Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(4): 3105-3129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37199492

RESUMO

Food preservation is a critical issue in ensuring food safety and quality. Growing concern around industrial pollution of food and demand for environmentally sustainable food has led to increased interest in developing effective and eco-friendly preservation techniques. Gaseous ClO2 has gained attention for its strong oxidizing properties, high efficacy in microorganism inactivation, and potential for preserving the attributes and nutritional quality of fresh food while avoiding the formation of toxic byproducts or unacceptable levels of residues. However, the widespread use of gaseous ClO2 in the food industry is limited by several challenges. These include large-scale generation, high cost and environmental considerations, a lack of understanding of its mechanism of action, and the need for mathematical models to predict inactivation kinetics. This review aims to provide an overview of the up-to-date research and application of gaseous ClO2 . It covers preparation methods, preservation mechanisms, and kinetic models that predict the sterilizing efficacy of gaseous ClO2 under different conditions. The impacts of gaseous ClO2 on the quality attributes of fresh produce and low-moisture foods, such as seeds, sprouts, and spices, are also summarized. Overall, gaseous ClO2 is a promising preservation approach, and future studies are needed to address the challenges in large-scale generation and environmental considerations and to develop standardized protocols and databases for safe and effective use in the food industry.


Assuntos
Desinfetantes , Gases , Gases/farmacologia , Contagem de Colônia Microbiana , Desinfetantes/química , Cinética , Conservação de Alimentos/métodos , Sementes
2.
Anal Chem ; 90(7): 4733-4740, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543434

RESUMO

This work aims to face the challenge of monitoring small molecule drugs accurately and rapidly for point-of-care (POC) diagnosis in current clinical settings. Overdose of acetaminophen (AP), a commonly used over the counter (OTC) analgesic drug, has been determined to be a major cause of acute liver failure in the US and the UK. However, there is no rapid and accurate detection method available for this drug in the emergency room. The present study examined an AP sensing strategy that relies on a previously unexplored strong interaction between AP and the arginine (Arg) molecule. It was found that as many as 4 hydrogen bonds can be formed between one Arg molecule and one AP molecule. By taking advantages of this structural selectivity and high tenability of hydrogen bonds, Arg, immobilized on a graphene surface via electrostatic interactions, was utilized to structurally capture AP. Interestingly, bonded AP still remained the perfect electrochemical activities. The extent of Arg-AP bonds was quantified using a newly designed electrochemical (EC) sensor. To verify the feasibility of this novel assay, based on multihydrogen bond manipulated single-molecule recognition (eMuHSiR), both pharmaceutical and serum sample were examined. In commercial tablet measurement, no significant difference was seen between the results of eMuHSiR and other standard methods. For measuring AP concentration in the mice blood, the substances in serum, such as sugars and fats, would not bring any interference to the eMuHSiR in a wide concentration range. This eMuHSiR method opens the way for future development of small molecule detection for the POC testing.


Assuntos
Acetaminofen/análise , Arginina/química , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Eletrodos , Grafite/química , Ligação de Hidrogênio , Camundongos , Propriedades de Superfície , Comprimidos/análise
3.
Food Res Int ; 172: 113185, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689936

RESUMO

The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.


Assuntos
Bebidas , Fenômenos Fisiológicos da Nutrição , Antioxidantes , Alimento Funcional , Extratos Vegetais
4.
Biodegradation ; 23(2): 209-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21809019

RESUMO

An aerobic microorganism with an ability to utilize phenol as sole carbon and energy source was isolated from phenol-contaminated wastewater samples. The isolate was identified as Bacillus amyloliquefaciens strain WJDB-1 based on morphological, physiological, and biochemical characteristics, and 16S rDNA sequence analysis. Strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules could degrade 200 mg/l phenol completely within 36 h. The concentration of phenol was determined using differential pulse voltammetry (DPV) at glassy carbon electrode (GCE) with a linear relationship between peak current and phenol concentration ranging from 2.0 to 20.0 mg/l. Cells immobilized in ACA microcapsules were found to be superior to the free suspended ones in terms of improving the tolerance to the environmental loadings. The optimal conditions to prepare microcapsules for achieving higher phenol degradation rate were investigated by changing the concentrations of sodium alginate, calcium chloride, and chitosan. Furthermore, the efficiency of phenol degradation was optimized by adjusting various processing parameters, such as the number of microcapsules, pH value, temperature, and the initial concentration of phenol. This microorganism has the potential for the efficient treatment of organic pollutants in wastewater.


Assuntos
Alginatos/farmacologia , Bacillus/citologia , Bacillus/metabolismo , Quitosana/farmacologia , Eletroquímica/métodos , Microesferas , Fenol/metabolismo , Bacillus/efeitos dos fármacos , Bacillus/ultraestrutura , Biodegradação Ambiental/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Dados de Sequência Molecular , Filogenia , Temperatura
5.
Analyst ; 136(21): 4447-53, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21897948

RESUMO

An electrochemical sensor based on a CdSe nanoparticles (NPs)-decorated poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (CdSe-PDDA-G) nanocomposite was fabricated for the sensitive detection of esculetin. The nanocomposite was characterized by X-ray diffraction (XRD), ultraviolet/visible spectra (UV-vis) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrochemical behaviors of esculetin on the CdSe-PDDA-G composite film-modified glassy carbon electrode (GCE). The experimental results indicated that the incorporation of CdSe NPs with PDDA-G greatly enhanced the electrochemical response of esculetin. This electrochemical sensor displayed satisfactory analytical performance for esculetin detection over a range from 1.0 × 10(-8) to 5.0 × 10(-5) mol L(-1) with a detection limit of 4.0 × 10(-9) mol L(-1) (S/N = 3). Moreover, the sensor also exhibited good reproducibility and stability, and could be used for the detection of esculetin in real samples with satisfactory results.


Assuntos
Eletroquímica/métodos , Nanopartículas Metálicas/química , Nanocompostos/química , Umbeliferonas/análise , Compostos Alílicos , Compostos de Cádmio , Eletrodos , Grafite , Microscopia Eletrônica de Transmissão/métodos , Compostos de Amônio Quaternário , Compostos de Selênio , Sensibilidade e Especificidade , Análise Espectral/métodos , Difração de Raios X/métodos
6.
Talanta ; 112: 111-6, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23708545

RESUMO

PtAu bimetallic nanoparticles (NPs) were successfully synthesized on graphene sheets-multi walled carbon nanotubes (G-CNTs) hybrid nanomaterials via a simple one-step chemical co-reduction method in ethylene glycol (EG)-water system. The nanocomposites (PtAu/G-CNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Then a sensitive nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated based on PtAu/G-CNTs nanocomposites modified glassy carbon electrode (GCE). The results of electrochemical experiments demonstrated that the sensor exhibited excellent electrocatalytic activity to the reduction of H2O2. The sensor displayed a fast amperometric response time of less than 4s with linear detection range from 2.0 to 8561 µM and a relatively low detection limit of 0.6 µM (S/N=3). In addition, the sensor also showed good selectivity for H2O2 detection, long-term stability and reproducibility.


Assuntos
Ouro/química , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Platina/química , Técnicas Eletroquímicas , Grafite/química , Peróxido de Hidrogênio/química , Nanotubos de Carbono/química
7.
Talanta ; 88: 181-6, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22265485

RESUMO

An electrochemical sensor based on Fe(3)O(4) nanoparticles (NPs)-coated poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (Fe(3)O(4)-PDDA-G) nanocomposite was fabricated for sensitive detection of acetaminophen. The nanocomposite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The electrochemical behaviors of acetaminophen on Fe(3)O(4)-PDDA-G composite film modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The experimental results indicated that the incorporation of Fe(3)O(4) NPs with PDDA-G greatly enhanced the electrochemical response of acetaminophen. This fabricated sensor displayed excellent analytical performance for acetaminophen detection over a range from 0.1 to 100 µ mol L(-1) with a detection limit of 3.7×10(-8) mol L(-1) (S/N=3). The redox peaks of acetaminophen, dopamine (DA) and ascorbic acid (AA) can be well separated on the Fe(3)O(4)-PDDA-G/GCE. Moreover, the proposed electrochemical sensor also exhibited good reproducibility and stability, and has been used to detect acetaminophen in tablets with satisfactory results.


Assuntos
Acetaminofen/análise , Analgésicos/química , Antipiréticos/química , Óxido Ferroso-Férrico/química , Grafite/química , Nanocompostos/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Ácido Ascórbico/análise , Dopamina/análise , Eletrodos , Concentração de Íons de Hidrogênio , Magnetometria , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Oxirredução , Potenciometria , Reprodutibilidade dos Testes , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA