our study allowed a refined neurological prognosis in the proband and expands the natural history of MFSD8-associated disease.


Asunto(s)
Degeneración Macular/genética , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Niño , Femenino , Variación Genética , Homocigoto , Humanos , Degeneración Macular/diagnóstico por imagen , Degeneración Macular/fisiopatología , Microscopía Electrónica de Transmisión , Mutación , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Retina/diagnóstico por imagen , Retina/fisiopatología , Secuenciación del Exoma
3.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883051

RESUMEN

Lysosomal storage diseases (LSDs) are a heterogeneous group of genetic disorders with variable degrees of severity and a broad phenotypic spectrum, which may overlap with a number of other conditions. While individually rare, as a group LSDs affect a significant number of patients, placing an important burden on affected individuals and their families but also on national health care systems worldwide. Here, we present our results on the use of an in-house customized next-generation sequencing (NGS) panel of genes related to lysosome function as a first-line molecular test for the diagnosis of LSDs. Ultimately, our goal is to provide a fast and effective tool to screen for virtually all LSDs in a single run, thus contributing to decrease the diagnostic odyssey, accelerating the time to diagnosis. Our study enrolled a group of 23 patients with variable degrees of clinical and/or biochemical suspicion of LSD. Briefly, NGS analysis data workflow, followed by segregation analysis allowed the characterization of approximately 41% of the analyzed patients and the identification of 10 different pathogenic variants, underlying nine LSDs. Importantly, four of those variants were novel, and, when applicable, their effect over protein structure was evaluated through in silico analysis. One of the novel pathogenic variants was identified in the GM2A gene, which is associated with an ultra-rare (or misdiagnosed) LSD, the AB variant of GM2 Gangliosidosis. Overall, this case series highlights not only the major advantages of NGS-based diagnostic approaches but also, to some extent, its limitations ultimately promoting a reflection on the role of targeted panels as a primary tool for the prompt characterization of LSD patients.


Asunto(s)
Marcadores Genéticos , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Lisosomas/patología , Salud Global , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Lisosomas/genética , Análisis de Secuencia de ADN
4.
Mol Genet Metab ; 126(2): 196-205, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30301600

RESUMEN

Mutations in the CLN7/MFSD8 gene encoding the lysosomal membrane protein CLN7 are causative of CLN7 disease, an inherited neurodegenerative disorder that typically affects children. To gain insight into the pathomechanisms of CLN7 disease, we established an immortalized cell line based on cerebellar (Cb) granule neuron precursors isolated from Cln7-/- mice. Here, we demonstrate that Cln7-deficient neuron-derived Cb cells display an abnormal phenotype that includes increased size and defective outward movement of late endosomes and lysosomes as well as impaired lysosomal exocytosis. Whereas Cln7-/- Cb cells appeared to be autophagy-competent, loss of Cln7 resulted in enhanced cell death under prolonged nutrient deprivation. Furthermore, reduced cell survival of Cln7-deficient cells was accompanied by a significantly impaired protein kinase B/Akt phosphorylation at Ser473 during long-term starvation. In summary, our data demonstrate for the first time that the putative lysosomal transporter CLN7 is relevant for lysosome motility and plays an important role for neuronal cell survival under conditions of starvation.


Asunto(s)
Lisosomas/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/patología , Animales , Autofagia , Transporte Biológico , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular , Exocitosis , Ratones , Ratones Noqueados , Naftiridinas/farmacología , Neuronas/citología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
5.
Neurobiol Dis ; 119: 65-78, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30048804

RESUMEN

We have identified a natural Japanese macaque model of the childhood neurodegenerative disorder neuronal ceroid lipofuscinosis, commonly known as Batten Disease, caused by a homozygous frameshift mutation in the CLN7 gene (CLN7-/-). Affected macaques display progressive neurological deficits including visual impairment, tremor, incoordination, ataxia and impaired balance. Imaging, functional and pathological studies revealed that CLN7-/- macaques have reduced retinal thickness and retinal function early in disease, followed by profound cerebral and cerebellar atrophy that progresses over a five to six-year disease course. Histological analyses showed an accumulation of cerebral, cerebellar and cardiac storage material as well as degeneration of neurons, white matter fragmentation and reactive gliosis throughout the brain of affected animals. This novel CLN7-/- macaque model recapitulates key behavioral and neuropathological features of human Batten Disease and provides novel insights into the pathophysiology linked to CLN7 mutations. These animals will be invaluable for evaluating promising therapeutic strategies for this devastating disease.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Lipofuscinosis Ceroideas Neuronales/genética , Animales , Femenino , Técnicas de Inactivación de Genes/métodos , Locomoción/fisiología , Macaca , Masculino , Mutación Missense/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Equilibrio Postural/fisiología , Primates , Trastornos de la Visión/diagnóstico por imagen , Trastornos de la Visión/genética , Trastornos de la Visión/fisiopatología
6.
Neurobiol Dis ; 103: 123-132, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28365214

RESUMEN

The neuronal ceroid lipofuscinoses are a group of recessively inherited, childhood-onset neurodegenerative conditions. Several forms are caused by mutations in genes encoding putative lysosomal membrane proteins. Studies of the cell biology underpinning these disorders are hampered by the poor antigenicity of the membrane proteins, which makes visualization of the endogenous proteins difficult. We have used Drosophila to generate knock-in YFP-fusions for two of the NCL membrane proteins: CLN7 and CLN3. The YFP-fusions are expressed at endogenous levels and the proteins can be visualized live without the need for overexpression. Unexpectedly, both CLN7 and CLN3 have restricted expression in the CNS of Drosophila larva and are predominantly expressed in the glia that form the insect blood-brain-barrier. CLN7 is also expressed in neurons in the developing visual system. Analogous with murine CLN3, Drosophila CLN3 is strongly expressed in the excretory and osmoregulatory Malpighian tubules, but the knock-in also reveals unexpected localization of the protein to the apical domain adjacent to the lumen. In addition, some CLN3 protein in the tubules is localized within mitochondria. Our in vivo imaging of CLN7 and CLN3 suggests new possibilities for function and promotes new ideas about the cell biology of the NCLs.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas de Drosophila/biosíntesis , Túbulos de Malpighi/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de Transporte de Membrana/biosíntesis , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/metabolismo , Animales , Barrera Hematoencefálica/química , Barrera Hematoencefálica/ultraestructura , Drosophila , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Expresión Génica , Técnicas de Sustitución del Gen , Túbulos de Malpighi/química , Túbulos de Malpighi/ultraestructura , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/química , Neuronas/ultraestructura
7.
Mol Genet Metab ; 118(4): 326-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27211611

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are hereditary neurodegenerative disorders characterized by progressive declines in neurological functions, seizures, and premature death. NCLs result from mutations in at least 13 different genes. Canine versions of the NCLs can serve as important models in developing effective therapeutic interventions for these diseases. NCLs have been described in a number of dog breeds, including Chihuahuas. Studies were undertaken to further characterize the pathology of Chihuahua NCL and to verify its molecular genetic basis. Four unrelated client owned Chihuahuas from Japan, Italy and England that exhibited progressive neurological signs consistent with a diagnosis of NCL underwent neurological examinations. Brain and in some cases also retinal and heart tissues were examined postmortem for the presence of lysosomal storage bodies characteristic of NCL. The affected dogs exhibited massive accumulation of autofluorescent lysosomal storage bodies in the brain, retina and heart accompanied by brain atrophy and retinal degeneration. The dogs were screened for known canine NCL mutations previously reported in a variety of dog breeds. All 4 dogs were homozygous for the MFSD8 single base pair deletion (MFSD8:c.843delT) previously associated with NCL in a Chinese Crested dog and in 2 affected littermate Chihuahuas from Scotland. The dogs were all homozygous for the normal alleles at the other genetic loci known to cause different forms of canine NCL. The MFSD8:c.843delT mutation was not present in 57 Chihuahuas that were either clinically normal or suffered from unrelated diseases or in 1761 unaffected dogs representing 186 other breeds. Based on these data it is almost certain that the MFSD8:c.843delT mutation is the cause of NCL in Chihuahuas. Because the disorder occurred in widely separated geographic locations or in unrelated dogs from the same country, it is likely that the mutant allele is widespread among Chihuahuas. Genetic testing for this mutation in other Chihuahuas is therefore likely to identify intact dogs with the mutant allele that could be used to establish a research colony that could be used to test potential therapeutic interventions for the corresponding human disease.


Asunto(s)
Enfermedades de los Perros/genética , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Animales , Encéfalo/fisiopatología , Cruzamiento , Enfermedades de los Perros/fisiopatología , Perros , Homocigoto , Humanos , Mutación , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Lipofuscinosis Ceroideas Neuronales/veterinaria , Retina/fisiopatología , Eliminación de Secuencia
8.
Neurobiol Dis ; 65: 12-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24423645

RESUMEN

Mutations in the major facilitator superfamily domain containing 8 (MFSD8) gene coding for the lysosomal CLN7 membrane protein result in CLN7 disease, a lysosomal storage disease of childhood. CLN7 disease belongs to a group of inherited disorders, called neuronal ceroid lipofuscinoses (NCL), which are characterized by the accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. We have disrupted the Mfsd8 gene by insertion of a lacZ gene-trap cassette between exons 1 and 2 in mice and have analyzed the impact of Cln7 depletion on neuronal and visceral tissues. Analysis of lacZ reporter gene activity in heterozygous Mfsd8((wt/tm1a)) mice showed strong Mfsd8 mRNA expression in the cerebral cortex, in the hippocampus and in the kidney. Homozygous Mfsd8((tm1a/tm1a)) mice were viable and fertile and resembled biochemically the NCL-phenotype of human CLN7 patients including the accumulation of autofluorescent material in the brain and peripheral tissues and of subunit c of mitochondrial ATP synthase in the cerebellum and nuclei of distinct brain regions, and the degeneration of photoreceptor cells in the retina. Lysosomal storage was found in large neurons of the medulla, the hippocampus and in Purkinje cells of the cerebellum in mutant mice. The ultrastructure of the storage material revealed dense lamellar bodies with irregular forms within cerebellar and hippocampal neurons. In the brain loss of Cln7 was accompanied by mild reactive microgliosis and subtle astrogliosis by 10months of age, respectively. In summary we have generated a mouse model which is partly valuable as some but not all neuropathological features of human CLN7 disease are recapitulated thus representing an animal model to study CLN7-specific disease mechanisms.


Asunto(s)
Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica/genética , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , Riñón/enzimología , Riñón/patología , Riñón/ultraestructura , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Retina/patología , Retina/ultraestructura , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , alfa-Manosidasa/metabolismo , beta-Galactosidasa/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
9.
Eur J Cell Biol ; 102(4): 151361, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742391

RESUMEN

Major facilitator superfamily domain-containing protein 8 (MFSD8) is a transmembrane protein that has been reported to function as a lysosomal chloride channel. In humans, homozygous mutations in MFSD8 cause a late-infantile form of neuronal ceroid lipofuscinosis (NCL) called CLN7 disease. In the social amoeba Dictyostelium discoideum, Mfsd8 localizes to cytoplasmic puncta and vesicles, and regulates conserved processes during the organism's life cycle. Here, we used D. discoideum to examine the effect of mfsd8-deficiency on the secretome during the early stages of multicellular development. Mass spectrometry revealed 61 proteins that were differentially released by cells after 4 and 8 h of starvation. Most proteins were present in increased amounts in mfsd8- conditioned buffer compared to WT indicating that loss of mfsd8 deregulates protein secretion and/or causes the release of proteins not normally secreted by WT cells. GO term enrichment analyses showed that many of the proteins aberrantly released by mfsd8- cells localize to compartments and regions of the cell associated with the endo-lysosomal and secretory pathways. Mass spectrometry also revealed proteins previously known to be impacted by the loss of mfsd8 (e.g., cathepsin D), as well as proteins that may underlie mfsd8-deficiency phenotypes during aggregation. Finally, we show that mfsd8-deficiency reduces intracellular proteasome 20S activity due to the abnormal release of at least one proteasomal subunit. Together, this study reveals the impact of mfsd8 loss on the secretome during D. discoideum aggregation and lays the foundation for follow up work that investigates the role of altered protein release in CLN7 disease.


Asunto(s)
Dictyostelium , Humanos , Dictyostelium/genética , Dictyostelium/metabolismo , Secretoma , Proteínas de la Membrana/metabolismo , Mutación , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo
10.
Front Genet ; 13: 807515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154277

RESUMEN

Neuronal ceroid lipofuscinoses (NCLs) are among the most common progressive encephalopathies of childhood. Neuronal ceroid lipofuscinosis 7 (CLN7), one of the late infantile-onset NCLs, is an autosomal recessive disorder caused by mutations in the MFSD8 gene on chromosome 4q28. Almost all reported mutations of MFSD8 in CLN7 patients were SNVs. However, we report a 4-year-old boy with CLN7 harboring compound heterozygous mutations in the MFSD8 gene, including one novel two-nucleotide deletion c.136_137delAT (p. M46Vfs*22) and one whole gene deletion of MFSD8 confirmed by Sanger sequencing, genomic quantitative PCR and CNV-seq. Therefore, for nonconsanguineous CLN7 patients with homozygous mutations in the MFSD8 gene, genetic counseling staff should focus on the possibility of whole gene deletion. This is one case report describing a whole gene deletion in a Chinese patient with CLN7, suggesting the diagnosis of CLN7 should be based on clinical suspicion and genetic testing.

11.
Front Cell Dev Biol ; 10: 930235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756993

RESUMEN

MFSD8 is a transmembrane protein that has been reported to transport chloride ions across the lysosomal membrane. Mutations in MFSD8 are associated with a subtype of Batten disease called CLN7 disease. Batten disease encompasses a family of 13 inherited neurodegenerative lysosomal storage diseases collectively referred to as the neuronal ceroid lipofuscinoses (NCLs). Previous work identified an ortholog of human MFSD8 in the social amoeba D. discoideum (gene: mfsd8, protein: Mfsd8), reported its localization to endocytic compartments, and demonstrated its involvement in protein secretion. In this study, we further characterized the effects of mfsd8 loss during D. discoideum growth and early stages of multicellular development. During growth, mfsd8 - cells displayed increased rates of proliferation, pinocytosis, and expansion on bacterial lawns. Loss of mfsd8 also increased cell size, inhibited cytokinesis, affected the intracellular and extracellular levels of the quorum-sensing protein autocrine proliferation repressor A, and altered lysosomal enzyme activity. During the early stages of development, loss of mfsd8 delayed aggregation, which we determined was at least partly due to impaired cell-substrate adhesion, defects in protein secretion, and alterations in lysosomal enzyme activity. Overall, these results show that Mfsd8 plays an important role in modulating a variety of processes during the growth and early development of D. discoideum.

12.
Animals (Basel) ; 12(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35565635

RESUMEN

Neuronal ceroid lipofuscinosis (NCL) is a group of rare lethal neurodegenerative lysosomal storage diseases that occur in a range of dog breeds, including Chihuahuas. Recently, a homozygous single base-pair deletion (c.846delT), which causes a frame shift generating a premature stop codon (p.Phe282Leufs13*) in the canine CLN7/MFSD8 gene, has been identified as a causative mutation for NCL in Chihuahuas. The objective of this study was to determine the frequency of the mutant allele and/or carrier rate of NCL in Chihuahuas in Japan using a newly designed real-time PCR assay. Samples of saliva were randomly collected from 1007 Chihuahua puppies during physical examinations prior to the transportation to pet shops. Screening results revealed a carrier rate of 1.29%, indicating a mutant allele frequency (0.00645) that is considered sufficiently high to warrant measures for the control and prevention of this lethal disease. The genotyping assay designed in this study could make a valuable contribution to the control and prevention of NCL.

13.
EMBO Mol Med ; 13(10): e13742, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34411438

RESUMEN

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Reposicionamiento de Medicamentos , Humanos , Lisosomas , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Fenotipo , Tamoxifeno/farmacología
14.
Cell Signal ; 70: 109572, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32087303

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are a family of neurodegenerative diseases that affect people of all ages and ethnicities, yet many of the associated genes/proteins are not well characterized. Mutations in MFSD8 (major facilitator superfamily domain-containing 8) cause an infantile form of NCL referred to as CLN7 disease. In this study, we revealed the localization and binding partners of an ortholog of human MFSD8 (Mfsd8) in the social amoeba Dictyostelium discoideum. Putative lysosomal targeting motifs are conserved in Dictyostelium Mfsd8, as are several residues mutated in CLN7 disease patients. Mfsd8 tagged with GFP localizes to endocytic compartments, which includes acidic intracellular vesicles and late endosomes. We pulled-down GFP-Mfsd8 and used mass spectrometry to reveal the Mfsd8 interactome during Dictyostelium growth and starvation. Among the identified hits were the Dictyostelium ortholog of human cathepsin D (CtsD), as well as proteins linked to the functions of the CLN3 (Cln3) and CLN5 (Cln5) orthologs in Dictyostelium. To study the function of Mfsd8, we validated a publically available mfsd8- cell line (GWDI Project) and then used this knockout cell line to show that Mfsd8 influences the secretion of Cln5 and CtsD. This information is then integrated into an emerging model describing the molecular networking of NCL proteins in Dictyostelium. In total, this study identifies Dictyostelium as a new model system for studying CLN7 disease.


Asunto(s)
Catepsina D/metabolismo , Dictyostelium/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Humanos , Mutación , Lipofuscinosis Ceroideas Neuronales/metabolismo , Proteínas Protozoarias/metabolismo
15.
Front Genet ; 10: 370, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105743

RESUMEN

Neuronal Ceroid Lipofuscinoses (NCLs) are progressive degenerative diseases mainly affect brain and retina. They are characterized by accumulation of autofluorescent storage material, mitochondrial ATPase subunit C, or sphingolipid activator proteins A and D in lysosomes of most cells. Heterogenous storage material in NCLs is not completely disease-specific. Most of CLN proteins and their natural substrates are not well-characterized. Studies have suggested variants of Late-Infantile NCLs (LINCLs) include the major type CLN2 and minor types CLN5, CLN6, CLN7, and CLN8. Therefore, combination of clinical and molecular analysis has become a more effective diagnosis method. We studied 4 late-infantile NCL siblings characterized by seizures, ataxia as early symptoms, followed by progressive regression in intelligence and behavior, but mutations are located in different genes. Symptoms and progression of 4 types of LINCLs are compared. Pathology of LINCLs is also discussed. We performed Nest-Generation Sequencing on these phenotypically similar families. Three novel variants c.1551+1insTGAT in TPP1, c.244G>T in CLN6, c.554-5A>G in MFSD8 were identified. Potential outcome of the mutations in structure and function of proteins are studied. In addition, we observed some common and unique clinical features of Chinese LINCL patient as compared with those of Western patients, which greatly improved our understanding of the LINCLs.

16.
Eur J Paediatr Neurol ; 19(1): 78-86, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25439737

RESUMEN

BACKGROUND: We present clinical and molecular findings of a patient with ceroid-lipofuscinosis CLN7, with a compound heterozygous mutation of the MFSD8 gene, with Rett syndrome clinical signs onset and a later development of full picture of vLINCL. CASE PRESENTATION: A 7 years-old female patient with normal development until the age 12 months, developed Rett like clinical picture (psychomotor regression, microcephaly, stereotypic hands movements in the midline, hyperventilation episodes) present at the onset of her condition (age 18 months), features still present at the initial evaluation in our clinic at age 5 years. RESULTS: MECP2 (methyl CpG binding protein 2) gene mutation was negative. At age 6 years she was readmitted for severe ataxia and blindness, seizures, and severe developmental regression leading to NCL (neuronal ceroid lipofuscinosis) suspicion. EEG showed slow background with IRDA (intermittent rhythmic delta activity). A conjunctive biopsy showed abnormal curvilinear and fingerprint lysosomal deposits, and genetic analysis revealed two heterozygous mutations of MFSD8 gene (c.881C > A p.Thr294Lys and c.754 + 2T > A) each inherited from carrier parents and a heterozygous variant (c.470A>C p.Asp157Ala) of CLN5 gene. CONCLUSION: NCL should be suspected and MFSD8 genetic testing should also be considered in patients with Rett like phenotype at onset and negative MECP2 mutation. Such cases should be carefully and frequently re-evaluated in order to avoid delayed diagnosis and offer proper genetic advice to the family. In our knowledge, this might be the first case of CLN7 disease with Rett like onset described in the literature, which developed typical vLINCL clinical phenotype after age 5.5 years. A short review of the literature showing NCL onset modalities is presented.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Síndrome de Rett/fisiopatología , Edad de Inicio , Ataxia/etiología , Ceguera/etiología , Niño , Discapacidades del Desarrollo/etiología , Progresión de la Enfermedad , Electroencefalografía , Femenino , Heterocigoto , Humanos , Lisosomas/metabolismo , Imagen por Resonancia Magnética , Mutación/genética , Padres , Convulsiones/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA