Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Chem Biol ; 11(8): 611-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26075522

RESUMO

The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target's ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Receptores de Estrogênio/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Biocatálise , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
2.
Clin Cancer Res ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819400

RESUMO

PURPOSE: Estrogen Receptor (ER) alpha signaling is a known driver of ER-positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) breast cancer. Combining endocrine therapy (ET) such as fulvestrant with CDK4/6, mTOR or PI3K inhibitors is now a central strategy for the treatment of ER+ advanced breast cancer. However, suboptimal ER inhibition and resistance resulting from ESR1 mutation dictates that new therapies are needed. EXPERIMENTAL DESIGN: A medicinal chemistry campaign identified vepdegestrant (ARV-471), a selective, orally bioavailable, potent small molecule PROteolysis-TArgeting Chimera (PROTAC®) degrader of ER. We used biochemical and intracellular target engagement assays to demonstrate the mechanism of action of vepdegestrant, and ESR1 wild-type and mutant ER+ preclinical breast cancer models to demonstrate ER degradation-mediated tumor growth inhibition. RESULTS: Vepdegestrant induced ≥90% degradation of wild-type (WT) and mutant ER, inhibited ER-dependent breast cancer cell line proliferation in-vitro and achieved significant tumor growth inhibition (TGI) (87-123%) in MCF7 orthotopic xenograft models, better than the ET agent fulvestrant (31-80% TGI). In the hormone-independent ER Y537S patient derived xenograft (PDX) breast cancer model ST941/HI, vepdegestrant achieved tumor regressions and was similarly efficacious in the ST941/HI/PBR palbociclib-resistant model (102% TGI). Vepdegestrant induced robust tumor regressions in combination with each of the CDK4/6 inhibitors palbociclib, abemaciclib, and ribociclib, the mTOR inhibitor everolimus, and the PI3K inhibitors alpelisib and inavolisib. CONCLUSIONS: Vepdegestrant achieved greater ER degradation in-vivo compared to fulvestrant, which correlated with improved tumor growth inhibition, suggesting vepdegestrant could be a more effective backbone ET for patients with ER+/HER2- breast cancer.

3.
Int J Artif Organs ; 33(6): 348-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20669140

RESUMO

Two cell lines, PICM-19H and PICM-19B, were derived from the bipotent PICM-19 pig liver stem cell line and assessed for their potential application in artificial liver devices (ALD). The study included assessments of growth rate and cell density in culture, morphological features, serum protein production, gamma-glutamyltranspeptidase (GGT) activity and hepatocyte detoxification functions, i.e., inducible P450 activity, ammonia clearance, and urea production. The PICM-19H cell line was derived by temperature selection at 33-34 degrees C. After each passage, PICM-19H cells grew to a nearly confluent monolayer of cells of hepatocyte morphology, i.e., cuboidal cells with centrally located nuclei joined by biliary canaliculi. No differentiation and self-organization into multi-cellular bile ductules, as observed in the parental PICM-19 cell line, occurred within the PICM-19H cell monolayers. The PICM-19H cells contained numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies and occasional lipid vacuoles. The cells had a doubling time of 48-72 h and reached a final density of 1.5 x 10(5) cells/cm(2) at approximately10 d post-passage from a 1:6 split ratio. PICM-19H cells displayed inducible P450 activity, cleared ammonia, and produced urea in a glutamine-free medium. The PICM-19B cells were colony-cloned after spontaneous generation from the PICM-19 parental cell line. PICM-19B cells grew as a tightly knit dome-forming monolayer with no visible biliary canaliculi. Their doubling time was 48-72 h with a final cell density of 2.6 x 10(5) cells/cm(2). Ultrastructural analysis of the PICM-19B monolayers showed the roughly cuboidal cells displayed basal-apical polarization and were joined by tight junction-like complexes. Other ultrastructure features were similar to those of PICM-19H cells except that they possessed numerous cell bodies resembling mucus vacuoles. The PICM-19B cells had relatively high levels of GGT activity, but did retain some inducible P450 activity, and some ammonia clearance and urea synthesis ability. PICM-19B cells produced markedly less serum proteins than PICM-19H cells. These data indicated that both cell lines, either together or alone, may be useful as the cellular substrate for an ALD.


Assuntos
Linhagem Celular/citologia , Hepatócitos/citologia , Fígado Artificial , Fígado/patologia , Células-Tronco/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular/metabolismo , Proliferação de Células , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Células-Tronco/metabolismo , Suínos
4.
Antimicrob Agents Chemother ; 52(9): 3169-79, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18625767

RESUMO

A cell-based screening assay was performed to identify compounds that inhibited the postintegration stage of the human immunodeficiency virus (HIV) life cycle. This assay utilized a cell line that contains the HIV gag and pol genes expressed in a Rev-dependent fashion. The cell line produces about 10 to 15 ng of p24 per milliliter of medium over a 24-h period in the form of viruslike particles. Any compound that inhibits a postintegration step in the HIV life cycle scores in this assay by decreasing particle production. Forty thousand compounds were screened, and 192 compounds were selected from the original screen because they showed more than 50% inhibition at a 10 muM concentration. The cumulative evidence presented in this study strongly suggests that 2 of the 192 compounds work as inhibitors of HIV Rev function. This was determined by a variety of cell-based assays, although the compounds do not interfere with Rev-RRE (Rev response element) binding in vitro. Both compounds inhibit replication of the lab isolate NL4-3 as well as an HIV primary isolate from Brazil (93BR021) and thus are promising leads as therapeutic candidates that target HIV replication through inhibition of Rev function.


Assuntos
Fármacos Anti-HIV/farmacologia , Produtos do Gene rev/antagonistas & inibidores , Genes env/efeitos dos fármacos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Compostos Heterocíclicos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Células COS/virologia , Linhagem Celular , Chlorocebus aethiops , Produtos do Gene rev/metabolismo , Genes env/fisiologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Leucócitos Mononucleares/virologia , Testes de Sensibilidade Microbiana/métodos
5.
Commun Biol ; 1: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271980

RESUMO

The androgen receptor is a major driver of prostate cancer and inhibition of its transcriptional activity using competitive antagonists, such as enzalutamide remains a frontline therapy for prostate cancer management. However, the majority of patients eventually develop drug resistance. We propose that targeting the androgen receptor for degradation via Proteolysis Targeting Chimeras (PROTACs) will be a better therapeutic strategy for targeting androgen receptor signaling in prostate cancer cells. Here we perform a head-to-head comparison between a currently approved androgen receptor antagonist enzalutamide, and its PROTAC derivative, ARCC-4, across different cellular models of prostate cancer drug resistance. ARCC-4 is a low-nanomolar androgen receptor degrader able to degrade about 95% of cellular androgen receptors. ARCC-4 inhibits prostate tumor cell proliferation, degrades clinically relevant androgen receptor point mutants and unlike enzalutamide, retains antiproliferative effect in a high androgen environment. Thus, ARCC-4 exemplifies how protein degradation can address the drug resistance hurdles of enzalutamide.

7.
PLoS One ; 10(3): e0121734, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826356

RESUMO

Peginterferon lambda-1a (Lambda), a type III interferon (IFN), acts through a unique receptor complex with limited cellular expression outside the liver which may result in a differentiated tolerability profile compared to peginterferon alfa (alfa). In Phase 2b clinical studies, Lambda administered in combination with ribavirin (RBV) was efficacious in patients with hepatitis C virus (HCV) infection representing genotypes 1 through 4, and was associated with more rapid declines in HCV RNA compared to alfa plus RBV. To gain insights into potential mechanisms for this finding, we investigated the effects of HCV replication on IFN signaling in primary human hepatocytes (PHH) and in induced hepatocyte-like cells (iHLCs). HCV infection resulted in rapid down-regulation of the type I IFN-α receptor subunit 1 (IFNAR1) transcript in hepatocytes while the transcriptional level of the unique IFN-λ receptor subunit IL28RA was transiently increased. In line with this observation, IFN signaling was selectively impaired in infected cells upon stimulation with alfa but not in response to Lambda. Importantly, in contrast to alfa, Lambda was able to induce IFN-stimulated gene (ISG) expression in HCV-infected hepatocytes, reflecting the onset of innate responses. Moreover, global transcriptome analysis in hepatocytes indicated that Lambda stimulation prolonged the expression of various ISGs that are potentially beneficial to antiviral defense mechanisms. Collectively, these observed effects of HCV infection on IFN receptor expression and signaling within infected hepatocytes provide a possible explanation for the more pronounced early virologic responses observed in patients treated with Lambda compared to alfa.


Assuntos
Hepacivirus/patogenicidade , Hepatócitos/virologia , Interferon Tipo I/metabolismo , Transdução de Sinais , Células Cultivadas , Regulação para Baixo , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , RNA Viral/análise , Receptor de Interferon alfa e beta/genética , Replicação Viral
8.
In Vitro Cell Dev Biol Anim ; 46(1): 11-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19915937

RESUMO

Liver in vitro models are needed to replace animal models for rapid assessment of drug biotransformation and toxicity. The PICM-19 pig liver stem cell line may fulfill this need since these cells have activities associated with xenobiotic phase I and II metabolism lacking in other liver cell lines. The objective of this study was to characterize phase I and II metabolic functions of a PICM-19 derivative cell line, PICM-19H, compared to the tumor-derived human HepG2 C3A cell line and primary cultures of adult porcine hepatocytes. Following exposure of PICM-19H cells to either 3-methylcholanthrene, rifampicin or phenobarbital, the induced activities of cytochrome P450 (CYP450) isozymes CYP-1A, -2, and-3A were assessed. Relative to adult porcine hepatocytes, PICM- 19H cells exhibited 30% and 43%, respectively, of CYP1A and 3A activities, while HepG2 C3A cells exhibited 7% and 0% of those activities. Fluorescent metabolites were extensively conjugated, i.e., 52% and 96% of CYP450-1A and-3A metabolites were released from medium samples following treatment with ß-glucuronidase/arylsulfatase. Rifampicin induction of CYP450 isozyme activities was confirmed by conversion of testosterone to 6ß-OH-, 2α-OH- and 2ß-OH-testosterone, as determined by mass spectrometry. Susceptibility of PICM-19H cells to acetaminophen toxicity was determined; CD50 was calculated to be 14.9±0.9 mM. Toxicity and bioactivation of aflatoxin B1 was determined in 3-methylcholanthrenetreated cultures and untreated controls; CD50 were 1.59 µM and 31 µM, respectively. These results demonstrate the potential use of PICM-19H cells in drug biotransformation and toxicity testing and further support their use in extracorporeal artificial liver device technology.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/citologia , Fígado/enzimologia , Testes de Toxicidade/métodos , Acetaminofen/toxicidade , Aflatoxina B1/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Sistema Enzimático do Citocromo P-450/biossíntese , Indução Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Isoenzimas/biossíntese , Fígado/efeitos dos fármacos , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Sus scrofa , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA