Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563066

RESUMO

Reactive oxygen species (ROS) cause oxidative stress by generating reactive aldehydes known as 4-hydroxynonenal (4-HNE). 4-HNE modifies protein via covalent adduction; however, little is known about the degradation mechanism of 4-HNE-adducted proteins. Autophagy is a dynamic process that maintains cellular homeostasis by removing damaged organelles and proteins. In this study, we determined the role of a superoxide dismutase (SOD) mimetic MnTnBuOE-2-PyP5+ (MnP, BMX-001) on rotenone-induced 4-HNE aggresome degradation in HL-1 cardiomyocytes. A rotenone treatment (500 nM) given for 24 h demonstrated both increased ROS and 4-HNE aggresome accumulation in HL-1 cardiomyocytes. In addition, cardiomyocytes treated with rotenone displayed an increase in the autophagy marker LC3-II, as shown by immunoblotting and immunofluorescence. A pre-treatment with MnP (20 µM) for 24 h attenuated rotenone-induced ROS formation. An MnP pre-treatment showed decreased 4-HNE aggresomes and LC3-II formation. A rotenone-induced increase in autophagosomes was attenuated by a pre-treatment with MnP, as shown by fluorescent-tagged LC3 (tfLC3). Rotenone increased tubulin hyperacetylation through the ROS-mediated pathway, which was attenuated by MnP. The disruption of autophagy caused HL-1 cell death because a 3-methyladenine inhibitor of autophagosomes caused reduced cell death. Yet, rapamycin, an inducer of autophagy, increased cell death. These results indicated that a pre-treatment with MnP decreased rotenone-induced 4-HNE aggresomes by enhancing the degradation process.


Assuntos
Miócitos Cardíacos , Rotenona , Autofagossomos/metabolismo , Autofagia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/metabolismo , Rotenona/toxicidade
2.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38671924

RESUMO

Manganese porphyrins reportedly exhibit synergic effects when combined with irradiation. However, an in-depth understanding of intratumoral heterogeneity and immune pathways, as affected by Mn porphyrins, remains limited. Here, we explored the mechanisms underlying immunomodulation of a clinical candidate, MnTnBuOE-2-PyP5+ (BMX-001, MnBuOE), using single-cell analysis in a murine carcinoma model. Mice bearing 4T1 tumors were divided into four groups: control, MnBuOE, radiotherapy (RT), and combined MnBuOE and radiotherapy (MnBuOE/RT). In epithelial cells, the epithelial-mesenchymal transition, TNF-α signaling via NF-кB, angiogenesis, and hypoxia-related genes were significantly downregulated in the MnBuOE/RT group compared with the RT group. All subtypes of cancer-associated fibroblasts (CAFs) were clearly reduced in MnBuOE and MnBuOE/RT. Inhibitory receptor-ligand interactions, in which epithelial cells and CAFs interacted with CD8+ T cells, were significantly lower in the MnBuOE/RT group than in the RT group. Trajectory analysis showed that dendritic cells maturation-associated markers were increased in MnBuOE/RT. M1 macrophages were significantly increased in the MnBuOE/RT group compared with the RT group, whereas myeloid-derived suppressor cells were decreased. CellChat analysis showed that the number of cell-cell communications was the lowest in the MnBuOE/RT group. Our study is the first to provide evidence for the combined radiotherapy with a novel Mn porphyrin clinical candidate, BMX-001, from the perspective of each cell type within the tumor microenvironment.

3.
Cancers (Basel) ; 15(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37568630

RESUMO

Manganese(III) porphyrin MnTnBuOE-2-PyP5+ (MnBuOE, BMX-001) is a third-generation redox-active cationic substituted pyridylporphyrin-based drug with a good safety/toxicity profile that has been studied in several types of cancer. It is currently in four phase I/II clinical trials on patients suffering from glioma, head and neck cancer, anal squamous cell carcinoma and multiple brain metastases. There is yet an insufficient understanding of the impact of MnBuOE on lung cancer. Therefore, this study aims to fill this gap by demonstrating the effects of MnBuOE on non-small cell lung cancer (NSCLC) A549 and H1975 cell lines. The cytotoxicity of MnBuOE alone or combined with cisplatin was evaluated by crystal violet (CV) and/or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-Tetrazolium (MTS) reduction assays. Intracellular ROS levels were assessed using two fluorescent probes. Furthermore, the impact of MnBuOE alone or in combination with cisplatin on collective cell migration, individual chemotactic migration and chemoinvasion was assessed using the wound-healing and transwell assays. The expression of genes related to migration and invasion was assessed through RT-qPCR. While MnBuOE alone decreased H1975 cell viability at high concentrations, when combined with cisplatin it markedly reduced the viability of the more invasive H1975 cell line but not of A549 cell line. However, MnBuOE alone significantly decreased the migration of both cell lines. The anti-migratory effect was more pronounced when MnBuOE was combined with cisplatin. Finally, MnBuOE alone or combined with cisplatin significantly reduced cell invasion. MnBuOE alone or combined with cisplatin downregulated MMP2, MMP9, VIM, EGFR and VEGFA and upregulated CDH1 in both cell lines. Overall, our data demonstrate the anti-metastatic potential of MnBuOE for the treatment of NSCLC.

4.
J Biomed Mater Res B Appl Biomater ; 110(2): 382-391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34309195

RESUMO

Noninvasive and precise diagnosis of hepatic fibrosis is very important for the preventive therapeutic regimen of hepatic cirrhosis and cancer. In this study, we fabricated T1 contrast Mn-porphyrin (MnTPPS4 )/retinoic acid-chitosan ionic-complex nanoparticles (MRC NPs). The functional properties of MRC NPs were evaluated via transmission electron microscopy (TEM) imaging, release study, cytotoxicity assay, hepatocyte-specific uptake assay, and magnetic resonance (MR) imaging study. TEM images confirmed the typical structure of an ionic-complex NPs with around 100-200 nm of diameter. MnTPPS4 is released from MRC NPs for up to 24 hr in controlled pattern which implies that more reliable and convenient hepatic MR imaging is possible using of MRC NPs in clinical practice. Hepatocytes uptake assay proved retinoic acid-specific targeting of MRC NPs. The same results were observed in animal pharmacokinetic studies. In vitro MR phantom study, MRC NPs showed an increased T1 relaxivity (r1  = 6.772 mM-1  s-1 ) in comparison with 3.242 mM-1  s-1 of MnTPPS4 . The result was confirmed again in vivo MR imaging studies. Taken together, MRC NPs displayed a potential for noninvasive diagnostic T1 MR imaging of hepatic fibrosis with improved target specificity and prolonged MR imaging time window.


Assuntos
Quitosana , Nanopartículas , Porfirinas , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Manganês/química , Nanopartículas/química , Porfirinas/química , Tretinoína
5.
ACS Appl Mater Interfaces ; 10(34): 28390-28398, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30066560

RESUMO

Chemotherapy remains restricted by its toxic adverse effects and resistance to drugs. The treatment of nitric oxide (NO) combined with imaging-guided physical therapy is a promising alternative for clinical applications. Herein, we report nanoscale metal-organic framework (NMOF) systems to integrate magnetic resonance (MR) imaging, spatiotemporally controllable NO delivery, and photothermal therapy (PTT) as a new means of cancer theranostics. As a proof of concept, the NMOFs are prepared with biocompatible Zr4+ ions and Mn-porphyrin as a bridging ligand. By inserting paramagnetic Mn ions into porphyrin rings, Mn-porphyrin renders the NMOFs strong T1-weighted MR contrast capacity and high photothermal conversion for efficient PTT. S-Nitrosothiol (SNO) is conjugated to the surfaces of the NMOFs for heat-sensitive NO generation. Moreover, single near-infrared (NIR) light triggers the controllable NO release and PTT simultaneously for their efficient synergistic therapy with one-step operation. Upon intravenous injection, NMOF-SNO shows effective tumor accumulation as exposed by the MR images of the tumor-bearing mice. When exposed to the NIR laser, the tumors of mice injected with NMOF-SNO are completely inhibited, verifying the efficiency of NMOF-SNO. For the first time, Mn-porphyrin NMOFs are developed to be an effective theranostic system for MR imaging-guided controllable NO release and photothermal synergetic therapy under single NIR irradiation.


Assuntos
Porfirinas/química , Animais , Imageamento por Ressonância Magnética , Estruturas Metalorgânicas , Camundongos , Óxido Nítrico , Nanomedicina Teranóstica
6.
Redox Biol ; 12: 864-871, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28454069

RESUMO

Although radiation therapy can be effective against cancer, potential damage to normal tissues limits the amount that can be safely administered. In central nervous system (CNS), radiation damage to normal tissues is presented, in part, as suppressed hippocampal neurogenesis and impaired cognitive functions. Mn porphyrin (MnP)-based redox active drugs have demonstrated differential effects on cancer and normal tissues in experimental animals that lead to protection of normal tissues and radio- and chemo-sensitization of cancers. To test the efficacy of MnPs in CNS radioprotection, we first examined the tissue levels of three different MnPs - MnTE-2-PyP5+(MnE), MnTnHex-2-PyP5+(MnHex), and MnTnBuOE-2-PyP5+(MnBuOE). Nanomolar concentrations of MnHex and MnBuOE were detected in various brain regions after daily subcutaneous administration, and MnBuOE was well tolerated at a daily dose of 3mg/kg. Administration of MnBuOE for one week before cranial irradiation and continued for one week afterwards supported production and long-term survival of newborn neurons in the hippocampal dentate gyrus. MnP-driven S-glutathionylation in cortex and hippocampus showed differential responses to MnP administration and radiation in these two brain regions. A better understanding of how preserved hippocampal neurogenesis correlates with cognitive functions following cranial irradiation will be helpful in designing better MnP-based radioprotection strategies.


Assuntos
Sistema Nervoso Central/química , Irradiação Craniana/efeitos adversos , Metaloporfirinas/administração & dosagem , Neurogênese/efeitos dos fármacos , Protetores contra Radiação/administração & dosagem , Animais , Disponibilidade Biológica , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/efeitos da radiação , Córtex Cerebral/química , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/efeitos da radiação , Feminino , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipocampo/efeitos da radiação , Masculino , Metaloporfirinas/farmacocinética , Camundongos Endogâmicos C57BL , Neurogênese/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Protetores contra Radiação/farmacocinética
7.
Redox Biol ; 5: 43-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25827425

RESUMO

Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.


Assuntos
Complexos de Coordenação/metabolismo , Peróxido de Hidrogênio/metabolismo , Manganês/química , Porfirinas/química , Superóxidos/metabolismo , Encéfalo/metabolismo , Complexos de Coordenação/química , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Relação Estrutura-Atividade , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxidos/química
8.
Free Radic Biol Med ; 89: 1231-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26496207

RESUMO

Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of Mn(III)P/Mn(II)P redox couple, ranged from -200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2>0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1mM) and MnPs (1 or 5 µM) alone did not trigger any alteration in cell viability, combined treatment suppressed cell viability up to 95%. No toxicity was observed with normal human breast epithelial HBL-100 cells. Bell-shape relationship, essentially identical to vo(Asc)oxvs E1/2, was also demonstrated between MnP/Asc-controlled cytotoxicity and E1/2-controlled vo(Asc)ox. Magnetic resonance imaging studies were conducted to explore the impact of ascorbate on T1-relaxivity. The impact of MnP/Asc on intracellular thiols and on GSH/GSSG and Cys/CySS ratios in 4T1 cells was assessed and cellular reduction potentials were calculated. The data indicate a significant increase in cellular oxidative stress induced by MnP/Asc. Based on vo(Asc)oxvs E1/2 relationships and cellular toxicity, MnTE-2-PyP(5+) was identified as the best catalyst among MnPs studied. Asc and MnTE-2-PyP(5+) were thus tested in a 4T1 mammary mouse flank tumor model. The combination of ascorbate (4 g/kg) and MnTE-2-PyP(5+) (0.2mg/kg) showed significant suppression of tumor growth relative to either MnTE-2-PyP(5+) or ascorbate alone. About 7-fold higher accumulation of MnTE-2-PyP(5+) in tumor vs normal tissue was found to contribute largely to the anticancer effect.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Neoplasias da Mama/tratamento farmacológico , Metaloporfirinas/farmacologia , Animais , Western Blotting , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catálise , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimioterapia Combinada , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos BALB C , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mater Sci Eng C Mater Biol Appl ; 41: 349-53, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907770

RESUMO

The present study describes a technique for dermal administration of cationic manganese porphyrin (Mn-porphyrin), an antioxidant with superoxide dismutase (SOD) activity, in hairless mouse. In general, the stratum corneum on the surface of the skin represents a barrier to passive diffusion of therapeutic agents by standard dermal administration. The present study investigated whether, dermal administration of Mn-porphyrin solution using iontophoresis, the electrical dermal administration technique, could overcome this barrier. We visually confirmed that Mn-porphyrin had penetrated to the reverse side of the hairless mouse skin after iontophoresis for a short period. With prolonged iontophoresis, the ratio of detectable Mn-porphyrin solution on the reverse side of the hairless mouse skin increased. In the future, this technique could provide an innovative approach for delivery of this antioxidant in intractable disease.


Assuntos
Antioxidantes/metabolismo , Iontoforese , Manganês/química , Porfirinas/química , Administração Cutânea , Animais , Antioxidantes/análise , Antioxidantes/química , Técnicas In Vitro , Camundongos , Camundongos Pelados , Pele/patologia , Espectrofotometria , Fatores de Tempo
10.
ACS Med Chem Lett ; 5(6): 639-43, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944735

RESUMO

Superoxide dismutase (SOD) and catalase activities of a drug are of great importance for its effective protection against reactive oxygen species (ROS)-induced injury. Achievement of catalase activity of a synthetic compound remains a challenge. Water-soluble Mn-porphyrins have high SOD and peroxynitrite (ONOO(-)) reducing activities, but not catalase-like activity. Herein, we are able to retain the fair SOD-like activity of a mononuclear Mn-5-(N-methylpyridinium-4-yl)-10,15,20-triphenyl porphyrin (MnM4PyP3P), while gaining in catalase-like activity with its dinuclear complex, 1,3-di[5-(N-methylene-pyridinium-4-yl)-10,15,20-triphenyl porphynato manganese] benzene tetrachloride (MnPD). Mechanistic study indicates that catalase-like activity of MnPD is due to synergism of two Mn active sites, where hydroxo-Mn(IV) complex is formed as an intermediate. The in vivo experiments demonstrate that MnPD significantly restores the treadmill-running ability of SOD-deficient mouse and thus indicates the therapeutic potential of MnPD. Furthermore, MnPD may serve as a mechanistic tool and indicate the new directions in the synthesis of catalase-like mimics.

11.
Redox Biol ; 2: 400-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24624330

RESUMO

With the goal to enhance the distribution of cationic Mn porphyrins within mitochondria, the lipophilic Mn(III)meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) has been synthesized and tested in several different model of diseases, where it shows remarkable efficacy at as low as 50 µg/kg single or multiple doses. Yet, in a rat lung radioprotection study, at higher 0.6-1 mg/kg doses, due to its high accumulation and micellar character, it became toxic. To avoid the toxicity, herein the pulmonary radioprotection of MnTnHex-2-PyP(5+) was assessed at 50 µg/kg. Fischer rats were irradiated to their right hemithorax (28 Gy) and treated with 0.05 mg/kg/day of MnTnHex-2-PyP(5+) for 2 weeks by subcutaneously-implanted osmotic pumps, starting at 2 h post-radiation. The body weights and breathing frequencies were followed for 10 weeks post-radiation, when the histopathology and immunohistochemistry were assessed. Impact of MnTnHex-2-PyP(5+) on macrophage recruitment (ED-1), DNA oxidative damage (8-OHdG), TGF-ß1, VEGF(A) and HIF-1α were measured. MnTnHex-2-PyP(5+) significantly decreased radiation-induced lung histopathological (H&E staining) and functional damage (breathing frequencies), suppressed oxidative stress directly (8-OHdG), or indirectly, affecting TGF-ß1, VEGF (A) and HIF-1α pathways. The magnitude of the therapeutic effects is similar to the effects demonstrated under same experimental conditions with 120-fold higher dose of ~5000-fold less lipophilic Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+).


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/efeitos da radiação , Metaloporfirinas/administração & dosagem , Protetores contra Radiação/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Relação Dose-Resposta à Radiação , Esquema de Medicação , Feminino , Infusões Subcutâneas , Pulmão/patologia , Metaloporfirinas/farmacologia , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Protetores contra Radiação/farmacologia , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
12.
Acta Biomater ; 9(12): 9434-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23962645

RESUMO

In this paper, theranostic nanoparticles (MnP-DOX NPs) were fabricated by conjugating Mn-porphyrin onto the surface of doxorubicin (DOX)-loaded poly(lactic acid) (PLA) nanoparticles (DOX NPs) for potential T1 magnetic resonance imaging and pH-sensitive drug delivery. An in vitro drug release study showed that the release rate of DOX from MnP-DOX NPs was slow at neutral pH but accelerated significantly in acidic conditions. It was found that MnP-DOX NPs could be easily internalized by HeLa cells and effectively suppressed the growth of HeLa cells and HT-29 cells due to the accelerated drug release in acidic lysosomal compartments. Magnetic resonance imaging (MRI) scanning analysis demonstrated that MnP-DOX NPs had much higher longitudinal relaxivity in water (r1 value of 27.8 mM(-1) s(-1) of Mn(3+)) than Mn-porphyrin (Mn(III)TPPS3NH2; r1 value of 6.70 mM(-1) s(-1) of Mn(3+)), behaving as an excellent contrast agent for T1-weighted MRI both in vitro and in vivo. In summary, such a smart and promising nanoplatform integrates multiple capabilities for effective cancer diagnosis and therapy.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Imageamento por Ressonância Magnética , Metaloporfirinas/química , Nanopartículas/química , Polímeros/química , Porfirinas/química , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Endocitose/efeitos dos fármacos , Células HT29 , Células HeLa , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Nanopartículas/ultraestrutura , Poliésteres , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
13.
Redox Biol ; 1: 599-607, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24363995

RESUMO

Radiation proctitis, an inflammation and damage to the lower part of colon, is a common adverse event of the radiotherapy of tumors in the abdominal and pelvic region (colon, prostate, cervical). Several Mn(III) porphyrin-based superoxide dismutase mimics have been synthesized and successfully evaluated in preclinical models as radioprotectants. Here we report for the first time the remarkable rectal radioprotection of frequently explored Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+). A batch prepared in compliance with good manufacturing practice (GMP), which has good safety/toxicity profile, was used for this study. MnTE-2-PyP(5+) was given subcutaneously at 5 mg/kg, either 1 h before or 1 h after irradiation, with additional drug administered at weekly intervals thereafter. MnTE-2-PyP(5+) ameliorated both acute and chronic radiation proctitis in male Sprague-Dawley rats irradiated with 20-30 Gy protons delivered to 2.5 cm span of rectum using spread-out Bragg peak of a proton treatment beam. Focal irradiation of the rectum produced acute proctitis, which healed, followed by chronic rectal dilation and symptomatic proctitis. MnTE-2-PyP(5+) protected rectal mucosa from radiation-induced crypt loss measured 10 days post-irradiation. Significant effects were observed with both pre- and post-treatment regimens. However, only MnTE-2-PyP(5+) pre-treatment, but not post-treatment, prevented the development of rectal dilation, indicating that proper dosing regimen is critical for radioprotection. The pre-treatment also prevented or delayed the development of chronic proctitis depending on the radiation dose. Further work aimed at developing MnTE-2-PyP(5+) and similar drugs as adjunctive agents for radiotherapy of pelvic tumors is warranted. The present study substantiates the prospects of employing this and similar analogs in preserving normal tissue during cancer radiation as well as any other radiation exposure.


Assuntos
Metaloporfirinas/administração & dosagem , Proctite/tratamento farmacológico , Protetores contra Radiação/administração & dosagem , Reto/efeitos da radiação , Animais , Materiais Biomiméticos , Relação Dose-Resposta a Droga , Injeções Subcutâneas , Masculino , Metaloporfirinas/uso terapêutico , Proctite/patologia , Protetores contra Radiação/uso terapêutico , Ratos , Ratos Sprague-Dawley , Reto/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA