Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(17): 3270-3283.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973426

RESUMO

Proliferating cells exhibit a metabolic phenotype known as "aerobic glycolysis," which is characterized by an elevated rate of glucose fermentation to lactate irrespective of oxygen availability. Although several theories have been proposed, a rationalization for why proliferating cells seemingly waste glucose carbon by excreting it as lactate remains elusive. Using the NCI-60 cell lines, we determined that lactate excretion is strongly correlated with the activity of mitochondrial NADH shuttles, but not proliferation. Quantifying the fluxes of the malate-aspartate shuttle (MAS), the glycerol 3-phosphate shuttle (G3PS), and lactate dehydrogenase under various conditions demonstrated that proliferating cells primarily transform glucose to lactate when glycolysis outpaces the mitochondrial NADH shuttles. Increasing mitochondrial NADH shuttle fluxes decreased glucose fermentation but did not reduce the proliferation rate. Our results reveal that glucose fermentation, a hallmark of cancer, is a secondary consequence of MAS and G3PS saturation rather than a unique metabolic driver of cellular proliferation.


Assuntos
Malatos , NAD , Ácido Aspártico/metabolismo , Glucose/metabolismo , Glicólise , Ácido Láctico , Malatos/metabolismo , NAD/metabolismo
2.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566880

RESUMO

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Assuntos
Núcleo Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Animais , Núcleo Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Interleucina-4/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Cell ; 69(4): 581-593.e7, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452638

RESUMO

The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.


Assuntos
Citosol/metabolismo , Glutamina/metabolismo , Malato Desidrogenase/metabolismo , Mitocôndrias/patologia , NAD/metabolismo , Osteossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Movimento Celular , Ciclo do Ácido Cítrico , DNA Mitocondrial/genética , Metabolismo Energético , Feminino , Glucose/metabolismo , Glicólise , Humanos , Mitocôndrias/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Oxirredução , Células Tumorais Cultivadas
4.
J Neurochem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193789

RESUMO

We have previously reported a failure of recovery of synaptic function in the CA1 region of acute hippocampal slices from mice with a conditional neuronal knockout (KO) of GLT-1 (EAAT2, Slc1A2) driven by synapsin-Cre (synGLT-1 KO). The failure of recovery of synaptic function is due to excitotoxic injury. We hypothesized that changes in mitochondrial metabolism contribute to the heightened vulnerability to excitotoxicity in the synGLT-1 KO mice. We found impaired flux of carbon from 13C-glucose into the tricarboxylic acid cycle in synGLT-1 KO cortical and hippocampal slices compared with wild-type (WT) slices. In addition, we found downregulation of the neuronal glucose transporter GLUT3 in both genotypes. Flux of carbon from [1,2-13C]acetate, thought to be astrocyte-specific, was increased in the synGLT-KO hippocampal slices but not cortical slices. Glycogen stores, predominantly localized to astrocytes, are rapidly depleted in slices after cutting, and are replenished during ex vivo incubation. In the synGLT-1 KO, replenishment of glycogen stores during ex vivo incubation was compromised. These results suggest both neuronal and astrocytic metabolic perturbations in the synGLT-1 KO slices. Supplementing incubation medium during recovery with 20 mM D-glucose normalized glycogen replenishment but had no effect on recovery of synaptic function. In contrast, 20 mM non-metabolizable L-glucose substantially improved recovery of synaptic function, suggesting that D-glucose metabolism contributes to the excitotoxic injury in the synGLT-1 KO slices. L-lactate substitution for D-glucose did not promote recovery of synaptic function, implicating mitochondrial metabolism. Consistent with this hypothesis, phosphorylation of pyruvate dehydrogenase, which decreases enzyme activity, was increased in WT slices during the recovery period, but not in synGLT-1 KO slices. Since metabolism of glucose by the mitochondrial electron transport chain is associated with superoxide production, we tested the effect of drugs that scavenge and prevent superoxide production. The superoxide dismutase/catalase mimic EUK-134 conferred complete protection and full recovery of synaptic function. A site-specific inhibitor of complex III superoxide production, S3QEL-2, was also protective, but inhibitors of NADPH oxidase were not. In summary, we find that the failure of recovery of synaptic function in hippocampal slices from the synGLT-1 KO mouse, previously shown to be due to excitotoxic injury, is caused by production of superoxide by mitochondrial metabolism.

5.
J Inherit Metab Dis ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021261

RESUMO

Citrin deficiency (CD) is a recessive, liver disease caused by sequence variants in the SLC25A13 gene encoding a mitochondrial aspartate-glutamate transporter. CD manifests as different age-dependent phenotypes and affects crucial hepatic metabolic pathways including malate-aspartate-shuttle, glycolysis, gluconeogenesis, de novo lipogenesis and the tricarboxylic acid and urea cycles. Although the exact pathophysiology of CD remains unclear, impaired use of glucose and fatty acids as energy sources due to NADH shuttle defects and PPARα downregulation, respectively, indicates evident energy deficit in CD hepatocytes. The present review summarizes current trends on available and potential treatments for CD. Baseline recommendation for CD patients is dietary management, often already present as a self-selected food preference, that includes protein and fat-rich food, and avoidance of excess carbohydrates. At present, liver transplantation remains the sole curative option for severe CD cases. Our extensive literature review indicated medium-chain triglycerides (MCT) as the most widely used CD treatment in all age groups. MCT can effectively improve symptoms across disease phenotypes by rapidly supplying energy to the liver, restoring redox balance and inducing lipogenesis. In contrast, sodium pyruvate restored glycolysis and displayed initial preclinical promise, with however limited efficacy in adult CD patients. Ursodeoxycholic acid, nitrogen scavengers and L-arginine treatments effectively address specific pathophysiological aspects such as cholestasis and hyperammonemia and are commonly administered in combination with other drugs. Finally, future possibilities including restoring redox balance, amino acid supplementation, enhancing bioenergetics, improving ureagenesis and mRNA/DNA-based gene therapy are also discussed.

6.
J Biochem Mol Toxicol ; 38(10): e23854, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39287333

RESUMO

Ischemia-reperfusion (I-R) injury is the most common cause of acute kidney injury. In experiments involving primary human renal proximal tubular epithelial cells (RPTECs) exposed to anoxia-reoxygenation, we explored the hypothesis that mitochondrial malate dehydrogenase-2 (MDH-2) inhibition redirects malate metabolism from the mitochondria to the cytoplasm, towards the malate-pyruvate cycle and reversed malate-aspartate shuttle. Colorimetry, fluorometry, and western blotting showed that MDH2 inhibition accelerates the malate-pyruvate cycle enhancing cytoplasmic NADPH, thereby regenerating the potent antioxidant reduced glutathione. It also reversed the malate-aspartate shuttle and potentially diminished mitochondrial reactive oxygen species (ROS) production by transferring electrons, in the form of NADH, from the mitochondria to the cytoplasm. The excessive ROS production induced by anoxia-reoxygenation led to DNA damage and protein modification, triggering DNA damage and unfolded protein response, ultimately resulting in apoptosis and senescence. Additionally, ROS induced lipid peroxidation, which may contribute to the process of ferroptosis. Inhibiting MDH-2 proved effective in mitigating ROS overproduction during anoxia-reoxygenation, thereby rescuing RPTECs from death or senescence. Thus, targeting MDH-2 holds promise as a pharmaceutical strategy against I-R injury.


Assuntos
Células Epiteliais , Malato Desidrogenase , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/citologia , Hipóxia Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Dano ao DNA , Apoptose/efeitos dos fármacos
7.
J Neurosci ; 42(19): 3879-3895, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35387872

RESUMO

Calcium is an important second messenger regulating a bioenergetic response to the workloads triggered by neuronal activation. In embryonic mouse cortical neurons using glucose as only fuel, activation by NMDA elicits a strong workload (ATP demand)-dependent on Na+ and Ca2+ entry, and stimulates glucose uptake, glycolysis, pyruvate and lactate production, and oxidative phosphorylation (OXPHOS) in a Ca2+-dependent way. We find that Ca2+ upregulation of glycolysis, pyruvate levels, and respiration, but not glucose uptake, all depend on Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier, component of the malate-aspartate shuttle (MAS). MAS activation increases glycolysis, pyruvate production, and respiration, a process inhibited in the presence of BAPTA-AM, suggesting that the Ca2+ binding motifs in Aralar may be involved in the activation. Mitochondrial calcium uniporter (MCU) silencing had no effect, indicating that none of these processes required MCU-dependent mitochondrial Ca2+ uptake. The neuronal respiratory response to carbachol was also dependent on Aralar, but not on MCU. We find that mouse cortical neurons are endowed with a constitutive ER-to-mitochondria Ca2+ flow maintaining basal cell bioenergetics in which ryanodine receptors, RyR2, rather than InsP3R, are responsible for Ca2+ release, and in which MCU does not participate. The results reveal that, in neurons using glucose, MCU does not participate in OXPHOS regulation under basal or stimulated conditions, while Aralar-MAS appears as the major Ca2+-dependent pathway tuning simultaneously glycolysis and OXPHOS to neuronal activation.SIGNIFICANCE STATEMENT Neuronal activation increases cell workload to restore ion gradients altered by activation. Ca2+ is involved in matching increased workload with ATP production, but the mechanisms are still unknown. We find that glycolysis, pyruvate production, and neuronal respiration are stimulated on neuronal activation in a Ca2+-dependent way, independently of effects of Ca2+ as workload inducer. Mitochondrial calcium uniporter (MCU) does not play a relevant role in Ca2+ stimulated pyruvate production and oxygen consumption as both are unchanged in MCU silenced neurons. However, Ca2+ stimulation is blunt in the absence of Aralar, a Ca2+-binding mitochondrial carrier component of Malate-Aspartate Shuttle (MAS). The results suggest that Ca2+-regulated Aralar-MAS activation upregulates glycolysis and pyruvate production, which fuels mitochondrial respiration, through regulation of cytosolic NAD+/NADH ratio.


Assuntos
Ácido Aspártico , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Glicólise , Malatos/metabolismo , Camundongos , Neurônios/fisiologia , Piruvatos/metabolismo
8.
Indian J Clin Biochem ; 38(1): 83-93, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35431470

RESUMO

Background: COVID-19 is known to be transmitted by direct contact, droplets or feces/orally. There are many factors which determines the clinical progression of the disease. Aminoacid disturbance in viral disease is shown in many studies. In this study we aimed to evaluate the change of aminoacid metabolism especially the aspartate, glutamine and glycine levels which have been associated with an immune defence effect in viral disease. Methods: Blood samples from 35 volunteer patients with COVID-19, concretized diagnosis was made by oropharyngeal from nazofaringeal swab specimens and reverse transcriptase-polymerase chain reaction, and 35 control group were analyzed. The amino acid levels were measured with liquid chromatography-mass spectrometry technology. Two groups were compared by Kolmogorov-Smirnov analysis, Kruskal-Wallis and the Mann-Whitney U. The square test was used to evaluate the tests obtained by counting, and the error level was taken as 0.05. Results: The average age of the patient and control group were 48.5 ± 14.9 and 48.8 ± 14.6 years respectively. The decrease in aspartate (p = 5.5 × 10-9) and glutamine levels (p = 9.0 × 10-17) were significiantly in COVID group, whereas Glycine (p = 0.243) increase was not significiant. Conclusions: Metabolic pathways, are affected in rapidly dividing cells in viral diseases which are important for immun defence. We determined that aspartate, glutamine and glycine levels in Covid 19 patients were affected by the warburg effect, malate aspartate shuttle, glutaminolysis and pentose phosphate pathway. Enteral or parenteral administration of these plasma amino acid levels will correct the duration and pathophysiology of the patients' stay in hospital and intensive care.

9.
J Neurochem ; 2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089566

RESUMO

The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N ) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle ) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain ß-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.

10.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422819

RESUMO

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Assuntos
Alelos , Ácido Aspártico/metabolismo , Encefalopatias/genética , Proteínas de Ligação a Ácido Graxo/genética , Malatos/metabolismo , Mutação , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Sequenciamento do Exoma
11.
Rev Endocr Metab Disord ; 23(1): 121-131, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741717

RESUMO

Obesity results from an imbalance in energy homeostasis, whereby excessive energy intake exceeds caloric expenditure. Energy can be dissipated out of an organism by producing heat (thermogenesis), explaining the long-standing interest in exploiting thermogenic processes to counteract obesity. Mitochondrial uncoupling is a process that expends energy by oxidizing nutrients to produce heat, instead of ATP synthesis. Energy can also be dissipated through mechanisms that do not involve mitochondrial uncoupling. Such mechanisms include futile cycles described as metabolic reactions that consume ATP to produce a product from a substrate but then converting the product back into the original substrate, releasing the energy as heat. Energy dissipation driven by cellular ATP demand can be regulated by adjusting the speed and number of futile cycles. Energy consuming futile cycles that are reviewed here are lipolysis/fatty acid re-esterification cycle, creatine/phosphocreatine cycle, and the SERCA-mediated calcium import and export cycle. Their reliance on ATP emphasizes that mitochondrial oxidative function coupled to ATP synthesis, and not just uncoupling, can play a role in thermogenic energy dissipation. Here, we review ATP consuming futile cycles, the evidence for their function in humans, and their potential employment as a strategy to dissipate energy and counteract obesity.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Humanos , Obesidade/metabolismo , Ciclização de Substratos , Termogênese
12.
EMBO Rep ; 21(12): e49634, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275313

RESUMO

Combined fatty acid esterification and lipolysis, termed lipid cycling, is an ATP-consuming process that contributes to energy expenditure. Therefore, interventions that stimulate energy expenditure through lipid cycling are of great interest. Here we find that pharmacological and genetic inhibition of the mitochondrial pyruvate carrier (MPC) in brown adipocytes activates lipid cycling and energy expenditure, even in the absence of adrenergic stimulation. We show that the resulting increase in ATP demand elevates mitochondrial respiration coupled to ATP synthesis and fueled by lipid oxidation. We identify that glutamine consumption and the Malate-Aspartate Shuttle are required for the increase in Energy Expenditure induced by MPC inhibition in Brown Adipocytes (MAShEEBA). We thus demonstrate that energy expenditure through enhanced lipid cycling can be activated in brown adipocytes by decreasing mitochondrial pyruvate availability. We present a new mechanism to increase energy expenditure and fat oxidation in brown adipocytes, which does not require adrenergic stimulation of mitochondrial uncoupling.


Assuntos
Adipócitos Marrons , Ácido Pirúvico , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Lipídeos , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
13.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008954

RESUMO

AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.


Assuntos
Agrecanas/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Predisposição Genética para Doença , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/etiologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , Transtornos Psicomotores/etiologia , Transtornos Psicomotores/metabolismo , Agrecanas/deficiência , Agrecanas/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/metabolismo , Biomarcadores , Encéfalo/metabolismo , Terapia Combinada , Gerenciamento Clínico , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Metabolismo Energético , Estudos de Associação Genética , Ácido Glutâmico/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/terapia , Humanos , Malatos/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Bainha de Mielina/metabolismo , Oxirredução , Fenótipo , Transtornos Psicomotores/diagnóstico , Transtornos Psicomotores/terapia
14.
J Neurosci ; 40(48): 9293-9305, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33087477

RESUMO

Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier expressed in neurons, is the regulatory component of the NADH malate-aspartate shuttle. AGC1 deficiency is a neuropediatric rare disease characterized by hypomyelination, hypotonia, developmental arrest, and epilepsy. We have investigated whether ß-hydroxybutyrate (ßOHB), the main ketone body (KB) produced in ketogenic diet (KD), is neuroprotective in aralar-knock-out (KO) neurons and mice. We report that ßOHB efficiently recovers aralar-KO neurons from deficits in basal-stimulated and glutamate-stimulated respiration, effects requiring ßOHB entry into the neuron, and protects from glutamate excitotoxicity. Aralar-deficient mice were fed a KD to investigate its therapeutic potential early in development, but this approach was unfeasible. Therefore, aralar-KO pups were treated without distinction of gender with daily intraperitoneal injections of ßOHB during 5 d. This treatment resulted in a recovery of striatal markers of the dopaminergic system including dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio, and vesicular monoamine transporter 2 (VMAT2) protein. Regarding postnatal myelination, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) myelin proteins were markedly increased in the cortices of ßOHB-treated aralar-KO mice. Although brain Asp and NAA levels did not change by ßOHB administration, a 4-d ßOHB treatment to aralar-KO, but not to control, neurons led to a substantial increase in Asp (3-fold) and NAA (4-fold) levels. These results suggest that the lack of increase in brain Asp and NAA is possibly because of its active utilization by the aralar-KO brain and the likely involvement of neuronal NAA in postnatal myelination in these mice. The effectiveness of ßOHB as a therapeutic treatment in AGC1 deficiency deserves further investigation.SIGNIFICANCE STATEMENTAralar deficiency induces a fatal phenotype in humans and mice and is associated with impaired neurodevelopment, epilepsy, and hypomyelination. In neurons, highly expressing aralar, its deficiency causes a metabolic blockade hampering mitochondrial energetics and respiration. Here, we find that ßOHB, the main metabolic product in KD, recovers defective mitochondrial respiration bypassing the metabolic failure in aralar-deficient neurons. ßOHB oxidation in mitochondria boosts the synthesis of cytosolic aspartate (Asp) and NAA, which is impeded by aralar deficiency, presumably through citrate-malate shuttle. In aralar-knock-out (KO) mice, ßOHB recovers from the drastic drop in specific dopaminergic and myelin markers. The ßOHB-induced myelin synthesis occurring together with the marked increment in neuronal NAA synthesis supports the role of NAA as a lipid precursor during postnatal myelination.


Assuntos
Ácido 3-Hidroxibutírico/fisiologia , Agrecanas/fisiologia , Encéfalo/fisiologia , Dieta Cetogênica , Vias Neurais/fisiologia , Neurônios/fisiologia , Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/farmacologia , Agrecanas/genética , Aminoácidos/metabolismo , Animais , Dopamina/fisiologia , Feminino , Ácido Glutâmico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/genética , Bainha de Mielina/fisiologia , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/fisiologia , Consumo de Oxigênio/fisiologia , Respiração/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Monoamina/fisiologia
15.
J Biol Chem ; 295(14): 4383-4397, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094224

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85% of maximal pyruvate-driven OXPHOS rates, mediated by the activity of the complete MAS, and that intramitochondrial Ca2+ accounts for the remaining 15%. Of note, the complete MAS, as applied here, included besides its classical NADH oxidation reaction the generation of cytosolic pyruvate. Part of this largely neglected mechanism has previously been described as the "mitochondrial gas pedal." Its implementation into OXPHOS control models integrates seemingly contradictory results and warrants a critical reappraisal of metabolic control mechanisms in health and disease.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Coração/fisiologia , Malatos/química , Malatos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Fosforilação Oxidativa , Ratos , Especificidade por Substrato , Sinaptossomos/metabolismo
16.
Stem Cells ; 38(5): 624-638, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003519

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) and its precursor metabolites are emerging as important regulators of both cell metabolism and cell state. Interestingly, the role of NAD+ in human embryonic stem cell (hESC) metabolism and the regulation of pluripotent cell state is unresolved. Here we show that NAD+ simultaneously increases hESC mitochondrial oxidative metabolism and partially suppresses glycolysis and stimulates amino acid turnover, doubling the consumption of glutamine. Concurrent with this metabolic remodeling, NAD+ increases hESC pluripotent marker expression and proliferation, inhibits BMP4-induced differentiation and reduces global histone 3 lysine 27 trimethylation, plausibly inducing an intermediate naïve-to-primed bivalent metabolism and pluripotent state. Furthermore, maintenance of NAD+ recycling via malate aspartate shuttle activity is identified as an absolute requirement for hESC self-renewal, responsible for 80% of the oxidative capacity of hESC mitochondria. Our findings implicate NAD+ in the regulation of cell state, suggesting that the hESC pluripotent state is dependent upon cellular NAD+ .


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , NAD/metabolismo , Células-Tronco Pluripotentes/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Humanos
17.
J Inherit Metab Dis ; 44(4): 792-808, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33990986

RESUMO

Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.


Assuntos
Aspartato Aminotransferases/deficiência , Ácido Aspártico/metabolismo , Malato Desidrogenase/deficiência , Malatos/metabolismo , Erros Inatos do Metabolismo/patologia , Mitocôndrias/patologia , Animais , Aspartato Aminotransferases/genética , Respiração Celular , Humanos , Lactente , Malato Desidrogenase/genética , Erros Inatos do Metabolismo/etiologia , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Espasmos Infantis/etiologia
18.
J Cell Physiol ; 235(3): 2569-2581, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31490559

RESUMO

Metabolism in cancer cells is rewired to generate sufficient energy equivalents and anabolic precursors to support high proliferative activity. Within the context of these competing drives aerobic glycolysis is inefficient for the cancer cellular energy economy. Therefore, many cancer types, including colon cancer, reprogram mitochondria-dependent processes to fulfill their elevated energy demands. Elevated glycolysis underlying the Warburg effect is an established signature of cancer metabolism. However, there are a growing number of studies that show that mitochondria remain highly oxidative under glycolytic conditions. We hypothesized that activities of glycolysis and oxidative phosphorylation are coordinated to maintain redox compartmentalization. We investigated the role of mitochondria-associated malate-aspartate and lactate shuttles in colon cancer cells as potential regulators that couple aerobic glycolysis and oxidative phosphorylation. We demonstrated that the malate-aspartate shuttle exerts control over NAD+ /NADH homeostasis to maintain activity of mitochondrial lactate dehydrogenase and to enable aerobic oxidation of glycolytic l-lactate in mitochondria. The elevated glycolysis in cancer cells is proposed to be one of the mechanisms acquired to accelerate oxidative phosphorylation.


Assuntos
Neoplasias do Colo/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Efeito Warburg em Oncologia , Ácido Aspártico/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Homeostase/genética , Humanos , Malatos/metabolismo , Mitocôndrias/patologia , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa
19.
Neurochem Res ; 44(10): 2385-2391, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31016552

RESUMO

The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all glucose was completely oxidized. However, this high oxidative index, contrasts with the metabolic traits of the major cell types in the brain studied in culture, neurons and astrocytes, including the selective use of the malate-aspartate shuttle (MAS) in neurons and the glycerol-phosphate shuttle in astrocytes. Metabolic interactions among these cell types may partly explain the high oxidative index of the brain. In vivo, neuronal activation results in a decrease in the oxygen glucose index, which has been attributed to a stimulation of glycolysis and lactate production in astrocytes in response to glutamate uptake (astrocyte-neuron lactate shuttle, ANLS). Recent findings indicate that this is accompanied with a stimulation of pyruvate formation and astrocyte respiration, indicating that lactate formation is not the only astrocytic response to neuronal activation. ANLS proposes that neurons utilize lactate produced by neighboring astrocytes. Indeed, neurons can use lactate to support an increase in respiration with different workloads, and this depends on the Ca2+ activation of MAS. However, whether this activation operates in the brain, particularly at high stimulation conditions, remains to be established.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Glicólise/fisiologia , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Glucose/metabolismo , Humanos
20.
Am J Physiol Endocrinol Metab ; 315(4): E496-E510, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29763372

RESUMO

Hepatic metabolic syndrome is associated with inflammation, as inflammation stimulates the reprogramming of nutrient metabolism and hepatic mitochondria-generated acetyl-CoA, but how acetyl-CoA affects the reprogramming of nutrient metabolism, especially glucose and fatty acids, in the condition of inflammation is still unclear. Here, we used an acute inflammation model in which pigs were injected with lipopolysaccharide (LPS) and found that hepatic glycolysis and fatty acid oxidation are both promoted. Acetyl-proteome profiling of LPS-infected pigs liver showed that inflammatory stress exacerbates the acetylation of mitochondrial proteins. Both mitochondrial glutamate oxaloacetate transaminase 2 (GOT2) and malate dehydrogenase 2 (MDH2) were acetylated, and the malate-aspartate shuttle (MAS) activity was stimulated to maintain glycolysis. With the use of 13C-carbon tracing in vitro, acetyl-CoA was found to be mainly supplied by lipid-derived fatty acid oxidation rather than glucose-derived pyruvate oxidative decarboxylation, while glucose was mainly used for lactate production in response to inflammatory stress. The results of the mitochondrial experiment showed that acetyl-CoA directly increases MDH2 and, in turn, the GOT2 acetylation level affects MAS activity. Treatment with palmitate in primary hepatocytes from LPS-injected pigs increased the hepatic production of acetyl-CoA, pyruvate, and lactate; MAS activity; and hepatic MDH2 and GOT2 hyperacetylation, while the deficiency of long-chain acetyl-CoA dehydrogenase resulted in the stabilization of these parameters. These observations suggest that acetyl-CoA produced by fatty acid oxidation promotes MAS activity and glycolysis via nonenzymatic acetylation during the inflammatory stress response.


Assuntos
Acetilcoenzima A/metabolismo , Aspartato Aminotransferase Mitocondrial/metabolismo , Ácidos Graxos/metabolismo , Glicólise , Inflamação/metabolismo , Fígado/metabolismo , Malato Desidrogenase/metabolismo , Mitocôndrias Hepáticas/metabolismo , Acetilação , Animais , Ácido Aspártico/metabolismo , Isótopos de Carbono , Inflamação/induzido quimicamente , Ácido Láctico/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Malatos/metabolismo , Oxirredução/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ácido Pirúvico/metabolismo , Estresse Fisiológico , Sus scrofa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA