Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.684
Filtrar
Más filtros

Intervalo de año de publicación
1.
Semin Immunol ; 67: 101753, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060806

RESUMEN

Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.


Asunto(s)
Fusarium , Queratitis , Humanos , Hongos , Córnea/microbiología , Córnea/patología , Queratitis/microbiología , Queratitis/patología , Fusarium/fisiología , Neutrófilos
2.
Nat Immunol ; 15(2): 143-51, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362892

RESUMEN

Here we identified a population of bone marrow neutrophils that constitutively expressed the transcription factor RORγt and produced and responded to interleukin 17A (IL-17A (IL-17)). IL-6, IL-23 and RORγt, but not T cells or natural killer (NK) cells, were required for IL-17 production in neutrophils. IL-6 and IL-23 induced expression of the receptors IL-17RC and dectin-2 on neutrophils, and IL-17RC expression was augmented by activation of dectin-2. Autocrine activity of IL-17A and its receptor induced the production of reactive oxygen species (ROS), and increased fungal killing in vitro and in a model of Aspergillus-induced keratitis. Human neutrophils also expressed RORγt and induced the expression of IL-17A, IL-17RC and dectin-2 following stimulation with IL-6 and IL-23. Our findings identify a population of human and mouse neutrophils with autocrine IL-17 activity that probably contribute to the etiology of microbial and inflammatory diseases.


Asunto(s)
Aspergilosis/inmunología , Aspergillus/inmunología , Interleucina-17/metabolismo , Queratitis/inmunología , Neutrófilos/inmunología , Receptores de Interleucina/metabolismo , Animales , Aspergilosis/complicaciones , Comunicación Autocrina , Células de la Médula Ósea/inmunología , Degranulación de la Célula , Células Cultivadas , Citotoxicidad Inmunológica/genética , Modelos Animales de Enfermedad , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-23/inmunología , Interleucina-6/inmunología , Queratitis/etiología , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
J Biol Chem ; 300(3): 105701, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301897

RESUMEN

Fungal keratitis is the foremost cause of corneal infections worldwide, of which Fusariumspp. is the common etiological agent that causes loss of vision and warrants surgical intervention. An increase in resistance to the available drugs along with severe side effects of the existing antifungals demands for new effective antimycotics. Here, we demonstrate that antimicrobial peptide S100A12 directly binds to the phospholipids of the fungal membrane, disrupts the structural integrity, and induces generation of reactive oxygen species in fungus. In addition, it inhibits biofilm formation by Fusariumspp. and exhibits antifungal property against Fusariumspp. both in vitro and in vivo. Taken together, our results delve into specific effect of S100A12 against Fusariumspp. with an aim to investigate new antifungal compounds to combat fungal keratitis.


Asunto(s)
Antifúngicos , Biopelículas , Membrana Celular , Fusarium , Proteína S100A12 , Antifúngicos/metabolismo , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Infecciones Fúngicas del Ojo/microbiología , Fusarium/efectos de los fármacos , Queratitis/microbiología , Proteína S100A12/metabolismo , Proteína S100A12/farmacología , Humanos , Membrana Celular/efectos de los fármacos , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
PLoS Pathog ; 19(10): e1011435, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37906600

RESUMEN

The Aspergillus fumigatus unfolded protein response (UPR) is a two-component relay consisting of the ER-bound IreA protein, which splices and activates the mRNA of the transcription factor HacA. Spliced hacA accumulates under conditions of acute ER stress in vitro, and UPR null mutants are hypovirulent in a murine model of invasive pulmonary infection. In this report, we demonstrate that a hacA deletion mutant (ΔhacA) is furthermore avirulent in a model of fungal keratitis, a corneal infection, and an important cause of ocular morbidity and unilateral blindness worldwide. Interestingly, we demonstrate that A. fumigatus hacA is spliced in infected lung samples, but not in the cornea, suggesting the amount of ER stress experienced by the fungus varies upon the host niche. To better understand how the UPR contributes to fungal cell biology across a spectrum of ER-stress levels, we employed transcriptomics on the wild-type and ΔhacA strains in glucose minimal media (low stress), glucose minimal media with dithiothreitol (high stress), and gelatin minimal media as a proxy for the nutrient stress encountered in the cornea (mid-level stress). These data altogether reveal a unique HacA-dependent transcriptome under each condition, suggesting that HacA activity is finely-tuned and required for proper fungal adaptation in each environment. Taken together, our results indicate that the fungal UPR could serve as an important antifungal target in the setting of both invasive pulmonary and corneal infections.


Asunto(s)
Aspergillus fumigatus , Queratitis , Animales , Ratones , Respuesta de Proteína Desplegada , Queratitis/genética , Nutrientes , Glucosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
J Immunol ; 210(4): 398-407, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603009

RESUMEN

Pseudomonas aeruginosa provokes a painful, sight-threatening corneal infection. It progresses rapidly and is difficult to treat. In this study, using a mouse model of P. aeruginosa keratitis, we demonstrate the importance of a carbohydrate-binding protein, galectin-8 (Gal-8), in regulation of the innate immune response. First, using two distinct strains of P. aeruginosa, we established that Gal-8-/- mice are resistant to P. aeruginosa keratitis. In contrast, mice deficient in Gal-1, Gal-3, and Gal-9 were fully susceptible. Second, the addition of exogenous rGal-8 to LPS (TLR4 ligand)-stimulated bone marrow-derived macrophages suppressed 1) the activation of the NF-κB pathway, and 2) formation of the MD-2/TLR4 complex. Additionally, the expression level of reactive oxygen species was substantially higher in infected Gal-8-/- bone marrow neutrophils (BMNs) compared with the Gal-8+/+ BMNs, and the P. aeruginosa killing capacity of Gal-8-/- BMNs was considerably higher compared with that of Gal-8+/+ BMNs. In the bacterial killing assays, the addition of exogenous rGal-8 almost completely rescued the phenotype of Gal-8-/- BMNs. Finally, we demonstrate that a subconjunctival injection of a Gal-8 inhibitor markedly reduces the severity of infection in the mouse model of P. aeruginosa keratitis. These data lead us to conclude that Gal-8 downmodulates the innate immune response by suppressing activation of the TLR4 pathway and clearance of P. aeruginosa by neutrophils. These findings have broad implications for developing novel therapeutic strategies for treatment of conditions resulting from the hyperactive immune response both in ocular as well as nonocular tissues.


Asunto(s)
Queratitis , Infecciones por Pseudomonas , Animales , Ratones , Pseudomonas aeruginosa , Receptor Toll-Like 4 , Inmunidad Innata , Galectinas , Ratones Endogámicos C57BL
6.
Nano Lett ; 24(13): 4044-4053, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517749

RESUMEN

Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.


Asunto(s)
Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Queratitis , Animales , Ratones , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Úlcera de la Córnea/tratamiento farmacológico , Úlcera de la Córnea/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Córnea/microbiología
7.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38501672

RESUMEN

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Asunto(s)
Aspergillus fumigatus , Queratitis , Compuestos de Fenilurea , Humanos , Animales , Ratones , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipasa C gamma/metabolismo , Queratitis/microbiología , Pronóstico , Ratones Endogámicos C57BL
8.
Emerg Infect Dis ; 30(7): 1406-1409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38916573

RESUMEN

We describe a case of a 46-year-old man in Missouri, USA, with newly diagnosed advanced HIV and PCR-confirmed mpox keratitis. The keratitis initially resolved after intravenous tecovirimat and penicillin for suspected ocular syphilis coinfection. Despite a confirmatory negative PCR, he developed relapsed, ipsilateral PCR-positive keratitis and severe ocular mpox requiring corneal transplant.


Asunto(s)
Queratitis , Recurrencia , Humanos , Persona de Mediana Edad , Masculino , Queratitis/diagnóstico , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Missouri , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Sífilis/diagnóstico , Sífilis/tratamiento farmacológico
9.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739119

RESUMEN

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Asunto(s)
Antibacterianos , Biopelículas , Ciprofloxacina , Modelos Animales de Enfermedad , Queratitis , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Porcinos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Biopelículas/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Meropenem/farmacología
10.
Small ; 20(21): e2308403, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098457

RESUMEN

Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.


Asunto(s)
Queratitis , Agujas , Queratitis/tratamiento farmacológico , Animales , Ratones , Enzimas/metabolismo , Biopelículas/efectos de los fármacos , Humanos , Óxidos , Compuestos de Manganeso
11.
Int J Med Microbiol ; 314: 151602, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280372

RESUMEN

PURPOSE: Fusarium keratitis is a severe infection of the anterior eye, frequently leading to keratoplasty or surgical removal of the affected eye. A major risk factor for infection is the use of contact lenses. Inadequate hygiene precautions and mold-growth permissive storage fluids are important risk factors for fungal keratitis. The aim of this study was to comparatively analyze contact lens storage fluids disinfection efficacy against Fusarium species. METHODS: Eleven commercially available storage fluids were tested. The storage fluids were classified according to their active ingredients myristamidopropyldimethylamine (Aldox), polyhexanide and hydrogen peroxide. Efficacy was tested against isolates belonging to the Fusarium solani and Fusarium oxysporum species complexes as the most common agents of mould keratitis. Tests were carried out based on DIN EN ISO 14729. RESULTS: All Aldox and hydrogen peroxide (H2O2) based fluids were effective against Fusarium spp., while the majority of polyhexanide based storage fluids showed only limited or no antifungal effects. Efficacy of polyhexanide could be restored by the addition of the pH-regulating agent tromethamine - an additive component in one commercially available product. CONCLUSIONS: In summary, the use of Aldox- or hydrogen peroxide-based storage fluids may reduce the risk of Fusarium keratitis, while polyhexanide-based agents largely lack efficacy against Fusarium.


Asunto(s)
Biguanidas , Lentes de Contacto , Infecciones Fúngicas del Ojo , Fusarium , Queratitis , Propilaminas , Antifúngicos/farmacología , Peróxido de Hidrógeno/farmacología , Queratitis/prevención & control , Queratitis/microbiología , Lentes de Contacto/microbiología , Infecciones Fúngicas del Ojo/microbiología
12.
Am J Pathol ; 193(7): 883-898, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37146965

RESUMEN

Fungal keratitis remains a major cause of severe visual loss in developing countries because of limited choices of therapy. The progression of fungal keratitis is a race between the innate immune system and the outgrowth of fungal conidia. Programmed necrosis (necroptosis), a type of proinflammatory cell death, has been recognized as a critical pathologic change in several diseases. However, the role and potential regulatory mechanisms of necroptosis have not been investigated in corneal diseases. The current study showed, for the first time, that fungal infection triggered significant corneal epithelial necroptosis in human/mouse/in vitro models. Moreover, a reduction in excessive reactive oxygen species release effectively prevented necroptosis. NLRP3 knockout did not affect necroptosis in vivo. In contrast, ablation of necroptosis via RIPK3 knockout significantly delayed migration and inhibited the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in macrophages, which enhanced the progression of fungal keratitis. Taking these findings together, the study indicated that overproduction of reactive oxygen species in fungal keratitis leads to significant necroptosis in the corneal epithelium. Furthermore, the necroptotic stimuli-mediated NLRP3 inflammasome serves as a driving force in host defense against fungal infection.


Asunto(s)
Inflamasomas , Queratitis , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Necroptosis , Apoptosis/fisiología , Proteínas Quinasas/metabolismo , Estrés Oxidativo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
13.
Bioconjug Chem ; 35(6): 758-765, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38857526

RESUMEN

Bacterial keratitis, an ocular emergency, is the predominant cause of infectious keratitis. However, diagnostic procedures for it are invasive, time-consuming, and expeditious, thereby limiting effective treatment for the disease in the clinic. It is imperative to develop a timely and convenient method for the noninvasive diagnosis of bacterial keratitis. Fluorescence imaging is a convenient and noninvasive diagnostic method with high sensitivity. In this study, a type of nitroreductase-responsive probe (NTRP), which responds to nitroreductase to generate fluorescence signals, was developed as an activatable fluorescent probe for the imaging diagnosis of bacterial keratitis. Imaging experiments both in vitro and in vivo demonstrated that the probe exhibited "turn-on" fluorescence signals in response to nitroreductase-secreting bacteria within 10 min. Furthermore, the fluorescence intensity reached its highest at 4 or 6 h in vitro and at 30 min in vivo when the excitation wavelength was set at 520 nm. Therefore, the NTRP has the potential to serve as a feasible agent for the rapid and noninvasive in situ fluorescence diagnosis of bacterial keratitis.


Asunto(s)
Colorantes Fluorescentes , Queratitis , Nitrorreductasas , Colorantes Fluorescentes/química , Nitrorreductasas/metabolismo , Nitrorreductasas/análisis , Queratitis/diagnóstico , Queratitis/microbiología , Animales , Humanos , Imagen Óptica/métodos , Ratones
14.
Cytokine ; 175: 156483, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38159472

RESUMEN

PURPOSE: The purpose of this research study was to investigate the impact of schaftoside on Aspergillus fumigatus (A. fumigatus) keratitis and elucidate its underlying mechanisms. METHODS: In order to establish safe experimental concentrations of schaftoside in human corneal epithelial cells (HCECs), RAW264.7 cells, and mouse models, various techniques were employed including cytotoxicity assay (CCK-8) assay, cell scratch assay, and Draize test. The therapeutic effect of schaftoside was assessed using slit-lamp biomicroscopy, clinical scores, as well as determination of neutrophil infiltration through hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and myeloperoxidase (MPO) assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), pro-inflammatory mediators interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 were determined using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and IF techniques. RESULTS: Schaftoside at a concentration of 160 µM displayed no harmful side effects on HCECs, RAW cells, and mouse corneas, rendering it suitable for further experiments. In a murine fungal keratitis model, schaftoside mitigated the severity of fungal keratitis by inhibiting neutrophil infiltration and reducing MPO activity. Both in vitro and in vivo experiments demonstrated that schaftoside treatment suppressed the upregulation of IL-1ß, TNF-α, and IL-6 expression, while also downregulating the expressions of TLR4 as well as MyD88 at both mRNA and protein levels. CONCLUSIONS: Schaftoside demonstrated a protective effect against A. fumigatus keratitis by reducing corneal damage through inhibition of neutrophil recruitment and downstream inflammatory cytokines. The anti-inflammatory properties of schaftoside in A. fumigatus keratitis may involve modulation of the TLR4/MyD88 pathway.


Asunto(s)
Aspergilosis , Glicósidos , Queratitis , Animales , Ratones , Humanos , Aspergillus fumigatus , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Aspergilosis/tratamiento farmacológico , Interleucina-6/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Inflamación/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones Endogámicos C57BL
15.
Cytokine ; 179: 156626, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38678810

RESUMEN

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Asunto(s)
Antiinflamatorios , Aspergillus fumigatus , Queratitis , Lectinas Tipo C , Fármacos Neuroprotectores , Resveratrol , Proteínas Quinasas p38 Activadas por Mitógenos , Aspergillus fumigatus/efectos de los fármacos , Lectinas Tipo C/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Resveratrol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo
16.
Microb Pathog ; 189: 106606, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437994

RESUMEN

Fungal keratitis (FK) is a highly blinding infectious corneal disease caused by pathogenic fungi. Candida albicans (C. albicans) is one of the main pathogens of fungal keratitis. Extracellular vesicles (EVs), lipid bilayer compartments released by almost all living cells, including fungi, have garnered attention for their role in pathogenic microbial infection and host immune responses in recent years. Studies have reported that pretreating the host with fungal EVs can reduce the inflammatory response of the host when attacked by fungi and reduce the lethality of fungal infection. However, there are no studies that have evaluated whether C. albicans EVs can modulate the inflammatory response associated with C. albicans keratitis. Our study revealed that C. albicans EVs could activate the polymorphonuclear cells (PMNs) and promote their secretion of proinflammatory cytokines and nitric oxide (NO), enhance their phagocytic and fungicidal abilities against C. albicans. C. albicans EVs also induced a proinflammatory response in RAW264.7 cells, which was characterized by increased production of inflammatory cytokines and elevated expression of the chemokine CCL2. Similarly, stimulation of C. albicans EVs to RAW264.7 cells also enhanced the phagocytosis and killing ability of cells against C. albicans. Besides, in our in vivo experiments, after receiving subconjunctival injection of C. albicans EVs, C57BL/6 mice were infected with C. albicans. The results demonstrated that pre-exposure to C. albicans EVs could effectively diminish the severity of keratitis, reduce fungal load and improve prognosis. Overall, we conclude that C. albicans EVs can modulate the function of immune cells and play a protective role in C. albicans keratitis.


Asunto(s)
Vesículas Extracelulares , Queratitis , Animales , Ratones , Candida albicans/fisiología , Ratones Endogámicos C57BL , Queratitis/microbiología , Citocinas
17.
Exp Eye Res ; 240: 109771, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163580

RESUMEN

HSV1 presents as epithelial or stromal keratitis or keratouveitis and can lead to sight-threatening complications. KLF4, a critical transcription factor, and regulator of cell growth and differentiation, is essential in corneal epithelium stratification and homeostasis. Here, we want to understand the epigenetic modification specifically the methylation status of KLF4 in epithelium samples of HSV1 keratitis patients. After obtaining consent, epithelial scrapes were collected from 7 patients with clinically diagnosed HSV1 keratitis and 7 control samples (patients undergoing photorefractive keratectomy). Genomic DNA was isolated from the collected samples using the Qiagen DNeasy Kit. Subsequently, bisulfite modification was performed. The bisulphite-modified DNA was then subjected to PCR amplification using specific primers designed to target the KLF4, ACTB gene region, allowing for the amplification of methylated and unmethylated DNA sequences. The amplified DNA products were separated and visualized on a 3% agarose gel. KLF4 hypermethylation was found in 6 out of 7 (85.71%) eyes with viral keratitis, while 1 eye showed hypomethylation compared to PRK samples. Out of these 6, there were 2 each of epithelial dendritic keratitis, epithelial geographical keratitis, and neurotrophic keratitis. The patient with hypomethylated KLF4 had a recurrent case of HSV1 keratitis with multiple dendrites and associated vesicular lesions of the lip along with a history of fever. KLF4 hypermethylation in most viral keratitis cases indicated the under functioning of KLF4 and could indicate a potential association between KLF4 hypermethylation and the development or progression of HSV1 keratitis.


Asunto(s)
Epitelio Corneal , Infecciones Virales del Ojo , Queratitis , Humanos , ADN , Metilación de ADN , Epitelio Corneal/patología , Infecciones Virales del Ojo/genética , Infecciones Virales del Ojo/patología , Queratitis/patología
18.
Exp Eye Res ; 240: 109830, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364932

RESUMEN

Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1ß, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1ß, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.


Asunto(s)
Aspergilosis , Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Queratitis , Matrinas , Animales , Ratones , Aspergillus fumigatus/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-18 , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Piroptosis , Factor 2 Relacionado con NF-E2 , Queratitis/microbiología , Inflamación , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/metabolismo , Caspasa 1/metabolismo , Ratones Endogámicos C57BL
19.
Exp Eye Res ; 244: 109950, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815789

RESUMEN

Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.


Asunto(s)
Capsaicina , Supervivencia Celular , Epitelio Corneal , Lipopolisacáridos , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Capsaicina/análogos & derivados , Capsaicina/farmacología , Supervivencia Celular/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Antioxidantes/farmacología , Células Cultivadas , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/patología , Especies Reactivas de Oxígeno/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
20.
Exp Eye Res ; 242: 109863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494102

RESUMEN

PURPOSE: Pseudomonas aeruginosa-induced keratitis is one of the most severe and challenging forms of corneal infection, owing to its associated intense inflammatory reactions leading to corneal necrosis and dense corneal scar with loss of vision. Since mesenchymal stem cells (MSCs) are reported to possess antimicrobial and immunomodulatory properties, they can be tested as an adjuvant treatment along with the antibiotics which are the current standard of care. This study aims to investigate the anti-bacterial and immunomodulatory roles of human bone marrow MSC-derived conditioned medium (MSC-CM) in P. aeruginosa-infected human corneal epithelial cells (HCECs) in vitro. METHODS: The effect of MSC-CM on the growth of clinical isolates of P. aeruginosa was evaluated by colony-forming unit assay. The expression of inflammatory cytokines (IL-6 and TNF-α) and an antimicrobial peptide (Lipocalin 2) in lipopolysaccharide-treated MSCs and HCECs was analyzed through ELISA. Corneal epithelial repair following infection with P. aeruginosa was studied through scratch assay. RESULTS: Compared to control (P. aeruginosa (5*105) incubated in DMEM (1 ml) at 37 °C for 16 h), MSC-CM significantly: i) inhibits the growth of P. aeruginosa (159*109 vs. 104*109 CFU/ml), ii) accelerates corneal epithelial repair following infection with P. aeruginosa (9% vs. 24% closure of the wounded area after 12 h of infection), and iii) downregulates the lipopolysaccharide-induced expression of IL-6, TNF-α and Lipocalin 2 in HCECs. A combination of MSC-CM with an antibiotic, Ciprofloxacin moderately regulated the expression of IL-6, TNF-α, and Lipocalin 2. CONCLUSION: MSC-CM holds promise as an adjunctive therapeutic approach for P. aeruginosa-induced corneal epithelial damage.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Infecciones Bacterianas del Ojo , Células Madre Mesenquimatosas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Infecciones Bacterianas del Ojo/microbiología , Infecciones Bacterianas del Ojo/metabolismo , Infecciones Bacterianas del Ojo/patología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/tratamiento farmacológico , Células Madre Mesenquimatosas/metabolismo , Epitelio Corneal/microbiología , Epitelio Corneal/patología , Epitelio Corneal/metabolismo , Células Cultivadas , Queratitis/microbiología , Queratitis/metabolismo , Queratitis/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Medios de Cultivo Condicionados/farmacología , Prueba de Estudio Conceptual , Interleucina-6/metabolismo , Úlcera de la Córnea/microbiología , Úlcera de la Córnea/metabolismo , Úlcera de la Córnea/patología , Úlcera de la Córnea/tratamiento farmacológico , Lipocalina 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA