Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.974
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38521060

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Corteza Prefrontal , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Análisis de Expresión Génica de una Sola Célula
2.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34314701

RESUMEN

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Asunto(s)
Cerebro/patología , Proteína 4 Similar a ELAV/genética , Ácido Glutámico/metabolismo , Mutación/genética , Neuronas/patología , Organoides/metabolismo , Empalme del ARN/genética , Proteínas tau/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Biomarcadores/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Muerte Celular/efectos de los fármacos , Línea Celular , Humanos , Hidrazonas/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Organoides/efectos de los fármacos , Organoides/ultraestructura , Fosforilación/efectos de los fármacos , Pirimidinas/farmacología , Empalme del ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Gránulos de Estrés/efectos de los fármacos , Gránulos de Estrés/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
3.
Cell ; 173(3): 665-676.e14, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29551272

RESUMEN

Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional/métodos , Ingeniería Genética/métodos , Ingeniería de Proteínas/métodos , ARN/análisis , Empalme Alternativo , Animales , Proteínas Bacterianas/metabolismo , Diferenciación Celular , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Lentivirus/genética , Ratones , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , Ruminococcus , Análisis de Secuencia de ARN , Transcriptoma
4.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677515

RESUMEN

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Asunto(s)
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Unión a ARN/química , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cationes , Metilación de ADN , Demencia Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteína FUS de Unión a ARN/metabolismo , Tirosina/química , Xenopus laevis
5.
Annu Rev Neurosci ; 47(1): 123-143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663088

RESUMEN

Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.


Asunto(s)
Envejecimiento , Retrovirus Endógenos , Enfermedades Neurodegenerativas , Retroelementos , Humanos , Enfermedades Neurodegenerativas/genética , Retroelementos/genética , Retrovirus Endógenos/genética , Animales , Envejecimiento/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Cell ; 171(5): 994-1000, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149615

RESUMEN

Eukaryotic translation is tightly regulated to ensure that protein production occurs at the right time and place. Recent studies on abnormal repeat proteins, especially in age-dependent neurodegenerative diseases caused by nucleotide repeat expansion, have highlighted or identified two forms of unconventional translation initiation: usage of AUG-like sites (near cognates) or repeat-associated non-AUG (RAN) translation. We discuss how repeat proteins may differ due to not just unconventional initiation, but also ribosomal frameshifting and/or imperfect repeat DNA replication, expansion, and repair, and we highlight how research on translation of repeats may uncover insights into the biology of translation and its contribution to disease.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Biosíntesis de Proteínas , Animales , Codón Iniciador , Sistema de Lectura Ribosómico , Humanos , Enfermedades Neurodegenerativas/metabolismo , Sistemas de Lectura Abierta , Secuencias Reguladoras de Ácido Ribonucleico , Expansión de Repetición de Trinucleótido
7.
Trends Biochem Sci ; 47(1): 6-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34366183

RESUMEN

RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Mol Cell ; 69(3): 465-479.e7, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29358076

RESUMEN

hnRNPA2, a component of RNA-processing membraneless organelles, forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone. Here we provide a unified structural view of hnRNPA2 self-assembly, aggregation, and interaction and the distinct effects of small chemical changes-disease mutations and arginine methylation-on these assemblies. The hnRNPA2 low-complexity (LC) domain is compact and intrinsically disordered as a monomer, retaining predominant disorder in a liquid-liquid phase-separated form. Disease mutations D290V and P298L induce aggregation by enhancing and extending, respectively, the aggregation-prone region. Co-aggregating in disease inclusions, hnRNPA2 LC directly interacts with and induces phase separation of TDP-43. Conversely, arginine methylation reduces hnRNPA2 phase separation, disrupting arginine-mediated contacts. These results highlight the mechanistic role of specific LC domain interactions and modifications conserved across many hnRNP family members but altered by aggregation-causing pathological mutations.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Arginina/genética , Arginina/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Imagen por Resonancia Magnética/métodos , Metilación , Mutación , Neuronas/metabolismo , Neuronas/patología , Procesamiento Proteico-Postraduccional
9.
Proc Natl Acad Sci U S A ; 120(3): e2217759120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626563

RESUMEN

Tau aggregates are a hallmark of multiple neurodegenerative diseases and can contain RNAs and RNA-binding proteins, including serine/arginine repetitive matrix protein 2 (SRRM2) and pinin (PNN). However, how these nuclear proteins mislocalize and their influence on the prion-like propagation of tau aggregates is unknown. We demonstrate that polyserine repeats in SRRM2 and PNN are necessary and sufficient for recruitment to tau aggregates. Moreover, we show tau aggregates preferentially grow in association with endogenous cytoplasmic assemblies-mitotic interchromatin granules and cytoplasmic speckles (CSs)-which contain SRRM2 and PNN. Polyserine overexpression in cells nucleates assemblies that are sites of tau aggregate growth. Further, modulating the levels of polyserine-containing proteins results in a corresponding change in tau aggregation. These findings define a specific protein motif, and cellular condensates, that promote tau aggregate propagation. As CSs form in induced pluripotent stem cell (iPSC) derived neurons under inflammatory or hyperosmolar stress, they may affect tau aggregate propagation in neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo , Péptidos , Enfermedad de Alzheimer/metabolismo
10.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858079

RESUMEN

Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.


Asunto(s)
Espinas Dendríticas , Demencia Frontotemporal , Mutación , Isoformas de Proteínas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/genética , Animales , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Ratas , Masculino , Humanos , Femenino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Ratas Sprague-Dawley , Hipocampo/metabolismo , Hipocampo/patología , Células Cultivadas
11.
Trends Genet ; 38(9): 889-891, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35773026

RESUMEN

Pathology formed by the protein TDP-43 (TAR DNA binding protein 43) is the hallmark of several neurodegenerative diseases. Recent studies by Ma et al. and Brown et al. reveal that loss of TDP-43 function causes inclusion of cryptic exons in specific mRNAs, including the synaptic gene UNC13A, a known genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These findings suggest new disease mechanisms.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Exones , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Enfermedades Neurodegenerativas/genética , ARN Mensajero/metabolismo
12.
Trends Genet ; 38(9): 944-955, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35637073

RESUMEN

Frontotemporal dementia (FTD) is a primary cause of dementia encompassing a broad range of clinical phenotypes and cellular pathologies. Genetic discoveries in FTD have largely been driven by linkage studies in well-documented extended families, explaining most of the patients with a known pathogenic mutation. In the context of complex diseases, it is hypothesized that mutations with reduced penetrance or a combination of low-effect size variants with environmental factors drive disease. Furthermore, these genes are likely to be part of the interaction networks of known FTD genes, contributing to converging cellular processes. In this review, we examine gene discovery approaches in FTD and introduce network biology concepts as tools to assist gene identification studies in genetically complex disease.


Asunto(s)
Demencia Frontotemporal , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Ligamiento Genético , Humanos , Mutación , Fenotipo
13.
Brain ; 147(2): 590-606, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703311

RESUMEN

Frontotemporal lobar degeneration with tau (FTLD-tau) is a group of tauopathies that underlie ∼50% of FTLD cases. Identification of genetic risk variants related to innate/adaptive immunity have highlighted a role for neuroinflammation and neuroimmune interactions in FTLD. Studies have shown microglial and astrocyte activation together with T cell infiltration in the brain of THY-Tau22 tauopathy mice. However, this remains to be confirmed in FTLD-tau patients. We conducted a detailed post-mortem study of FTLD-tau cases including 45 progressive supranuclear palsy with clinical frontotemporal dementia, 33 Pick's disease, 12 FTLD-MAPT and 52 control brains to characterize the link between phosphorylated tau (pTau) epitopes and the innate and adaptive immunity. Tau pathology was assessed in the cerebral cortex using antibodies directed against: Tau-2 (phosphorylated and unphosphorylated tau), AT8 (pSer202/pThr205), AT100 (pThr212/pSer214), CP13 (pSer202), PHF1 (pSer396/pSer404), pThr181 and pSer356. The immunophenotypes of microglia and astrocytes were assessed with phenotypic markers (Iba1, CD68, HLA-DR, CD64, CD32a, CD16 for microglia and GFAP, EAAT2, glutamine synthetase and ALDH1L1 for astrocytes). The adaptive immune response was explored via CD4+ and CD8+ T cell quantification and the neuroinflammatory environment was investigated via the expression of 30 inflammatory-related proteins using V-Plex Meso Scale Discovery. As expected, all pTau markers were increased in FTLD-tau cases compared to controls. pSer356 expression was greatest in FTLD-MAPT cases versus controls (P < 0.0001), whereas the expression of other markers was highest in Pick's disease. Progressive supranuclear palsy with frontotemporal dementia consistently had a lower pTau protein load compared to Pick's disease across tau epitopes. The only microglial marker increased in FTLD-tau was CD16 (P = 0.0292) and specifically in FTLD-MAPT cases (P = 0.0150). However, several associations were detected between pTau epitopes and microglia, supporting an interplay between them. GFAP expression was increased in FTLD-tau (P = 0.0345) with the highest expression in Pick's disease (P = 0.0019), while ALDH1L1 was unchanged. Markers of astrocyte glutamate cycling function were reduced in FTLD-tau (P = 0.0075; Pick's disease: P < 0.0400) implying astrocyte reactivity associated with a decreased glutamate cycling activity, which was further associated with pTau expression. Of the inflammatory proteins assessed in the brain, five chemokines were upregulated in Pick's disease cases (P < 0.0400), consistent with the recruitment of CD4+ (P = 0.0109) and CD8+ (P = 0.0014) T cells. Of note, the CD8+ T cell infiltration was associated with pTau epitopes and microglial and astrocytic markers. Our results highlight that FTLD-tau is associated with astrocyte reactivity, remarkably little activation of microglia, but involvement of adaptive immunity in the form of chemokine-driven recruitment of T lymphocytes.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de Pick , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Epítopos , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/patología , Glutamatos , Enfermedad de Pick/patología , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Tauopatías/patología
14.
Brain ; 147(7): 2357-2367, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38227807

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10%-15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of frontotemporal lobar degeneration (FTLD) in MND is difficult to estimate. In this work we describe a large clinicopathological series of MND patients, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multicentre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups. We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD (P < 0.001). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND (P = 0.023), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% versus 61.4%; P < 0.001). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72. We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.


Asunto(s)
Degeneración Lobar Frontotemporal , Enfermedad de la Neurona Motora , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/genética , Estudios Retrospectivos , Enfermedad de la Neurona Motora/patología , Enfermedad de la Neurona Motora/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/genética , Encéfalo/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
15.
Brain ; 147(9): 3048-3058, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38426222

RESUMEN

Frontotemporal dementia (FTD) is a disease of high heterogeneity, apathy and disinhibition present in all subtypes of FTD and imposes a significant burden on families/society. Traditional neuroimaging analysis has limitations in elucidating the network localization due to individual clinical and neuroanatomical variability. The study aims to identify the atrophy network map associated with different FTD clinical subtypes and determine the specific localization of the network for apathy and disinhibition. Eighty FTD patients [45 behavioural variant FTD (bvFTD) and 35 semantic variant progressive primary aphasia (svPPA)] and 58 healthy controls at Xuanwu Hospital were enrolled as Dataset 1; 112 FTD patients including 50 bvFTD, 32 svPPA and 30 non-fluent variant PPA (nfvPPA) cases, and 110 healthy controls from the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) dataset were included as Dataset 2. Initially, single-subject atrophy maps were defined by comparing cortical thickness in each FTD patient versus healthy controls. Next, the network of brain regions functionally connected to each FTD patient's location of atrophy was determined using seed-based functional connectivity in a large (n = 1000) normative connectome. Finally, we used atrophy network mapping to define clinical subtype-specific network (45 bvFTD, 35 svPPA and 58 healthy controls in Dataset 1; 50 bvFTD, 32 svPPA, 30 nfvPPA and 110 healthy controls in Dataset 2) and symptom-specific networks [combined Datasets 1 and 2, apathy without depression versus non-apathy without depression (80:26), disinhibition versus non-disinhibition (88:68)]. We compare the result with matched symptom networks derived from patients with focal brain lesions or conjunction analysis. Through the analysis of two datasets, we identified heterogeneity in atrophy patterns among FTD patients. However, these atrophy patterns are connected to a common brain network. The primary regions affected by atrophy in FTD included the frontal and temporal lobes, particularly the anterior temporal lobe. bvFTD connects to frontal and temporal cortical areas, svPPA mainly impacts the anterior temporal region and nfvPPA targets the inferior frontal gyrus and precentral cortex regions. The apathy-specific network was localized in the orbital frontal cortex and ventral striatum, while the disinhibition-specific network was localized in the bilateral orbital frontal gyrus and right temporal lobe. Apathy and disinhibition atrophy networks resemble known motivational and criminal lesion networks, respectively. A significant correlation was found between the apathy/disinhibition scores and functional connectivity between atrophy maps and the peak of the networks. This study localizes the common network of clinical subtypes and main symptoms in FTD, guiding future FTD neuromodulation interventions.


Asunto(s)
Atrofia , Demencia Frontotemporal , Imagen por Resonancia Magnética , Humanos , Demencia Frontotemporal/patología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/psicología , Atrofia/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Apatía/fisiología , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Conectoma
16.
Brain ; 147(4): 1149-1165, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134315

RESUMEN

Repetitive behaviours are common manifestations of frontotemporal dementia (FTD). Patients with FTD exhibit various types of repetitive behaviours with unique behavioural and cognitive substrates, including compulsivity, lack of impulse control, stereotypy and hoarding. Other sources of repetitive behaviours, such as restrictive interests and insistence on sameness, may also be seen in FTD. Although repetitive behaviours are highly prevalent and potentially discriminatory in this population, their expression varies widely between patients, and the field lacks consensus about the classification of these behaviours. Terms used to describe repetitive behaviours in FTD are highly heterogeneous and may lack precise definitions. This lack of harmonization of the definitions for distinct forms of repetitive behaviour limits the ability to differentiate between pathological behaviours and impedes understanding of their underlying mechanisms. This review examines established definitions of well-characterized repetitive behaviours in other neuropsychiatric disorders and proposes operational definitions applicable to patients with FTD. Building on extant models of repetitive behaviours in non-human and lesion work and models of social behavioural changes in FTD, we describe the potential neurocognitive bases for the emergence of different types of repetitive behaviours in FTD and their potential perpetuation by a predisposition towards habit formation. Finally, examples of distinct therapeutic approaches for different forms of repetitive behaviours are highlighted, along with future directions to accurately classify, measure and treat these symptoms when they impair quality of life.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico , Calidad de Vida , Conducta Compulsiva , Cognición
17.
Brain ; 147(4): 1483-1496, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37831661

RESUMEN

There is a longstanding ambiguity regarding the clinical diagnosis of dementia syndromes predominantly targeting executive functions versus behaviour and personality. This is due to an incomplete understanding of the macro-scale anatomy underlying these symptomatologies, a partial overlap in clinical features and the fact that both phenotypes can emerge from the same pathology and vice versa. We collected data from a patient cohort of which 52 had dysexecutive Alzheimer's disease, 30 had behavioural variant frontotemporal dementia (bvFTD), seven met clinical criteria for bvFTD but had Alzheimer's disease pathology (behavioural Alzheimer's disease) and 28 had amnestic Alzheimer's disease. We first assessed group-wise differences in clinical and cognitive features and patterns of fluorodeoxyglucose (FDG) PET hypometabolism. We then performed a spectral decomposition of covariance between FDG-PET images to yield latent patterns of relative hypometabolism unbiased by diagnostic classification, which are referred to as 'eigenbrains'. These eigenbrains were subsequently linked to clinical and cognitive data and meta-analytic topics from a large external database of neuroimaging studies reflecting a wide range of mental functions. Finally, we performed a data-driven exploratory linear discriminant analysis to perform eigenbrain-based multiclass diagnostic predictions. Dysexecutive Alzheimer's disease and bvFTD patients were the youngest at symptom onset, followed by behavioural Alzheimer's disease, then amnestic Alzheimer's disease. Dysexecutive Alzheimer's disease patients had worse cognitive performance on nearly all cognitive domains compared with other groups, except verbal fluency which was equally impaired in dysexecutive Alzheimer's disease and bvFTD. Hypometabolism was observed in heteromodal cortices in dysexecutive Alzheimer's disease, temporo-parietal areas in amnestic Alzheimer's disease and frontotemporal areas in bvFTD and behavioural Alzheimer's disease. The unbiased spectral decomposition analysis revealed that relative hypometabolism in heteromodal cortices was associated with worse dysexecutive symptomatology and a lower likelihood of presenting with behaviour/personality problems, whereas relative hypometabolism in frontotemporal areas was associated with a higher likelihood of presenting with behaviour/personality problems but did not correlate with most cognitive measures. The linear discriminant analysis yielded an accuracy of 82.1% in predicting diagnostic category and did not misclassify any dysexecutive Alzheimer's disease patient for behavioural Alzheimer's disease and vice versa. Our results strongly suggest a double dissociation in that distinct macro-scale underpinnings underlie predominant dysexecutive versus personality/behavioural symptomatology in dementia syndromes. This has important implications for the implementation of criteria to diagnose and distinguish these diseases and supports the use of data-driven techniques to inform the classification of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/patología , Fluorodesoxiglucosa F18 , Demencia Frontotemporal/patología , Función Ejecutiva , Corteza Cerebral/patología , Pruebas Neuropsicológicas
18.
Brain ; 147(7): 2289-2307, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38451707

RESUMEN

Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Terminales Presinápticos , Sinapsis , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/fisiopatología , Sinapsis/patología , Terminales Presinápticos/patología , Terminales Presinápticos/metabolismo , Animales , Mutación
19.
Brain ; 147(6): 1953-1966, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38334506

RESUMEN

Impaired social cognition is a core deficit in frontotemporal dementia (FTD). It is most commonly associated with the behavioural-variant of FTD, with atrophy of the orbitofrontal and ventromedial prefrontal cortex. Social cognitive changes are also common in semantic dementia, with atrophy centred on the anterior temporal lobes. The impairment of social behaviour in FTD has typically been attributed to damage to the orbitofrontal cortex and/or temporal poles and/or the uncinate fasciculus that connects them. However, the relative contributions of each region are unresolved. In this review, we present a unified neurocognitive model of controlled social behaviour that not only explains the observed impairment of social behaviours in FTD, but also assimilates both consistent and potentially contradictory findings from other patient groups, comparative neurology and normative cognitive neuroscience. We propose that impaired social behaviour results from damage to two cognitively- and anatomically-distinct components. The first component is social-semantic knowledge, a part of the general semantic-conceptual system supported by the anterior temporal lobes bilaterally. The second component is social control, supported by the orbitofrontal cortex, medial frontal cortex and ventrolateral frontal cortex, which interacts with social-semantic knowledge to guide and shape social behaviour.


Asunto(s)
Demencia Frontotemporal , Conducta Social , Humanos , Demencia Frontotemporal/patología , Demencia Frontotemporal/psicología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/fisiopatología , Cognición Social , Cognición/fisiología
20.
Brain ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018014

RESUMEN

Clinical variants of Alzheimer's disease and frontotemporal lobar degeneration display a spectrum of cognitive-behavioural changes varying between individuals and over time. Understanding the landscape of these graded individual-/group-level longitudinal variations is critical for precise phenotyping; however, this remains challenging to model. Addressing this challenge, we leverage the National Alzheimer's Coordinating Center database to derive a unified geometric framework of graded longitudinal phenotypic variation in Alzheimer's disease and frontotemporal lobar degeneration. We included three time-point, cognitive-behavioural and clinical data from 390 typical, atypical and intermediate Alzheimer's disease and frontotemporal lobar degeneration variants (114 typical Alzheimer's disease; 107 behavioural variant frontotemporal dementia; 42 motor variants of frontotemporal lobar degeneration; and 103 primary progressive aphasia patients). On this data, we applied advanced data-science approaches to derive low-dimensional geometric spaces capturing core features underpinning clinical progression of Alzheimer's disease and frontotemporal lobar degeneration syndromes. To do so, we first used principal component analysis to derive six axes of graded longitudinal phenotypic variation capturing patient-specific movement along and across these axes. Then, we distilled these axes into a visualisable 2D manifold of longitudinal phenotypic variation using Uniform Manifold Approximation and Projection. Both geometries together enabled the assimilation and inter-relation of paradigmatic and mixed cases, capturing dynamic individual trajectories, and linking syndromic variability to neuropathology and key clinical end-points such as survival. Through these low-dimensional geometries, we show that (i) specific syndromes (Alzheimer's disease and primary progressive aphasia) converge over time into a de-differentiated pooled phenotype, while others (frontotemporal dementia variants) diverge to look different from this generic phenotype; (ii) phenotypic diversification is predicted by simultaneous progression along multiple axes, varying in a graded manner between individuals and syndromes; and (iii) movement along specific principal axes predicts survival at 36 months in a syndrome-specific manner and in individual pathological groupings. The resultant mapping of dynamics underlying cognitive-behavioural evolution potentially holds paradigm-changing implications to predicting phenotypic diversification and phenotype-neurobiological mapping in Alzheimer's disease and frontotemporal lobar degeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA