Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.506
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 123(1): 68-79, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37978799

RESUMO

Measuring protein thermostability provides valuable information on the biophysical rules that govern the structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently developed nonfluorescent membrane scaffold protein to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs loaded with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) lipids show a complex biphasic thermal unfolding pattern with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5°C and 77.5°C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a DMPC and DMPG nanodisc. To extend the utility of this method, we evaluate and compare the thermostability of DsbB in different lipid environments. We introduce this method as a new tool that can be used to understand how compositionally and biophysically complex lipid environments drive membrane protein stability.


Assuntos
Dimiristoilfosfatidilcolina , Proteínas de Membrana , Dimiristoilfosfatidilcolina/química , Temperatura , Fluorometria , Dissulfetos , Bicamadas Lipídicas/química
2.
Arch Biochem Biophys ; 753: 109913, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286353

RESUMO

This study analyses the insertion of Chlorogenic acid (CGA) in phosphatidylcholine (PC) membranes enriched with cholesterol (Chol). While cholesterol decreases the area per lipid and increases the dipole potential, CGA increases and decreases these values, respectively. When CGA is inserted into cholesterol-containing DMPC membranes, these effects cancel out, resulting in values that overlap with those of DMPC monolayers without Chol and CGA. The presence of CGA also compensates the increase of dipole potential produced by Chol which can be explain as a consequence of the orientation of CGA molecule at the interphase opposing the cholesterol dipole moieties and water dipoles. This compensatory effect is less effective when lipids lack carbonyl groups (CO). When monolayers are composed by unsaturated PCs the Chol compensation is found at higher concentrations of CGA due to the direct interaction between CGA and Chol. These results suggest that cholesterol modulates the interaction and distribution of CGA in the lipid membrane, which may have implications for its biological activity.


Assuntos
Dimiristoilfosfatidilcolina , Fosfatidilcolinas , Ácido Clorogênico , Colesterol , Bicamadas Lipídicas , Propriedades de Superfície
3.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211638

RESUMO

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Assuntos
Luteína , Xantofilas , Humanos , Luteína/farmacologia , Luteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Ácidos Palmíticos , Lipídeos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química
4.
Soft Matter ; 20(13): 2892-2899, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38465518

RESUMO

The use of DEHP (diethylhexyl phthalate) is now banned for most applications in Europe; the exception is for blood bags, where its toxicity is overshadowed by its ability to extend the storage life of red blood cells. Another plasticiser, BTHC (butanoyl trihexyl citrate), is used in paediatric blood bags but does not stabilise blood cells as effectively. Interactions between plasticisers and lipids are investigated with a phospholipid, DMPC, to understand the increased stability of blood cells in the presence of DEHP as well as bioaccumulation and identify differences with BTHC. Mixed monolayers of DMPC and DEHP or BTHC were studied on Langmuir troughs where surface pressure/area isotherms can be measured. Neutron reflection measurements were made to determine the composition and structure of these mixed layers. A large amount of plasticiser can be incorporated into a DMPC monolayer but once an upper limit is reached, plasticiser is selectively removed from the interface at high surface pressures. The upper limit is found to occur between 40-60 mol% for DEHP and 20-40 mol% for BTHC. The areas per molecule are also different with DEHP being in the range of 50-100 Å2 and BTHC being 65-120 Å2. Results indicate that BTHC does not fit as well as DEHP in DMPC monolayers which could help explain the differences observed with regards to the stability of blood cells.


Assuntos
Butiratos , Dietilexilftalato , Humanos , Criança , Fosfolipídeos , Dimiristoilfosfatidilcolina , Preservação de Sangue/métodos
5.
J Chem Inf Model ; 64(9): 3841-3854, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38635679

RESUMO

A series of atomistic molecular dynamics (MD) simulations were carried out with a hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer with the variation of glucose concentrations from 0 to 30 wt % in the presence of 0.3 M NaCl. The study suggested that although the thickness of the lipid bilayer dropped significantly with the increase in glucose concentration, it expanded laterally at high glucose levels due to the intercalation of glucose between the headgroups of adjacent lipids. We adopted the surface assessment via the grid evaluation method to compute the deviation of the bilayer's key structural features for the different amounts of glucose present. This suggested that the accumulation of glucose molecules near the headgroups influences the local lipid bilayer undulation and crimping of the lipid tails. We find that the area compressibility modulus increases with the glucose level, causing enhanced bilayer rigidity arising from the slow lateral diffusion of lipids. The restricted lipid motion at high glucose concentrations controls the sustainability of the curved bilayer surface. Calculations revealed that certain orientations of CO→ of interfacial glucose with the PN→ of lipid headgroups are preferred, which helps the glucose to form direct hydrogen bonds (HBs) with the lipid headgroups. Such lipid-glucose (LG) HBs relax slowly at low glucose concentrations and exhibit a higher lifetime, whereas fast structural relaxation of LG HBs with a shorter lifetime was noticed at a higher glucose level. In contrast, lipid-water (LW) HBs exhibited a higher lifetime at a higher glucose level, which gradually decreased with the glucose level lowering. The study interprets that the glucose concentration-driven LW and LG interactions are mutually inclusive. Our detailed analysis will exemplify small saccharide concentration-driven membrane stabilizing efficiency, which is, in general, helpful for drug delivery study.


Assuntos
Dimiristoilfosfatidilcolina , Glucose , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Água , Bicamadas Lipídicas/química , Glucose/química , Dimiristoilfosfatidilcolina/química , Água/química
6.
Phys Chem Chem Phys ; 26(27): 18943-18952, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38952218

RESUMO

The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel ß-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.


Assuntos
Amiloide , Dicroísmo Circular , Muramidase , Fosfolipídeos , Muramidase/química , Muramidase/metabolismo , Amiloide/química , Fosfolipídeos/química , Animais , Estrutura Secundária de Proteína , Dimiristoilfosfatidilcolina/química , Fosfatidilgliceróis/química , Lipossomos/química , Galinhas , Vácuo
7.
J Liposome Res ; 34(1): 31-43, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37158827

RESUMO

A cochleate formulation was developed to enhance the oral bioavailability of revaprazan (RVP). Dimyristoyl phosphatidylcholine (DMPC) liposome containing dicetyl phosphate (DCP) successfully formed a cochleate after treatment with CaCl2, whereas that containing sodium deoxycholate did not. Cochleate was optimised using a D-optimal mixture design with three independent variables-DMPC (X1, 70.58 mol%), cholesterol (X2, 22.54 mol%), and DCP (X3, 6.88 mol%)-and three response variables: encapsulation efficiency (Y1, 76.92%), released amount of free fatty acid at 2 h (Y2, 39.82%), and released amount of RVP at 6 h (Y3, 73.72%). The desirability function was 0.616, showing an excellent agreement between the predicted and experimental values. The cylindrical morphology of the optimised cochleate was visualised, and laurdan spectroscopy confirmed the dehydrated membrane interface, showing an increased generalised polarisation value (approximately 0.5) over small unilamellar vesicle of RVP (RVP-SUV; approximately 0.1). The optimised cochleate showed greater resistance to pancreatic enzyme than RVP-SUV. RVP was released in a controlled manner, achieving approximately 94% release in 12 h. Following oral administration in rats, the optimised cochleate improved the relative bioavailability of RVP by approximately 274%, 255%, and 172% compared to RVP suspension, a physical mixture of RVP and the cochleate, and RVP-SUV, respectively. Thus, the optimised cochleate formulation might be a good candidate for the practical development of RVP.


Assuntos
Dimiristoilfosfatidilcolina , Lipossomos , Pirimidinonas , Tetra-Hidroisoquinolinas , Ratos , Animais , Disponibilidade Biológica , Administração Oral , Tamanho da Partícula
8.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542936

RESUMO

Nanodiscs belong to a category of water-soluble lipid bilayer nanoparticles. In vivo nanodisc platforms are useful for studying isolated membrane proteins in their native lipid environment. Thus, the development of a practical method for nanodisc reconstruction has garnered consider-able research interest. This paper reports the self-assembly of a mixture of bio-derived cyclic peptide, surfactin (SF), and l-α-dimyristoylphosphatidylcholine (DMPC). We found that SF induced the solubilization of DMPC multilamellar vesicles to form their nanodiscs, which was confirmed by size-exclusion chromatography, dynamic light scattering, and transmission electron microscopy analyses. Owing to its amphiphilic nature, the self-assembled structure prevents the exposure of the hydrophobic lipid core to aqueous media, thus embedding ubiquinol (CoQ10) as a hydrophobic model compound within the inner region of the nanodiscs. These results highlight the feasibility of preparing nanodiscs without the need for laborious procedures, thereby showcasing their potential to serve as promising carriers for membrane proteins and various organic compounds. Additionally, the regulated self-assembly of the DMPC/SF mixture led to the formation of fibrous architectures. These results show the potential of this mixture to function as a nanoscale membrane surface for investigating molecular recognition events.


Assuntos
Nanopartículas , Nanoestruturas , Fosfolipídeos/química , Dimiristoilfosfatidilcolina/química , Nanopartículas/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química
9.
Biophys J ; 122(11): 2256-2266, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36641625

RESUMO

Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate into, and form nanodiscs from, intact membranes without detergents. Although these copolymer nanodiscs can extract native membrane lipids, it remains unclear whether native membrane properties are also retained. To determine the extent to which bilayer lipid packing is retained in nanodiscs, we measured the behavior of packing-sensitive fluorescent dyes in various nanodisc preparations compared with intact lipid bilayers. We analyzed styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and polymethacrylate (PMA) as nanodisc scaffolds at various copolymer-to-lipid ratios and temperatures. Measurements of Laurdan spectral shifts revealed that dimyristoyl-phosphatidylcholine (DMPC) nanodiscs had increased lipid headgroup packing compared with large unilamellar vesicles (LUVs) above the lipid melting temperature for all three copolymers. Similar effects were observed for DMPC nanodiscs stabilized by membrane scaffolding protein MSP1E1. Increased lipid headgroup packing was also observed when comparing nanodiscs with intact membranes composed of binary mixtures of 1-palmitoyl-2-oleoyl-phosphocholine (POPC) and di-palmitoyl-phosphocholine (DPPC), which show fluid-gel-phase coexistence. Similarly, Laurdan reported increased headgroup packing in nanodiscs for biomimetic mixtures containing cholesterol, most notable for relatively disordered membranes. The magnitudes of these ordering effects were not identical for the various copolymers, with SMA being the most and DIBMA being the least perturbing. Finally, nanodiscs derived from mammalian cell membranes showed similarly increased lipid headgroup packing. We conclude that nanodiscs generally do not completely retain the physical properties of intact membranes.


Assuntos
Dimiristoilfosfatidilcolina , Nanoestruturas , Animais , Fosforilcolina , Bicamadas Lipídicas/química , Maleatos/química , Polímeros/química , Proteínas de Membrana/química , Estireno , Lipossomas Unilamelares , Nanoestruturas/química , Mamíferos
10.
J Lipid Res ; 64(2): 100319, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36525992

RESUMO

Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops. These properties may drive increased binding of apoA-I[K107del] to and its better retention on large triglyceride-rich lipoproteins, thereby increasing the variant's content on these lipoproteins. While K107del did not affect apoA-I capacity to promote ABCA1-mediated cholesterol efflux from J774 cells, it impaired the biogenesis of large nascent HDL particles resulting in the formation of predominantly smaller nascent HDL. Size-exclusion chromatography of spontaneously reconstituted 1,2-dimyristoylphosphatidylcholine-apoA-I complexes showed that apoA-I[K107del] had a hampered ability to form larger complexes but formed efficiently smaller-sized complexes. CD analysis revealed a reduced ability of apoA-I[K107del] to increase α-helical structure on binding to 1,2-dimyristoylphosphatidylcholine or in the presence of trifluoroethanol. This property may hinder the formation of large apoA-I[K107del]-containing discoidal and spherical HDL but not smaller HDL. Both factors, the increased content of apoA-I[K107del] on triglyceride-rich lipoproteins and the impaired ability of the variant to stabilize large HDL particles resulting in reduced lipid:protein ratios in HDL, may contribute to normal plasma apoA-I levels along with low HDL-C and increased risk for CVD.


Assuntos
Apolipoproteína A-I , Lipoproteínas de Alta Densidade Pré-beta , Humanos , Apolipoproteína A-I/metabolismo , Dimiristoilfosfatidilcolina , Lipoproteínas/metabolismo , Triglicerídeos , Mutação
11.
Chemistry ; 29(72): e202302284, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37699127

RESUMO

Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.


Assuntos
Bicamadas Lipídicas , Lipossomos , Bicamadas Lipídicas/química , Lipossomos/química , Dimiristoilfosfatidilcolina/química , Fármacos Fotossensibilizantes , Fosfolipídeos/química
12.
Langmuir ; 39(10): 3569-3579, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36854196

RESUMO

Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.


Assuntos
Dimiristoilfosfatidilcolina , Bicamadas Lipídicas , Dimiristoilfosfatidilcolina/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Bicamadas Lipídicas/química , Maleatos/química , Polímeros/química , Proteínas de Membrana/química , Colesterol/química
13.
Langmuir ; 39(42): 14958-14968, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37815275

RESUMO

Osteoarthritis is caused by degeneration of the cartilage, which covers the bone ends of the joints and is decorated with an oligolamellar phospholipid (PL) bilayer. The gap between the bone ends is filled with synovial fluid mainly containing hyaluronic acid (HA). HA and PLs are supposed to reduce friction and protect the cartilage from wear in joint movement. However, a detailed understanding of the molecular mechanisms of joint lubrication is still missing. Previously, we found that aqueous solutions of HA and poly(allylamine hydrochloride) (PAH), the latter serving as a polymeric analogue to HA, adsorb onto the headgroups of surface-bound 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) oligobilayers and significantly enhance their stability with respect to shear forces, typically occurring in joint movement. We now investigated the precise location of PAH chains across the lipid films in neutron reflectivity measurements, as bridging of the oligobilayers by polyelectrolytes (PEs) might be the cause for their improved mechanical stability. In a first set of experiments, we used hydrogenated PAH and chain-deuterated DMPC (DMPC-d54) to improve the contrast between the lipids and potentially intruding PAH. However, due to difficulties in distinguishing between incorporation of water and PAH, penetration into the lipid chain region could hardly be proven quantitatively. Therefore, we designed a more elaborate experiment based on mixed films of DMPC-d54 and hydrogenated DMPC, which is insensitive to water penetration into the films. Beside facilitating a detailed structural characterization of the oligolamellar system, this elaborate approach showed that PAH adsorbs to the DMPC heads and penetrates the lipid tail strata. No PAH was found in the lipid head strata, which excludes bridging of several lipid bilayers by the PE chains. The data are consistent with the assumption that PAH bridges are formed between the headgroups of two adjacent bilayers and contribute to the enhanced mechanical stability.


Assuntos
Dimiristoilfosfatidilcolina , Fosfolipídeos , Dimiristoilfosfatidilcolina/química , Polieletrólitos , Fosfolipídeos/química , Bicamadas Lipídicas/química , Ácido Hialurônico/química , Água/química
14.
Langmuir ; 39(11): 3914-3933, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36893452

RESUMO

Understanding the pathways of solubilization of lipid membranes is of high importance for their use in biotechnology and industrial applications. Although lipid vesicle solubilization by classical detergents has been widely investigated, there are few systematic structural and kinetic studies where different detergents are compared under varying conditions. This study used small-angle X-ray scattering to determine the structures of lipid/detergent aggregates at different ratios and temperatures and studied the solubilization in time using the stopped-flow technique. Membranes composed of either of two zwitterionic lipids, DMPC or DPPC, and their interactions with three different detergents, sodium dodecyl sulfate (SDS), n-dodecyl-beta-maltoside (DDM), and Triton X-100 (TX-100), were tested. The detergent TX-100 can cause the formation of collapsed vesicles with a rippled bilayer structure that is highly resistant to TX-100 insertion at low temperatures, while at higher temperatures, it partitions and leads to the restructuring of vesicles. DDM also causes this restructuring into multilamellar structures at subsolubilizing concentrations. In contrast, partitioning of SDS does not alter the vesicle structure below the saturation limit. Solubilization is more efficient in the gel phase for TX-100 but only if the cohesive energy of the bilayer does not prevent sufficient partitioning of the detergent. DDM and SDS show less temperature dependence compared to TX-100. Kinetic measurements reveal that solubilization of DPPC largely occurs through a slow extraction of lipids, whereas DMPC solubilization is dominated by fast and burst-like solubilization of the vesicles. The final structures obtained seem to preferentially be discoidal micelles where the detergent can distribute in excess along the rim of the disc, although we do observe the formation of worm- and rodlike micelles in the case of solubilization of DDM. Our results are in line with the suggested theory that bilayer rigidity is the main factor influencing which aggregate is formed.


Assuntos
Detergentes , Micelas , Detergentes/química , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina , Cinética , Octoxinol/química , Solubilidade
15.
Eur Biophys J ; 52(1-2): 39-51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36786921

RESUMO

From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.


Assuntos
Nanopartículas , Polímeros , Dimiristoilfosfatidilcolina , Cloreto de Sódio , Bicamadas Lipídicas , Estireno , Maleatos
16.
Soft Matter ; 19(10): 1882-1889, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799359

RESUMO

Functionalizing silica nanoparticles with a lipid bilayer shell is a common first step in fabricating drug delivery and biosensing devices that are further decorated with other biomolecules for a range of nanoscience applications and therapeutics. Although the molecular structure and dynamics of lipid bilayers have been thoroughly investigated on larger 100 nm-1 µm silica spheres where the lipid bilayer exhibits the typical Lα bilayer phase, the molecular organization of lipids assembled on mesoscale (4-100 nm diameter) nanoparticles is scarce. Here, DSC, TEM and 2H and 31P solid-state NMR are implemented to probe the organization of 1,2-dipalmitoyl-d54-glycero-3-phosphocholine (DMPC-d54) assembled on mesoscale silica nanoparticles illustrating a significant deviation from Lα bilayer structure due to the increasing curvature of mesoscale supports. A biphasic system is observed that exhibits a combination of high-curvature, non-lamellar and lamellar phases for mesoscale (<100 nm) supports with evidence of an interdigitated phase on the smallest diameter support (4 nm).


Assuntos
Bicamadas Lipídicas , Nanopartículas , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Dióxido de Silício/química , Estrutura Molecular , Nanopartículas/química
17.
J Periodontal Res ; 58(4): 780-790, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37282784

RESUMO

OBJECTIVE: The purpose of this meta-analysis was to look at the differences in oxidative stress (OS) biomarkers between type 2 diabetes mellitus with chronic periodontitis (DMCP) and chronic periodontitis (CP) patients. BACKGROUND: Oxidative stress has been shown to be a key pathogenic component in DMCP. However, it is unclear whether oxidative stress levels differ in periodontitis patients with or without diabetes. METHOD: A systematic search was conducted on PubMed, Cochrane, and Embase databases. Studies of DMCP participants were used as the experimental group and CP participants were used as the control group. Results are expressed as mean effects. RESULTS: Of a total of 1989 articles, 19 met the inclusion criteria. We found the levels of catalase (CAT) levels were reduced in the DMCP group compared with the CP group. However, there was no significant difference in the levels of superoxide dismutase (SOD), total antioxidant capacity (TAOC) malondialdehyde (MDA), and glutathione (GSH) between the two groups. And high heterogeneity was observed in some of the studies evaluated. CONCLUSION: Despite the limitations of this study, our results support the theory that there is an association between T2DM and the levels of OS-related biomarkers, especially CAT, in CP subjects, suggesting that OS plays an important role in the pathogenesis and development of DMCP.


Assuntos
Periodontite Crônica , Diabetes Mellitus Tipo 2 , Humanos , Periodontite Crônica/complicações , Diabetes Mellitus Tipo 2/complicações , Dimiristoilfosfatidilcolina , Estresse Oxidativo , Antioxidantes/metabolismo , Superóxido Dismutase/análise , Biomarcadores/metabolismo , Glutationa , Malondialdeído/análise
18.
Phys Chem Chem Phys ; 25(3): 2566-2583, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602150

RESUMO

It is well established that amyloid ß-protein (Aß) self-assembly is involved in triggering of Alzheimer's disease. On the other hand, evidence of physiological function of Aß interacting with lipids has only begun to emerge. Details of Aß-lipid interactions, which may underlie physiological and pathological activities of Aß, are not well understood. Here, the effects of salt and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids on conformational dynamics of Aß42 monomer in water are examined by all-atom molecular dynamics (MD). We acquired six sets of 250 ns long MD trajectories for each of the three lipid concentrations (0, 27, and 109 mM) in the absence and presence of 150 mM salt. Ten replica trajectories per set are used to enhance sampling of Aß42 conformational space. We show that salt facilitates long-range tertiary contacts in Aß42, resulting in more compact Aß42 conformations. By contrast, addition of lipids results in lipid-concentration dependent Aß42 unfolding concomitant with enhanced stability of the turn in the A21-A30 region. At the high lipid concentration, salt enables the N-terminal region of Aß42 to form long-range tertiary contacts and interact with lipids, which results in formation of a parallel ß-strand. Aß42 forms stable lipid-protein complexes whereby the protein is adhered to the lipid cluster rather than embedded into it. We propose that the inability of Aß42 monomer to get embedded into the lipid cluster may be important for facilitating repair of leaks in the blood-brain barrier without penetrating and damaging cellular membranes.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lipídeos , Cloreto de Sódio , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Lipídeos/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Cloreto de Sódio/química , Água , Dimiristoilfosfatidilcolina/química
19.
Zhonghua Nan Ke Xue ; 29(2): 151-157, 2023 Feb.
Artigo em Zh | MEDLINE | ID: mdl-37847087

RESUMO

OBJECTIVE: To investigate the clinical features of distant metastatic penile cancer (DMPC) and the factors influencing its prognosis. METHODS: We searched the Surveillance, Epidemiology and End Results Database for cases of DMPC diagnosed between 2004 and 2019, analyzed their clinical characteristics and the cancer-specific survival (CSS) rates relating to different factors using the Kaplan-Meier method and the differences among the variables by log-rank test. We determined the variables independently associated with CSS by Cox regression analysis. RESULTS: According to the inclusion criteria, 108 cases of DMPC were identified. The patients were mainly married White people, with a median CSS of 9 months, and 1-, 2- and 3-year CSS rates of 36.4%, 17.8% and 13.5%, respectively. Pairwise comparison showed no statistically significant differences in the median overall CSS among the patients in the surgery, chemotherapy and surgery + chemotherapy groups (8 mo vs 9 mo vs 13 mo, P > 0.05). Race was an independent factor affecting the prognosis of CSS. CONCLUSION: Distant metastatic penile cancer is a rare malignancy with poor prognosis, for which there have been no existing ideal treatment options.


Assuntos
Neoplasias Penianas , Masculino , Humanos , Prognóstico , Estadiamento de Neoplasias , Neoplasias Penianas/terapia , Dimiristoilfosfatidilcolina
20.
Biochemistry ; 61(15): 1561-1571, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849647

RESUMO

Phospholipid bicelles are valuable membrane model systems to study membrane proteins by NMR and other physicochemical techniques. The range of bicelle compositions that are compatible with uniaxial alignment of the lipid bilayers in a magnetic field is still limited with regard to the addition of large amounts (>20%) of cholesterol and/or sphingolipids. Here, we demonstrate that n-dodecyl-ß-D-melibioside (DDMB), which was recently introduced as a detergent to produce sphingolipid-cholesterol-rich isotropic bicelles for solution NMR studies, can also be used to produce magnetically alignable lipid bilayers with high cholesterol content that are well suited for solid-state NMR of membrane proteins. Remarkably, DDMB enables the preparation of high q bicelles that contain 50% mol cholesterol while retaining their ability to form a stable, well-aligned liquid crystalline bilayer phase in a magnetic field. We show that the intact 46-residue membrane-bound form of Pf1 bacteriophage coat protein and a truncated construct of the membrane protein Vpu from HIV-1 (residues 2-30) in DDMB bicelles are well aligned and undergo fast and uniaxial rotational diffusion about the bilayer normal, similarly to what is observed in other bicelle and macrodisc systems. We also demonstrate a spectroscopic method that measures the increase in the thickness of DMPC bilayers that results from the addition of cholesterol, using the PISA-wheel spectral patterns of trans-membrane helices as a molecular goniometer. For example, we find that the hydrophobic thickness of DMPC bilayers is increased by approximately 2.5 Å in the presence of 35% mol cholesterol.


Assuntos
Dimiristoilfosfatidilcolina , Bicamadas Lipídicas , Colesterol/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Proteínas de Membrana , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA