Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2205591119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36206368

RESUMO

Protein aggregation is a hallmark of major neurodegenerative disorders. Increasing data suggest that smaller aggregates cause higher toxic response than filamentous aggregates (fibrils). However, the size of small aggregates has challenged their detection within biologically relevant environments. Here, we report approaches to quantitatively super-resolve aggregates in live cells and ex vivo brain tissues. We show that Amytracker 630 (AT630), a commercial aggregate-activated fluorophore, has outstanding photophysical properties that enable super-resolution imaging of α-synuclein, tau, and amyloid-ß aggregates, achieving ∼4 nm precision. Applying AT630 to AppNL-G-F mouse brain tissues or aggregates extracted from a Parkinson's disease donor, we demonstrate excellent agreement with antibodies specific for amyloid-ß or α-synuclein, respectively, confirming the specificity of AT630. Subsequently, we use AT630 to reveal a linear relationship between α-synuclein aggregate size and cellular toxicity and discovered that aggregates smaller than 450 ± 60 nm (aggregate450nm) readily penetrated the plasma membrane. We determine aggregate450nm concentrations in six Parkinson's disease and dementia with Lewy bodies donor samples and show that aggregates in different synucleinopathies demonstrate distinct potency in toxicity. We further show that cell-penetrating aggregates are surrounded by proteasomes, which assemble into foci to gradually process aggregates. Our results suggest that the plasma membrane effectively filters out fibrils but is vulnerable to penetration by aggregates of 450 ± 60 nm. Together, our findings present an exciting strategy to determine specificity of aggregate toxicity within heterogeneous samples. Our approach to quantitatively measure these toxic aggregates in biological environments opens possibilities to molecular examinations of disease mechanisms under physiological conditions.


Assuntos
Doença de Parkinson , Sinucleinopatias , Peptídeos beta-Amiloides/metabolismo , Animais , Corpos de Lewy/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade
2.
Chemphyschem ; 22(23): 2380, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779565

RESUMO

The front cover artwork is provided by the group of Liming Ying at Imperial College London. The image shows that N-terminal acetylation of α-synuclein shifts the binding from the N-terminus to His50 and significantly slows down the binding reaction. Read the full text of the Article at 10.1002/cphc.202100651.


Assuntos
Cobre/metabolismo , alfa-Sinucleína/metabolismo , Acetilação , Sítios de Ligação , Cobre/química , Humanos , Cinética , Mutação , alfa-Sinucleína/genética
3.
Chemphyschem ; 22(23): 2413-2419, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34617653

RESUMO

The interaction between α-synuclein (αSyn) and Cu2+ has been suggested to be closely linked to brain copper homeostasis. Disruption of copper levels could induce misfolding and aggregation of αSyn, and thus contribute to the progression of Parkinson's disease (PD). Understanding the molecular mechanism of αSyn-Cu2+ interaction is important and controversies in Cu2+ coordination geometry with αSyn still exists. Herein, we find that the pathological H50Q mutation has no impact on the kinetics of Cu2+ binding to the high-affinity site of wild type αSyn (WT-αSyn), indicating the non-involvement of His50 in high-affinity Cu2+ binding to WT-αSyn. In contrast, the physiological N-terminally acetylated αSyn (NAc-αSyn) displays several orders of magnitude weaker Cu2+ binding affinity than WT-αSyn. Cu2+ coordination mode to NAc-αSyn has also been proposed based on EPR spectrum. In addition, we find that Cu2+ coordinated WT-αSyn is reduction-active in the presence of GSH, but essentially inactive towards ascorbate. Our work provides new insights into αSyn-Cu2+ interaction, which may help understand the multifaceted normal functions of αSyn as well as pathological consequences of αSyn aggregation.


Assuntos
Cobre/metabolismo , alfa-Sinucleína/metabolismo , Acetilação , Sítios de Ligação , Cobre/química , Humanos , Cinética , Mutação , alfa-Sinucleína/genética
4.
Angew Chem Int Ed Engl ; 60(43): 23148-23153, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34379368

RESUMO

Copper is an essential trace element in living organisms with its levels and localisation being carefully managed by the cellular machinery. However, if misregulated, deficiency or excess of copper ions can lead to several diseases. Therefore, it is important to have reliable methods to detect, monitor and visualise this metal in cells. Herein we report a new optical probe based on BODIPY, which shows a switch-on in its fluorescence intensity upon binding to copper(I), but not in the presence of high concentration of other physiologically relevant metal ions. More interestingly, binding to copper(I) leads to significant changes in the fluorescence lifetime of the new probe, which can be used to visualize copper(I) pools in lysosomes of live cells via fluorescence lifetime imaging microscopy (FLIM).


Assuntos
Cobre/análise , Compostos de Boro/química , Compostos de Boro/toxicidade , Linhagem Celular Tumoral , Cobre/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Humanos , Lisossomos/química , Microscopia de Fluorescência/métodos
5.
Biochemistry ; 57(43): 6228-6233, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30265526

RESUMO

The ability of the amyloid-ß peptide to bind to redox active metals and act as a source of radical damage in Alzheimer's disease has been largely accepted as contributing to the disease's pathogenesis. However, a kinetic understanding of the molecular mechanism, which underpins this radical generation, has yet to be reported. Here we use a sensitive fluorescence approach, which reports on the oxidation state of the metal bound to the amyloid-ß peptide and can therefore shed light on the redox kinetics. We confirm that the redox goes via a low populated, reactive intermediate and that the reaction proceeds via the Component I coordination environment rather than Component II. We also show that while the reduction step readily occurs (on the 10 ms time scale) it is the oxidation step that is rate-limiting for redox cycling.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Cobre/química , Cobre/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Estresse Oxidativo
6.
Angew Chem Int Ed Engl ; 57(32): 10268-10272, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29939484

RESUMO

A biodegradable two-dimensional (2D) delivery platform based on loading black phosphorus nanosheets (BPs) with Cas9 ribonucleoprotein engineered with three nuclear localization signals (NLSs) at C terminus (Cas9N3) is successfully established. The Cas9N3-BPs enter cells effectively via membrane penetration and endocytosis pathways, followed by a BPs biodegradation-associated endosomal escape and cytosolic releases of the loaded Cas9N3 complexes. The Cas9N3-BPs thus provide efficient genome editing and gene silencing in vitro and in vivo at a relatively low dose as compared with other nanoparticle-based delivery platforms. This biodegradable 2D delivery platform offers a versatile cytosolic delivery approach for CRISPR/Cas9 ribonucleoprotein and other bioactive macromolecules for biomedical applications.


Assuntos
Sistemas CRISPR-Cas/genética , Citosol/metabolismo , Edição de Genes , Técnicas de Transferência de Genes , Nanopartículas/química , Fósforo/química , Citosol/química
7.
Angew Chem Int Ed Engl ; 56(38): 11409-11414, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700101

RESUMO

The conformation of the activation loop (T-loop) of protein kinases underlies enzymatic activity and influences the binding of small-molecule inhibitors. By using single-molecule fluorescence spectroscopy, we have determined that phosphorylated Aurora A kinase is in dynamic equilibrium between a DFG-in-like active T-loop conformation and a DFG-out-like inactive conformation, and have measured the rate constants of interconversion. Addition of the Aurora A activating protein TPX2 shifts the equilibrium towards an active T-loop conformation whereas addition of the inhibitors MLN8054 and CD532 favors an inactive T-loop. We show that Aurora A binds TPX2 and MLN8054 simultaneously and provide a new model for kinase conformational behavior. Our approach will enable conformation-specific effects to be integrated into inhibitor discovery across the kinome, and we outline some immediate consequences for structure-based drug discovery.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Aurora Quinase A/metabolismo , Fluorescência , Humanos , Ligantes , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
8.
Chembiochem ; 17(18): 1732-7, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27356100

RESUMO

Mutations and post-translational modifications of amyloid-ß (Aß) peptide in its N terminus have been shown to increase fibril formation, yet the molecular mechanism is not clear. Here we investigated the kinetics of the interactions of copper with two Aß peptides containing Familial Alzheimer's disease (FAD) mutations (English (H6R) and Tottori (D7N)), as well as with Aß peptide phosphorylated at serine 8 (pS8). All three peptides bind to copper with a similar rate as the wild-type (wt). The dissociation rates follow the order pS8>H6R>wt>D7N; the interconversion between the two coordinating species occurs 50 % faster for H6R and pS8, whereas D7N had only a negligible effect. Interestingly, the rate of ternary complex (copper-bridged heterodimer) formation for the modified peptides was significantly faster than that for wt, thus leading us to propose that FAD and sporadic AD might share a kinetic origin for the enhanced oligomerisation of Aß.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Mutação , Cobre/química , Humanos , Cinética , Fosforilação
9.
Biochem Soc Trans ; 43(2): 168-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849912

RESUMO

The bacterial cell envelope retains a highly dense cytoplasm. The properties of the cytoplasm change with the metabolic state of the cell, the logarithmic phase (log) being highly active and the stationary phase metabolically much slower. Under the differing growth phases, many different types of stress mechanisms are activated in order to maintain cellular integrity. One such response in enterobacteria is the phage shock protein (Psp) response that enables adaptation to the inner membrane (IM) stress. The Psp system consists of a transcriptional activator PspF, negative regulator PspA, signal sensors PspBC, with PspA and PspG acting as effectors. The single molecule imaging of the PspF showed the existence of dynamic communication between the nucleoid-bound states of PspF and membrane via negative regulator PspA and PspBC sensors. The movement of proteins in the cytoplasm of bacterial cells is often by passive diffusion. It is plausible that the dynamics of the biomolecules differs with the state of the cytoplasm depending on the growth phase. Therefore, the Psp response proteins might encounter the densely packed glass-like properties of the cytoplasm in the stationary phase, which can influence their cellular dynamics and function. By comparing the properties of the log and stationary phases, we find that the dynamics of PspF are influenced by the growth phase and may be controlled by the changes in the cytoplasmic fluidity.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Transativadores/genética , Fatores de Transcrição/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estresse Fisiológico , Transativadores/metabolismo
10.
Angew Chem Int Ed Engl ; 54(4): 1227-30, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25529008

RESUMO

The kinetics of the interactions between amyloid-ß (Aß) and metal ions are crucial to understanding the physiological and pathological roles of Aß in the normal brain and in Alzheimer's disease. Using the quenching of a fluorescent probe by Cu(2+), the mechanism of Aß/Cu(2+) interactions in physiologically relevant conditions has been elucidated. Cu(2+) binds to Aß at a near diffusion-limited rate, initially forming component I. The switching between component I and II occurs on the second timescale, with a significant energy barrier. Component I is much more reactive towards Cu(2+) ligands and likely responsible for initial Aß dimer formation. Clioquinol (CQ) is shown to sequester Cu(2+) more effectively than other tested ligands. These findings have implications for the potential roles of Aß in regulating neurotransmission, and for the screening of small molecules targeting Aß-metal interactions.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Corantes Fluorescentes/química , Peptídeos beta-Amiloides/metabolismo , Clioquinol/química , Espectroscopia de Ressonância de Spin Eletrônica , Íons/química , Cinética
11.
Microbiology (Reading) ; 160(Pt 11): 2374-2386, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25118250

RESUMO

All cell types must maintain the integrity of their membranes. The conserved bacterial membrane-associated protein PspA is a major effector acting upon extracytoplasmic stress and is implicated in protection of the inner membrane of pathogens, formation of biofilms and multi-drug-resistant persister cells. PspA and its homologues in Gram-positive bacteria and archaea protect the cell envelope whilst also supporting thylakoid biogenesis in cyanobacteria and higher plants. In enterobacteria, PspA is a dual function protein negatively regulating the Psp system in the absence of stress and acting as an effector of membrane integrity upon stress. We show that in Escherichia coli the low-order oligomeric PspA regulatory complex associates with cardiolipin-rich, curved polar inner membrane regions. There, cardiolipin and the flotillin 1 homologue YqiK support the PspBC sensors in transducing a membrane stress signal to the PspA-PspF inhibitory complex. After stress perception, PspA high-order oligomeric effector complexes initially assemble in polar membrane regions. Subsequently, the discrete spatial distribution and dynamics of PspA effector(s) in lateral membrane regions depend on the actin homologue MreB and the peptidoglycan machinery protein RodZ. The consequences of loss of cytoplasmic membrane anionic lipids, MreB, RodZ and/or YqiK suggest that the mode of action of the PspA effector is closely associated with cell envelope organization.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Proteínas do Citoesqueleto/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Metabolismo dos Lipídeos , Lipídeos/química , Transporte Proteico , Estresse Fisiológico
12.
ACS Nano ; 17(22): 22999-23009, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947369

RESUMO

α-Synuclein (α-Syn) is an intrinsically disordered protein whose aggregation in the brain has been significantly implicated in Parkinson's disease (PD). Beyond the brain, oligomers of α-Synuclein are also found in cerebrospinal fluid (CSF) and blood, where the analysis of these aggregates may provide diagnostic routes and enable a better understanding of disease mechanisms. However, detecting α-Syn in CSF and blood is challenging due to its heterogeneous protein size and shape, and low abundance in clinical samples. Nanopore technology offers a promising route for the detection of single proteins in solution; however, the method often lacks the necessary selectivity in complex biofluids, where multiple background biomolecules are present. We address these limitations by developing a strategy that combines nanopore-based sensing with molecular carriers that can specifically capture α-Syn oligomers with sizes of less than 20 nm. We demonstrate that α-Synuclein oligomers can be detected directly in clinical samples, with minimal sample processing, by their ion current characteristics and successfully utilize this technology to differentiate cohorts of PD patients from healthy controls. The measurements indicate that detecting α-Syn oligomers present in CSF may potentially provide valuable insights into the progression and monitoring of Parkinson's disease.


Assuntos
Proteínas Intrinsicamente Desordenadas , Nanoporos , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo
13.
Front Immunol ; 14: 1158045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090721

RESUMO

Colorectal cancer (CRC) is the third most predominant malignancy in the world. Although the importance of immune system in cancer development has been well established, the underlying mechanisms remain to be investigated further. Here we studied a novel protein prokineticin 2 (Prok2, also known as Bv8) as a key pro-tumoral factor in CRC progression in in vitro and ex vivo settings. Human colorectal tumor tissues, myeloid cell lines (U937 cells and HL60 cells) and colorectal cancer cell line (Caco-2 cells) were used for various studies. Myeloid cell infiltration (especially neutrophils) and Bv8 accumulation were detected in human colorectal tumor tissue with immunostaining. The chemotactic effects of Bv8 on myeloid cells were presented in the transwell assay and chemotaxis assy. Cultured CRC cells treated with myeloid cells or Bv8 produced reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF). Furthermore, ROS and VEGF acted as pro-angiogenesis buffer in myeloid cell-infiltrated CRC microenvironment. Moreover, myeloid cells or Bv8 enhanced energy consumption of glycolysis ATP and mitochondria ATP of CRC cells. Interestingly, myeloid cells increased CRC cell viability, but CRC cells decreased the viability of myeloid cells. ERK signalling pathway in CRC cells was activated in the presence of Bv8 or co-cultured myeloid cells. In conclusion, our data indicated the vital roles of Bv8 in myeloid cell infiltration and CRC development, suggesting that Bv8 may be a potential therapeutic target for colorectal cancer-related immunotherapy.


Assuntos
Neoplasias Colorretais , Neuropeptídeos , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células CACO-2 , Espécies Reativas de Oxigênio/metabolismo , Neuropeptídeos/metabolismo , Células Mieloides/metabolismo , Movimento Celular , Neoplasias Colorretais/patologia , Fatores de Crescimento do Endotélio Vascular/metabolismo , Trifosfato de Adenosina/metabolismo , Microambiente Tumoral
14.
Proc Natl Acad Sci U S A ; 106(38): 16239-44, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805287

RESUMO

One controversial area in protein folding mechanisms is whether some small, ultra-fast-folding proteins exist in distinct native and denatured state ensembles, separated by an energy barrier, or if there is a continuum of states between native and denatured. In theory, the simplest way of distinguishing between single-state barrierless or "downhill" folding and conventional separate state folding is by single-molecule spectroscopy, which can detect either distinct populations of proteins or a continuum. But, the time resolution of approximately 1 ms of most confocal fluorescence microscopes for single-molecule fluorescence resonance energy transfer (SM-FRET) is longer than that for the structural relaxation of proteins such as BBL, whose mechanism of folding is controversial. We have constructed a highly sensitive confocal fluorescence microscope and measured the distribution of FRET efficiencies of appropriately labeled BBL in time bins of 50 and 200 mus under conditions in which its structural relaxation time is 340 mus or less. The experiments are at the very limits of detection because of signal artefacts from shot noise, photo-bleaching, and other events that broaden signals of individual states so they appear to coalesce. However, with appropriate tuning of the thresholds for detection and length of data collection, we clearly observed 2 distinct states of BBL, with FRET efficiencies corresponding to native and denatured states. The population of each state varied with GdmCl or urea during chemical denaturation transitions corresponding to conventional barrier-limited folding at 279 K and pH 7 and pH 5.8. The folding of BBL is accordingly barrier limited.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Cinética , Microscopia Confocal , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Temperatura , Termodinâmica , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 106(49): 20758-63, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19933326

RESUMO

The tumor suppressor p53 is a member of the emerging class of proteins that have both folded and intrinsically disordered domains, which are a challenge to structural biology. Its N-terminal domain (NTD) is linked to a folded core domain, which has a disordered link to the folded tetramerization domain, which is followed by a disordered C-terminal domain. The quaternary structure of human p53 has been solved by a combination of NMR spectroscopy, electron microscopy, and small-angle X-ray scattering (SAXS), and the NTD ensemble structure has been solved by NMR and SAXS. The murine p53 is reported to have a different quaternary structure, with the N and C termini interacting. Here, we used single-molecule FRET (SM-FRET) and ensemble FRET to investigate the conformational dynamics of the NTD of p53 in isolation and in the context of tetrameric full-length p53 (flp53). Our results showed that the isolated NTD was extended in solution with a strong preference for residues 66-86 forming a polyproline II conformation. The NTD associated weakly with the DNA binding domain of p53, but not the C termini. We detected multiple conformations in flp53 that were likely to result from the interactions of NTD with the DNA binding domain of each monomeric p53. Overall, the SM-FRET results, in addition to corroborating the previous ensemble findings, enabled the identification of the existence of multiple conformations of p53, which are often averaged and neglected in conventional ensemble techniques. Our study exemplifies the usefulness of SM-FRET in exploring the dynamic landscape of multimeric proteins that contain regions of unstructured domains.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Aminoácidos/metabolismo , Animais , Difusão , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Espalhamento a Baixo Ângulo , Fatores de Tempo , Difração de Raios X
16.
Front Chem ; 10: 967882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110142

RESUMO

Aggregation kinetics of proteins and peptides have been studied extensively due to their significance in many human diseases, including neurodegenerative disorders, and the roles they play in some key physiological processes. However, most of these studies have been performed as bulk measurements using Thioflavin T or other fluorescence turn-on reagents as indicators of fibrillization. Such techniques are highly successful in making inferences about the nucleation and growth mechanism of fibrils, yet cannot directly measure assembly reactions at low protein concentrations which is the case for amyloid-ß (Aß) peptide under physiological conditions. In particular, the evolution from monomer to low-order oligomer in early stages of aggregation cannot be detected. Single-molecule methods allow direct access to such fundamental information. We developed a high-throughput protocol for single-molecule photobleaching experiments using an automated fluorescence microscope. Stepwise photobleaching analysis of the time profiles of individual foci allowed us to determine stoichiometry of protein oligomers and probe protein aggregation kinetics. Furthermore, we investigated the potential application of supervised machine learning with support vector machines (SVMs) as well as multilayer perceptron (MLP) artificial neural networks to classify bleaching traces into stoichiometric categories based on an ensemble of measurable quantities derivable from individual traces. Both SVM and MLP models achieved a comparable accuracy of more than 80% against simulated traces up to 19-mer, although MLP offered considerable speed advantages, thus making it suitable for application to high-throughput experimental data. We used our high-throughput method to study the aggregation of Aß40 in the presence of metal ions and the aggregation of α-synuclein in the presence of gold nanoparticles.

17.
Nat Commun ; 12(1): 927, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568632

RESUMO

α-Synuclein (αS) is a presynaptic disordered protein whose aberrant aggregation is associated with Parkinson's disease. The functional role of αS is still debated, although it has been involved in the regulation of neurotransmitter release via the interaction with synaptic vesicles (SVs). We report here a detailed characterisation of the conformational properties of αS bound to the inner and outer leaflets of the presynaptic plasma membrane (PM), using small unilamellar vesicles. Our results suggest that αS preferentially binds the inner PM leaflet. On the basis of these studies we characterise in vitro a mechanism by which αS stabilises, in a concentration-dependent manner, the docking of SVs on the PM by establishing a dynamic link between the two membranes. The study then provides evidence that changes in the lipid composition of the PM, typically associated with neurodegenerative diseases, alter the modes of binding of αS, specifically in a segment of the sequence overlapping with the non-amyloid component region. Taken together, these results reveal how lipid composition modulates the interaction of αS with the PM and underlie its functional and pathological behaviours in vitro.


Assuntos
Lipídeos/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Metabolismo dos Lipídeos , Conformação Proteica , Membranas Sinápticas/química , Membranas Sinápticas/genética , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , alfa-Sinucleína/genética
18.
Mol Microbiol ; 73(3): 382-96, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19555453

RESUMO

The phage shock protein (Psp) response in Gram-negative bacteria counteracts membrane stress. Transcription of the PspF regulon (pspABCDE and pspG) in Escherichia coli is induced upon stresses that dissipate the proton motive force (pmf). Using GFP fusions we have visualized the subcellular localizations of PspA (a negative regulator and effector of Psp) and PspG (an effector of Psp). It has previously been proposed that PspA evenly coates the inner membrane of the cell. We now demonstrate that instead of uniformly covering the entire cell, PspA (and PspG) is highly organized into what appear to be distinct functional classes (complexes at the cell pole and the lateral cell wall). Real-time observations revealed lateral PspA and PspG complexes are highly mobile, but absent in cells lacking MreB. Without the MreB cytoskeleton, induction of the Psp response is still observed, yet these cells fail to maintain pmf under stress conditions. The two spatial subspecies therefore appear to be dynamically and functionally distinct with the polar clusters being associated with sensory function and the mobile complexes with maintenance of pmf.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Citoesqueleto/metabolismo , DNA Bacteriano/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Membrana/genética , Regulon
19.
Nanoscale Adv ; 2(12): 5666-5681, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133855

RESUMO

Gold nanoparticles are becoming a promising platform for the delivery of drugs to treat neurodegenerative diseases. Parkinson's disease, associated with the aggregation of α-synuclein, is a condition that results in dysfunctional neuronal cells leading to their degeneration and death. Oxidative stress has been strongly implicated as a common feature in this process. The limited efficacy of the traditional therapies and the development of associated severe side effects present an unmet need for preventive and adjuvant therapies. The organosulfur compound lipoic acid, naturally located in the mitochondria, plays a powerful antioxidative role against oxidative stress. However, the efficacy is limited by its low physiological concentration, and the administration is affected by its short half-life and bioavailability due to hepatic degradation. Here we exploited the drug delivery potential of gold nanoparticles to assemble lipoic acid, and administered the system into SH-SY5Y cells, a cellular model commonly used to study Parkinson's disease. We tested the nanoconjugates of GNPs-LA, under an oxidative environment induced by gold nanoparticle/α-synuclein conjugates (GNPs-α-Syn). GNPs-LA were found to be biocompatible and capable of restoring the cell damage caused by high-level reactive oxygen species generated by excessive oxidative stress in the cellular environment. We conclude that GNPs-LA may serve as promising drug delivery vehicles conveying antioxidant molecules for the treatment of Parkinson's disease.

20.
Metallomics ; 12(4): 470-473, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236192

RESUMO

N-Truncated Aß4-42 displays a high binding affinity with CuII. A mechanistic scheme of the interactions between Aß4-42 and CuII has been proposed using a fluorescence approach. The timescales of different conversion steps were determined. This kinetic mechanism indicates the potential synaptic functions of Aß4-42 during neurotransmission.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/química , Cobre/química , Cinética , Modelos Químicos , Estrutura Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA