Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Nature ; 612(7940): 465-469, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36352233

RESUMEN

Ferroelectricity in atomically thin bilayer structures has been recently predicted1 and measured2-4 in two-dimensional materials with hexagonal non-centrosymmetric unit-cells. The crystal symmetry translates lateral shifts between parallel two-dimensional layers to sign changes in their out-of-plane electric polarization, a mechanism termed 'slide-tronics'4. These observations have been restricted to switching between only two polarization states under low charge carrier densities5-12, limiting the practical application of the revealed phenomena13. To overcome these issues, one should explore the nature of polarization in multi-layered van der Waals stacks, how it is governed by intra- and interlayer charge redistribution and to what extent it survives the addition of mobile charge carriers14. To explore these questions, we conduct surface potential measurements of parallel WSe2 and MoS2 multi-layers with aligned and anti-aligned configurations of the polar interfaces. We find evenly spaced, nearly decoupled potential steps, indicating highly confined interfacial electric fields that provide a means to design multi-state 'ladder-ferroelectrics'. Furthermore, we find that the internal polarization remains notable on electrostatic doping of mobile charge carrier densities as high as 1013 cm-2, with substantial in-plane conductivity. Using density functional theory calculations, we trace the extra charge redistribution in real and momentum spaces and identify an eventual doping-induced depolarization mechanism.

2.
Nano Lett ; 24(23): 7033-7039, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38805193

RESUMEN

Graphullerene is a novel two-dimensional carbon allotrope with unique optoelectronic properties. Despite significant experimental characterization and prior density functional theory calculations, unanswered questions remain as to the nature, energy, and intensity of the electronic and optical excitations. Here, we present first-principles calculations of the quasiparticle band structure, neutral excitations, and absorption spectra of monolayer graphullerene and bulk graphullerite, employing the GW-Bethe-Salpeter equation (GW-BSE) approach. We show that strongly bound excitons dominate the absorption spectrum of monolayer graphullerene with binding energies up to 0.8 eV, while graphullerite exhibits less pronounced excitonic effects. Our calculations also reveal a strong linear polarization anisotropy, reflecting the in-plane structural anisotropy from intermolecular coupling between neighboring C60 units. We further show that the presence of Mg atoms, crucial to the synthesis process, induces structural modifications and polarizability effects, resulting in a ∼1 eV quasiparticle gap renormalization and a reduction in the exciton binding energy to ∼0.6 eV.

3.
Nano Lett ; 24(18): 5436-5443, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656103

RESUMEN

The ultrahigh surface area of two-dimensional materials can drive multimodal coupling between optical, electrical, and mechanical properties that leads to emergent dynamical responses not possible in three-dimensional systems. We observed that optical excitation of the WS2 monolayer above the exciton energy creates symmetrically patterned mechanical protrusions which can be controlled by laser intensity and wavelength. This observed photostrictive behavior is attributed to lattice expansion due to the formation of polarons, which are charge carriers dressed by lattice vibrations. Scanning Kelvin probe force microscopy measurements and density functional theory calculations reveal unconventional charge transport properties such as the spatially and optical intensity-dependent conversion in the WS2 monolayer from apparent n- to p-type and the subsequent formation of effective p-n junctions at the boundaries between regions with different defect densities. The strong opto-electrical-mechanical coupling in the WS2 monolayer reveals previously unexplored properties, which can lead to new applications in optically driven ultrathin microactuators.

4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417292

RESUMEN

Accurate prediction of fundamental band gaps of crystalline solid-state systems entirely within density functional theory is a long-standing challenge. Here, we present a simple and inexpensive method that achieves this by means of nonempirical optimal tuning of the parameters of a screened range-separated hybrid functional. The tuning involves the enforcement of an ansatz that generalizes the ionization potential theorem to the removal of an electron from an occupied state described by a localized Wannier function in a modestly sized supercell calculation. The method is benchmarked against experiment for a set of systems ranging from narrow band-gap semiconductors to large band-gap insulators, spanning a range of fundamental band gaps from 0.2 to 14.2 electronvolts (eV), and is found to yield quantitative accuracy across the board, with a mean absolute error of ∼0.1 eV and a maximal error of ∼0.2 eV.

5.
J Phys Chem A ; 127(46): 9820-9830, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37938019

RESUMEN

An anisotropic interlayer force field that describes the interlayer interactions in homogeneous and heterogeneous interfaces of group-VI transition metal dichalcogenides (MX2, where M = Mo, W, and X = S, Se) is presented. The force field is benchmarked against density functional theory calculations for bilayer systems within the Heyd-Scuseria-Ernzerhof hybrid density functional approximation, augmented by a nonlocal many-body dispersion treatment of long-range correlation. The parametrization yields good agreement with the reference calculations of binding energy curves and sliding potential energy surfaces. It is found to be transferable to transition metal dichalcogenide (TMD) junctions outside of the training set that contain the same atom types. Calculated bulk moduli agree with most previous dispersion-corrected density functional theory predictions, which underestimate the available experimental values. Calculated phonon spectra of the various junctions under consideration demonstrate the importance of appropriately treating the anisotropic nature of the layered interfaces. Considering our previous parametrization for MoS2, the anisotropic interlayer potential enables accurate and efficient large-scale simulations of the dynamical, tribological, and thermal transport properties of a large set of homogeneous and heterogeneous TMD interfaces.

6.
J Chem Phys ; 159(15)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37846951

RESUMEN

Reliable prediction of the ground-state spin and magnetic coupling constants in transition-metal complexes is a well-known challenge for density functional theory (DFT). One popular strategy for addressing this long-standing issue involves the modification of the fraction of Fock exchange in a hybrid functional. Here we explore the viability of this approach using three polynuclear metal-organic complexes based on a Ni4O4 cubane motif, having different ground state spin values (S = 0, 2, 4) owing to the use of different ligands. We systematically search for an optimum fraction of Fock exchange, across various global, range-separated, and double hybrid functionals. We find that for all functionals tested, at best there only exists a very narrow range of Fock exchange fractions which results in a correct prediction of the ground-state spin for all three complexes. The useful range is functional dependent, but general trends can be identified. Typically, at least two similar systems must be used in order to determine both an upper and lower limit of the optimal range. This is likely owing to conflicting demands of minimizing delocalization errors, which typically requires a higher percentage of Fock exchange, and addressing static correlation, which typically requires a lower one. Furthermore, we find that within the optimal range of Fock exchange, the sign and relative magnitude of Ni-Ni magnetic coupling constants are reasonably well reproduced, but there is still room for quantitative improvement in the prediction. Thus, the prediction of spin state and magnetic coupling in polynuclear complexes remains an ongoing challenge for DFT.

7.
J Am Chem Soc ; 144(12): 5304-5314, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35293741

RESUMEN

We revisit the important issues of polymorphism, structure, and nucleation of cholesterol·H2O using first-principles calculations based on dispersion-augmented density functional theory. For the lesser known monoclinic polymorph, we obtain a fully extended H-bonded network in a structure akin to that of hexagonal ice. We show that the energy of the monoclinic and triclinic polymorphs is similar, strongly suggesting that kinetic and environmental effects play a significant role in determining polymorph nucleation. Furthermore, we find evidence in support of various O-H···O bonding motifs in both polymorphs that may result in hydroxyl disorder. We have been able to explain, via computation, why a single cholesterol bilayer in hydrated membranes always crystallizes in the monoclinic polymorph. We rationalize what we believe is a single-crystal to single-crystal transformation of the monoclinic form on increased interlayer growth beyond that of a single cholesterol bilayer, interleaved by a water bilayer. We show that the ice-like structure is also relevant to the related cholestanol·2H2O and stigmasterol·H2O crystals. The structure of stigmasterol hydrate both as a trilayer film at the air-water interface and as a macroscopic crystal further assists us in understanding the polymorphic and thermal behavior of cholesterol·H2O. Finally, we posit a possible role for one of the sterol esters in the crystallization of cholesterol·H2O in pathological environments, based on a composite of a crystalline bilayer of cholesteryl palmitate bound epitaxially as a nucleating agent to the monoclinic cholesterol·H2O form.


Asunto(s)
Colesterol , Agua , Colesterol/química , Cristalización , Agua/química
8.
Inorg Chem ; 61(51): 20725-20733, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36512733

RESUMEN

Conjugated arrays composed of corrole macrocycles are increasingly more common, but their chemistry still lags behind that of their porphyrin counterparts. Here, we report on the insertion of iron(III) into a ß,ß-fused corrole dimer and on the electronic effects that this redox active metal center has on the already rich coordination chemistry of [H3tpfc] COT, where COT = cyclo-octatetraene and tpfc = tris(pentafluorophenyl)corrole. Synthetic manipulations were performed for the isolation and full characterization of both the 5-coordinate [FeIIItpfc(py)]2COT and 6-coordinate [FeIIItpfc(py)2]2COT, with one and two axial pyridine ligands per metal, respectively. X-Ray crystallography reveals a dome-shaped structure for [FeIIItpfc(py)]2COT and a perfectly planar geometry which (surprisingly at first) is also characterized by shorter Fe-N (corrole) and Fe-N (pyridine) distances. Computational investigations clarify that the structural phenomena are due to a change in the iron(III) spin state from intermediate (S = 3/2) to low (S = 1/2), and that both the 5- and 6-coordinated complexes are enthalpically favored. Yet, in contrast to iron(III) porphyrins, the formation enthalpy for the coordination of the first pyridine to Fe(III) corrole is more negative than that of the second pyridine coordination. Possible interactions between the two corrole subunits and the chelated iron ions were examined by UV-Vis spectroscopy, electrochemical techniques, and density functional theory (DFT). The large differences in the electronic spectra of the dimer relative to the monomer are concluded to be due to a reduced electronic gap, owing to the extensive electron delocalization through the fusing bridge. A cathodic sweep for the dimer discloses two redox processes, separated by 230 mV. The DFT self-consistent charge density for the neutral and cationic states (1- and 2-electron oxidized) reveals that the holes are localized on the macrocycle. A different picture emerges from the reduction process, where both the electrochemistry and the calculated charge density point toward two consecutive electron transfers with similar energetics, indicative of very weak electron communication between the two redox active iron(III) sites. The binuclear complex was determined to be a much better catalyst for the electrochemical hydrogen evolution reaction (HER) than the analogous mononuclear corrole.

9.
Phys Chem Chem Phys ; 24(47): 28700-28781, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269074

RESUMEN

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.


Asunto(s)
Ciencia de los Materiales , Humanos
10.
J Chem Phys ; 154(9): 094125, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685152

RESUMEN

Two important extensions of Kohn-Sham (KS) theory are generalized: KS theory and ensemble KS theory. The former allows for non-multiplicative potential operators and greatly facilitates practical calculations with advanced, orbital-dependent functionals. The latter allows for quantum ensembles and enables the treatment of open systems and excited states. Here, we combine the two extensions, both formally and practically, first via an exact yet complicated formalism and then via a computationally tractable variant that involves a controlled approximation of ensemble "ghost interactions" by means of an iterative algorithm. The resulting formalism is illustrated using selected examples. This opens the door to the application of generalized KS theory in more challenging quantum scenarios and to the improvement of ensemble theories for the purpose of practical and accurate calculations.

11.
Proc Natl Acad Sci U S A ; 115(10): 2299-2304, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463710

RESUMEN

The eyes of some aquatic animals form images through reflective optics. Shrimp, lobsters, crayfish, and prawns possess reflecting superposition compound eyes, composed of thousands of square-faceted eye units (ommatidia). Mirrors in the upper part of the eye (the distal mirror) reflect light collected from many ommatidia onto the photosensitive elements of the retina, the rhabdoms. A second reflector, the tapetum, underlying the retina, back-scatters dispersed light onto the rhabdoms. Using microCT and cryo-SEM imaging accompanied by in situ micro-X-ray diffraction and micro-Raman spectroscopy, we investigated the hierarchical organization and materials properties of the reflective systems at high resolution and under close-to-physiological conditions. We show that the distal mirror consists of three or four layers of plate-like nanocrystals. The tapetum is a diffuse reflector composed of hollow nanoparticles constructed from concentric lamellae of crystals. Isoxanthopterin, a pteridine analog of guanine, forms both the reflectors in the distal mirror and in the tapetum. The crystal structure of isoxanthopterin was determined from crystal-structure prediction calculations and verified by comparison with experimental X-ray diffraction. The extended hydrogen-bonded layers of the molecules result in an extremely high calculated refractive index in the H-bonded plane, n = 1.96, which makes isoxanthopterin crystals an ideal reflecting material. The crystal structure of isoxanthopterin, together with a detailed knowledge of the reflector superstructures, provide a rationalization of the reflective optics of the crustacean eye.


Asunto(s)
Decápodos/fisiología , Células Fotorreceptoras/química , Retina/química , Xantopterina/química , Animales , Cristalografía por Rayos X , Nanopartículas/química , Retina/citología
12.
Proc Natl Acad Sci U S A ; 115(2): 284-289, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279373

RESUMEN

Organic materials are promising candidates for advanced optoelectronics and are used in light-emitting diodes and photovoltaics. However, the underlying mechanisms allowing the formation of excited states responsible for device functionality, such as exciton generation and charge separation, are insufficiently understood. This is partly due to the wide range of existing crystalline polymorphs depending on sample preparation conditions. Here, we determine the linear optical response of thin-film single-crystal perylene samples of distinct polymorphs in transmission and reflection geometries. The sample quality allows for unprecedented high-resolution spectroscopy, which offers an ideal opportunity for judicious comparison between theory and experiment. Excellent agreement with first-principles calculations for the absorption based on the GW plus Bethe-Salpeter equation (GW-BSE) approach of many-body perturbation theory (MBPT) is obtained, from which a clear picture of the low-lying excitations in perylene emerges, including evidence of an exciton-polariton stopband, as well as an assessment of the commonly used Tamm-Dancoff approximation to the GW-BSE approach. Our findings on this well-controlled system can guide understanding and development of advanced molecular solids and functionalization for applications.

13.
Phys Chem Chem Phys ; 22(29): 16467-16481, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32661542

RESUMEN

The exact energy functional of density functional theory (DFT) is well known to obey various constraints. Three conditions that must be obeyed by the exact energy functional, but may or may not be obeyed by approximate ones, are often pointed out as important in general and for accurate computation of spectroscopic observables in particular. These are: (1) piecewise linearity as a function of the fractional particle number, (2) freedom from one-electron self-interaction, and (3) for a finite system, the functional derivative with respect to the density results in an asymptotic -1/r potential (in Hartree atomic units), where r is the distance from the system center. In this overview, we explain what these conditions are, what they address, and why each one is of importance for spectroscopy. We then show, using specific examples from the literature, that these three properties are related, but are not equivalent and need to be assessed individually.

14.
J Am Chem Soc ; 141(50): 19736-19745, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31762278

RESUMEN

The eyes of many fish contain a reflecting layer of organic crystals partially surrounding the photoreceptors of the retina, which are commonly believed to be composed of guanine. Here we study an unusual fish eye from Stizostedion lucioperca that contains two layers of organic crystals. The crystals in the outer layer are thin plates, whereas the crystals in the inner tapetum layer are block-shaped. We show that the outer layer indeed contains guanine crystals. Analyses of solutions of crystals from the inner layer indicated that the block-shaped crystals are composed of xanthopterin. A model of the structure of the block-shaped crystals was produced using symmetry arguments based on electron diffraction data followed by dispersion-augmented DFT calculations. The resulting crystal structure of xanthopterin included, however, a problematic repulsive interaction between C═O and N of two adjacent molecules. Knowing that dissolved 7,8-dihydroxanthopterin can oxidize to xanthopterin, we replaced xanthopterin with 7,8-dihydroxanthopterin in the model. An excellent fit was obtained with the powder X-ray diffraction pattern of the biogenic crystals. We then analyzed the biogenic block-shaped crystals in their solid state, using MALDI-TOF and Raman spectroscopy. All three methods unequivocally prove that the block-shaped crystals in the eye of S. lucioperca are crystals of 7,8-dihydroxanthopterin. On the basis of the eye anatomy, we deduce that the guanine crystals form a reflective layer producing the silvery color present on part of the eye surface, whereas the block-shaped crystals backscatter light into the retina in order to increase the light sensitivity of the eye.

15.
Phys Chem Chem Phys ; 21(36): 19805-19815, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31490521

RESUMEN

We report on previously unnoticed features of the exact Hartree-exchange and correlation potentials for atoms and ions treated via ensemble density functional theory, demonstrated on fractional ions of Li, C, and F. We show that these potentials, when treated separately, can reach non-vanishing asymptotic constant values in the outer region of spherical, spin unpolarized atoms. In the next leading order, the potentials resemble Coulomb potentials created by effective charges which have the peculiarity of not behaving as piecewise constants as a function of the electron number. We provide analytical derivations and complement them with numerical results using the inversion of the Kohn-Sham equations for interacting densities obtained by accurate quantum Monte Carlo calculations. The present results expand on the knowledge of crucial exact properties of Kohn-Sham systems, which can guide development of advanced exchange-correlation approximations.

16.
Phys Chem Chem Phys ; 21(39): 21875-21881, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553031

RESUMEN

Controlled modification of the semiconductor surface work function is of fundamental importance for improvements in the efficiency of (opto-)electronic devices. Binding amino acids to a semiconductor surface through their common carboxylic group offers a versatile tool for modulation of surface properties by the choice of their side chain. This approach is demonstrated here by tailoring the surface work function of indium tin oxide, one of the most abundant transparent electrodes in organic optoelectronic devices. We find that the work function can be systematically tuned by the side chain of the amino acid, resulting in either an increase or a decrease of the work function, over a large range of ∼250 meV. This side chain effect is mostly due to alteration of the dipole component perpendicular to the surface, with a generally smaller contribution for changes in surface band bending. These findings also shed light on electronic interactions at the interface between proteins and semiconductors, which are of importance for future bio-electronic devices.


Asunto(s)
Aminoácidos/química , Compuestos de Estaño/química , Adsorción , Técnicas Electroquímicas/métodos , Electrodos , Modelos Químicos , Conformación Molecular , Semiconductores , Relación Estructura-Actividad , Propiedades de Superficie
17.
Proc Natl Acad Sci U S A ; 113(39): 10785-90, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621456

RESUMEN

Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.


Asunto(s)
Alanina/química , Electrones , Péptidos/química , Triptófano/química , Electricidad , Modelos Teóricos , Temperatura
18.
Chemistry ; 24(20): 5173-5182, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28984392

RESUMEN

We assess the performance of the optimally tuned range-separated hybrid (OT-RSH) functional approach in predicting the ground-state electronic configuration and spin-state energetics of complexes that can potentially exhibit multiple spin configurations. To that end, we investigate eight iron complexes: four spin-crossover complexes, for which reference data from other approximate density functionals are available, and four smaller complexes, for which reference ab initio data are available. We show that the spin-state energetics are mostly governed by the percentage of short-range exact exchange and are only weakly influenced by the choice of the range-separation parameter. However, the electronic structure, especially the fundamental gap, is much more sensitive to the range-separation parameter. We further find that correct prediction of the ground state in spin-crossover compounds requires a reduction in the amount of short-range exact exchange, likely owing to a larger role of static correlation.

19.
Phys Chem Chem Phys ; 20(10): 6860-6867, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29468242

RESUMEN

Peptide-based molecular electronic devices are promising due to the large diversity and unique electronic properties of biomolecules. These electronic properties can change considerably with peptide structure, allowing diverse design possibilities. In this work, we explore the effect of the side-chain of the peptide on its electronic properties, by using both experimental and computational tools to detect the electronic energy levels of two model peptides. The peptides include 2Ala and 2Trp as well as their 3-mercaptopropionic acid linker which is used to form monolayers on an Au surface. Specifically, we compare experimental ultraviolet photoemission spectroscopy measurements with density functional theory based computational results. By analyzing differences in frontier energy levels and molecular orbitals between peptides in gas-phase and in a monolayer on gold, we find that the electronic properties of the peptide side-chain are maintained during binding of the peptide to the gold substrate. This indicates that the energy barrier for the peptide electron transport can be tuned by the amino acid compositions, which suggests a route for structural design of peptide-based electronic devices.


Asunto(s)
Dipéptidos/química , Simulación de Dinámica Molecular , Ácido 3-Mercaptopropiónico/química , Adsorción , Aminoácidos/química , Transporte de Electrón , Electrones , Gases , Oro/química , Conformación Molecular , Propiedades de Superficie , Rayos Ultravioleta
20.
J Chem Phys ; 148(17): 174101, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29739200

RESUMEN

By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA