RESUMO
To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.
Assuntos
Proteômica , Imagem Individual de Molécula , DNA , Microscopia de Fluorescência/métodos , Neurônios , ProteínasRESUMO
Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.
Assuntos
Antígenos CD20 , Células , DNA , Microscopia de Fluorescência , Disciplinas das Ciências Biológicas/instrumentação , Disciplinas das Ciências Biológicas/métodos , Disciplinas das Ciências Biológicas/normas , Imunoterapia , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas , Código de Barras de DNA Taxonômico , DNA/análise , DNA/química , Antígenos CD20/análise , Antígenos CD20/química , Células/efeitos dos fármacos , Células/metabolismoRESUMO
State-of-the-art super-resolution microscopy allows researchers to spatially resolve single proteins in dense clusters. However, accurate quantification of protein organization and stoichiometries requires a general method to evaluate absolute binder labeling efficiency, which is currently unavailable. Here we introduce a universally applicable approach that uses a reference tag fused to a target protein of interest. By attaching high-affinity binders, such as antibodies or nanobodies, to both the reference tag and the target protein, and then employing DNA-barcoded sequential super-resolution imaging, we can correlate the location of the reference tag with the target molecule binder. This approach facilitates the precise quantification of labeling efficiency at the single-protein level.
Assuntos
Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Proteínas/química , Humanos , Coloração e Rotulagem/métodos , Imagem Individual de Molécula/métodos , Anticorpos de Domínio Único/química , DNA/químicaRESUMO
RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.
Assuntos
Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Rotavirus/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Grânulos de Ribonucleoproteínas Citoplasmáticas/efeitos dos fármacos , Grânulos de Ribonucleoproteínas Citoplasmáticas/ultraestrutura , Grânulos de Ribonucleoproteínas Citoplasmáticas/virologia , Regulação Viral da Expressão Gênica , Genes Reporter , Glicóis/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Haplorrinos , Interações Hospedeiro-Patógeno/genética , Humanos , Concentração Osmolar , Fosforilação , Propilenoglicol/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Rotavirus/ultraestrutura , Transdução de Sinais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genéticaRESUMO
Brain imaging studies in complex regional pain syndrome (CRPS) have found mixed evidence for functional and structural changes in CRPS. In this cross-sectional study, we evaluated two patient cohorts from different centers and examined functional connectivity (rsFC) in 51 CRPS patients and 50 matched controls. rsFC was compared in predefined ROI pairs, but also in non-hypothesis driven analyses. Resting state (rs)fMRI changes in default mode network (DMN) and the degree rank order disruption index (kD) were additionally evaluated. Finally, imaging parameters were correlated with clinical severity and somatosensory function. Among predefined pairs, we found only weakly to moderately lower functional connectivity between the right nucleus accumbens and bilateral ventromedial prefrontal cortex in the infra-slow oscillations (ISO) band. The unconstrained ROI-to-ROI analysis revealed lower rsFC between the periaqueductal gray matter (PAG) and left anterior insula, and higher rsFC between the right sensorimotor thalamus and nucleus accumbens. In the correlation analysis, pain was positively associated with insulo-prefrontal rsFC, whereas sensorimotor thalamo-cortical rsFC was positively associated with tactile spatial resolution of the affected side. In contrast to previous reports, we found no group differences for kD or rsFC in the DMN, but detected overall lower data quality in patients. In summary, while some of the previous results were not replicated despite the larger sample size, novel findings from two independent cohorts point to potential down-regulated antinociceptive modulation by the PAG and increased connectivity within the reward system as pathophysiological mechanisms in CRPS. However, in light of the detected systematic differences in data quality between patients and healthy subjects, validity of rsFC abnormalities in CRPS should be carefully scrutinized in future replication studies.
Assuntos
Síndromes da Dor Regional Complexa , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Síndromes da Dor Regional Complexa/fisiopatologia , Síndromes da Dor Regional Complexa/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Conectoma/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologiaRESUMO
OBJECTIVE: The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks. METHODS: MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained. RESULTS: The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs. CONCLUSION: Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.
Assuntos
Potencial Evocado Motor , Lateralidade Funcional , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Potencial Evocado Motor/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Motor/fisiologia , Lateralidade Funcional/fisiologia , Eletromiografia , Mapeamento EncefálicoRESUMO
BACKGROUND: To date, migraine is diagnosed exclusively based on clinical criteria, but fluid biomarkers are desirable to gain insight into pathophysiological processes and inform clinical management. We investigated the state-dependent profile of fluid biomarkers for neuroaxonal damage and microglial activation as two potentially relevant aspects in human migraine pathophysiology. METHODS: This exploratory study included serum and cerebrospinal fluid (CSF) samples of patients with migraine during the headache phase (ictally) (n = 23), between attacks (interictally) (n = 16), and age/sex-matched controls (n = 19). Total Tau (t-Tau) protein, glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light chain (NfL) were measured with the Neurology 4-plex kit on a Single Molecule Array SR-X Analyzer (Simoa® SR-X, Quanterix Corp., Lexington, MA). Markers of microglial activation, C-X3-C motif chemokine ligand 1 (CX3CL1) and soluble triggering receptor expressed on myeloid cells 2 (sTREM2), were assessed using an immunoassay. RESULTS: Concentrations of CX3CL1 but not sTREM2 were significantly increased both ictally and interictally in CSF but not in serum in comparison to the control cohort (p = 0.039). ROC curve analysis provided an AUC of 0.699 (95% CI 0.563 to 0.813, p = 0.007). T-Tau in serum but not in CSF was significantly increased in samples from patients taken during the headache phase, but not interictally (effect size: η2 = 0.121, p = 0.038). ROC analysis of t-Tau protein in serum between ictal and interictal collected samples provided an AUC of 0.729 (95% CI 0.558 to 0.861, p = 0.006). The other determined biomarkers for axonal damage were not significantly different between the cohorts in either serum or CSF. DISCUSSION: CX3CL1 in CSF is a novel potential fluid biomarker of migraine that is unrelated to the headache status. Serum t-Tau is linked to the headache phase but not interictal migraine. These data need to be confirmed in a larger hypothesis-driven prospective study.
Assuntos
Transtornos de Enxaqueca , Proteínas tau , Humanos , Proteínas tau/líquido cefalorraquidiano , Estudos Prospectivos , Estudos de Casos e Controles , Estudos Transversais , Biomarcadores , Transtornos de Enxaqueca/diagnóstico , Cefaleia , Quimiocina CX3CL1RESUMO
DNA-PAINT's imaging speed has recently been significantly enhanced by optimized sequence design and buffer conditions. However, this implementation has not reached an ultimate speed limit and is only applicable to imaging of single targets. To further improve acquisition speed, we introduce concatenated, periodic DNA sequence motifs, yielding up to 100-fold-faster sampling in comparison to traditional DNA-PAINT. We extend this approach to six orthogonal sequence motifs, now enabling speed-optimized multiplexed imaging.
Assuntos
DNA/química , Imagem Molecular/métodos , Anticorpos , Sítios de Ligação , Linhagem Celular , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Microtúbulos , Nanoestruturas , Nanotecnologia/métodos , VimentinaRESUMO
OBJECTIVE: Fatigue is a frequent and severe symptom in multiple sclerosis (MS), but its pathophysiological origin remains incompletely understood. We aimed to examine the predictive value of subcortical gray matter volumes for fatigue severity at disease onset and after 4 years by applying structural equation modeling (SEM). METHODS: This multicenter cohort study included 601 treatment-naive patients with MS after the first demyelinating event. All patients underwent a standardized 3T magnetic resonance imaging (MRI) protocol. A subgroup of 230 patients with available clinical follow-up data after 4 years was also analyzed. Associations of subcortical volumes (included into SEM) with MS-related fatigue were studied regarding their predictive value. In addition, subcortical regions that have a central role in the brain network (hubs) were determined through structural covariance network (SCN) analysis. RESULTS: Predictive causal modeling identified volumes of the caudate (s [standardized path coefficient] = 0.763, p = 0.003 [left]; s = 0.755, p = 0.006 [right]), putamen (s = 0.614, p = 0.002 [left]; s = 0.606, p = 0.003 [right]) and pallidum (s = 0.606, p = 0.012 [left]; s = 0.606, p = 0.012 [right]) as prognostic factors for fatigue severity in the cross-sectional cohort. Moreover, the volume of the pons was additionally predictive for fatigue severity in the longitudinal cohort (s = 0.605, p = 0.013). In the SCN analysis, network hubs in patients with fatigue worsening were detected in the putamen (p = 0.008 [left]; p = 0.007 [right]) and pons (p = 0.0001). INTERPRETATION: We unveiled predictive associations of specific subcortical gray matter volumes with fatigue in an early and initially untreated MS cohort. The colocalization of these subcortical structures with network hubs suggests an early role of these brain regions in terms of fatigue evolution. ANN NEUROL 2022;91:192-202.
Assuntos
Encéfalo/diagnóstico por imagem , Fadiga/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Adulto , Estudos de Coortes , Estudos Transversais , Doenças Desmielinizantes/diagnóstico por imagem , Fadiga/etiologia , Fadiga/fisiopatologia , Feminino , Seguimentos , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Ponte/diagnóstico por imagem , Valor Preditivo dos Testes , Prognóstico , Putamen/diagnóstico por imagem , Adulto JovemRESUMO
Several variants of multicolor single-molecule localization microscopy (SMLM) have been developed to resolve the spatial relationship of nanoscale structures in biological samples. The oligonucleotide-based SMLM approach "DNA-PAINT" robustly achieves nanometer localization precision and can be used to count binding sites within nanostructures. However, multicolor DNA-PAINT has primarily been realized by "Exchange-PAINT", which requires sequential exchange of the imaging solution and thus leads to extended acquisition times. To alleviate the need for fluid exchange and to speed up the acquisition of current multichannel DNA-PAINT, we here present a novel approach that combines DNA-PAINT with simultaneous multicolor acquisition using spectral demixing (SD). By using newly designed probes and a novel multichannel registration procedure, we achieve simultaneous multicolor SD-DNA-PAINT with minimal crosstalk. We demonstrate high localization precision (3-6 nm) and multicolor registration of dual- and triple-color SD-DNA-PAINT by resolving patterns on DNA origami nanostructures and cellular structures.
Assuntos
Nanoestruturas , Imagem Individual de Molécula , DNA/química , Microscopia de Fluorescência/métodos , Oligonucleotídeos/química , Imagem Individual de Molécula/métodosRESUMO
Neuroinflammatory mechanisms and maladaptive neuroplasticity underlie the progression of complex regional pain syndrome (CRPS), which is prototypical of central neuropathic pain conditions. While cortical maladaptive alterations are well described, little is known about the contribution of the brainstem to the pathophysiology. This study investigates the role of pain-modulatory brainstem pathways in CRPS using the nociceptive blink reflex (nBR), which not only provides a direct read-out of brainstem excitability and habituation to painful stimuli but may also be suitable for use as a diagnostic biomarker for CRPS. Thirteen patients with CRPS and thirteen healthy controls (HCs) participated in this prospective case-control study investigating the polysynaptic trigemino-cervical (R2) nBR response. The R2 area and its habituation were assessed following repeated supraorbital electrical stimulation. Between-group comparisons included evaluations of diagnostic characteristics as a potential biomarker for the disease. Patients with CRPS showed a substantial decrease in habituation on the stimulated (Cohen's d: 1.3; p = 0.012) and the non-stimulated side (Cohen's d: 1.1; p = 0.04). This is the first study to reveal altered nBR habituation as a pathophysiological mechanism and potential diagnostic biomarker in CRPS. We confirmed previous findings of altered nBR excitability, but the diagnostic accuracy was inferior. Future studies should investigate the nBR as a marker of progression to central mechanisms in CRPS and as a biomarker to predict treatment response or prognosis.
Assuntos
Síndromes da Dor Regional Complexa , Dor , Humanos , Estudos de Casos e Controles , Tronco Encefálico , PiscadelaRESUMO
BACKGROUND: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are used to reduce the risk of developing Coronavirus Disease 2019 (COVID-19). Despite the significant benefits in terms of reduced risk of hospitalization and death, different adverse events may present after vaccination: among them, headache is one of the most common, but nowadays there is no summary presentation of its incidence and no description of its main features. METHODS: We searched PubMed and EMBASE covering the period between January 1st 2020 and August 6th, 2021, looking for record in English and with an abstract and using three main search terms (with specific variations): COVID-19/SARS-CoV-2; Vaccination; headache/adverse events. We selected manuscript including information on subjects developing headache after injection, and such information had to be derived from a structured form (i.e. no free reporting). Pooled estimates and 95% confidence intervals were calculated. Analyses were carried out by vaccine vs. placebo, by first vs. second dose, and by mRNA-based vs. "traditional" vaccines; finally, we addressed the impact of age and gender on post-vaccine headache onset. RESULTS: Out of 9338 records, 84 papers were included in the review, accounting for 1.57 million participants, 94% of whom received BNT162b2 or ChAdOx1. Headache was generally the third most common AE: it was detected in 22% (95% CI 18-27%) of subjects after the first dose of vaccine and in 29% (95% CI 23-35%) after the second, with an extreme heterogeneity. Those receiving placebo reported headache in 10-12% of cases. No differences were detected across different vaccines or by mRNA-based vs. "traditional" ones. None of the studies reported information on headache features. A lower prevalence of headache after the first injection of BNT162b2 among older participants was shown. CONCLUSIONS: Our results show that vaccines are associated to a two-fold risk of developing headache within 7 days from injection, and the lack of difference between vaccine types enable to hypothesize that headache is secondary to systemic immunological reaction than to a vaccine-type specific reaction. Some descriptions report onset within the first 24 h and that in around one-third of the cases, headache has migraine-like features with pulsating quality, phono and photophobia; in 40-60% of the cases aggravation with activity is observed. The majority of patients used some medication to treat headache, the one perceived as the most effective being acetylsalicylic acid.
Assuntos
COVID-19 , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Cefaleia/etiologia , Humanos , Vacinação/efeitos adversosRESUMO
Although current implementations of super-resolution microscopy are technically approaching true molecular-scale resolution, this has not translated to imaging of biological specimens, because of the large size of conventional affinity reagents. Here we introduce slow off-rate modified aptamers (SOMAmers) as small and specific labeling reagents for use with DNA points accumulation in nanoscale topography (DNA-PAINT). To demonstrate the achievable resolution, specificity, and multiplexing capability of SOMAmers, we labeled and imaged both transmembrane and intracellular targets in fixed and live cells.
Assuntos
Aptâmeros de Nucleotídeos/química , Proteínas de Fluorescência Verde/química , Limite de Detecção , Microscopia de Fluorescência/métodosRESUMO
MOTIVATION: Classification of images is an essential task in higher-level analysis of biological data. By bypassing the diffraction limit of light, super-resolution microscopy opened up a new way to look at molecular details using light microscopy, producing large amounts of data with exquisite spatial detail. Statistical exploration of data usually needs initial classification, which is up to now often performed manually. RESULTS: We introduce nanoTRON, an interactive open-source tool, which allows super-resolution data classification based on image recognition. It extends the software package Picasso with the first deep learning tool with a graphic user interface. AVAILABILITY AND IMPLEMENTATION: nanoTRON is written in Python and freely available under the MIT license as a part of the software collection Picasso on GitHub (http://www.github.com/jungmannlab/picasso). All raw data can be obtained from the authors upon reasonable request. CONTACT: jungmann@biochem.mpg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Microscopia , SoftwareRESUMO
Improving labeling probes for state-of-the-art super-resolution microscopy is becoming of major importance. However, there is currently a lack of tools to quantitatively evaluate probe performance regarding efficiency, precision, and achievable resolution in an unbiased yet modular fashion. Herein, we introduce designer DNA origami structures combined with DNA-PAINT to overcome this issue and evaluate labeling efficiency, precision, and quantification using antibodies and nanobodies as exemplary labeling probes. Whereas current assessment of binders is mostly qualitative, e. g. based on an expected staining pattern, we herein present a quantitative analysis platform of the antigen labeling efficiency and achievable resolution, allowing researchers to choose the best performing binder. The platform can furthermore be readily adapted for discovery and precise quantification of a large variety of additional labeling probes.
Assuntos
DNA/química , Nanoestruturas/química , Microscopia de FluorescênciaRESUMO
BACKGROUND & OBJECTIVES: Calcitonin gene-related peptide ligand/receptor (CGRP) antibodies effectively reduce headache frequency in migraine. It is understood that they act peripherally, which raises the question whether treatment merely interferes with the last stage of headache generation or, alternatively, causes secondary adaptations in the central nervous system and might thus possess disease modifying potential. This study addresses this question by investigating the nociceptive blink reflex (nBR), which is closely tied to central disease activity, before and after treatment with CGRP antibodies. METHODS: We enrolled 22 patients suffering episodic migraine (21 female, 46.2 ± 13.8 years of age) and 22 age-/gender-matched controls. Patients received assessments of the nBR (R2 component, 10 trials, 6 stimuli/trial) before (V0) and three months (V3) after treatment with CGRP antibodies started, controls were assessed once. The R2 area (R2a) and habituation (R2h; gradient of R2a against stimulus order) of the stimulated/non-stimulated side (_s/_ns) following repeated supraorbital stimulation provide a direct readout of brainstem excitability and habituation as key mechanisms in migraine. RESULTS: All patients showed a substantial reduction of headache days/month (V0: 12.4±3.3, V3: 6.6 ± 4.9). R2a_s (Fglobal=5.86, p<0.001; block 1: R2a_s: -28%, p<0.001) and R2a_ns (Fglobal=8.22, p<0.001, block 1: R2a_ns: -22%, p=0.003) were significantly decreased, and R2h_ns was significantly enhanced (Fglobal=3.07, p<0.001; block 6: R2h_ns: r=-1.36, p=0.007) from V0 to V3. The global test for changes of R2h_s was non-significant (Fglobal=1.46, p=0.095). Changes of R2h significantly correlated with improvement of headache frequency (R2h_s, r=0.56, p=0.010; R2h_ns: r=0.45, p=0.045). None of the nBR parameters assessed at baseline predicted treatment response. DISCUSSION: We provide evidence that three months of treatment with CGRP antibodies restores brain stem responses to painful stimuli and thus might be considered disease modifying. The nociceptive blink reflex may provide a biomarker to monitor central disease activity. Future studies should evaluate the blink reflex as a clinical biomarker to predict treatment response at baseline and to establish the risk of relapse after treatment discontinuation. TRIAL REGISTRATION: This trial was prospectively registered at clinicaltrials.gov (ID: NCT04019496, date of registration: July 15, 2019).
Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Adulto , Anticorpos Monoclonais/uso terapêutico , Tronco Encefálico , Estudos de Casos e Controles , Feminino , Habituação Psicofisiológica , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/tratamento farmacológico , Estudos ProspectivosRESUMO
Optical super-resolution techniques reach unprecedented spatial resolution down to a few nanometers. However, efficient multiplexing strategies for the simultaneous detection of hundreds of molecular species are still elusive. Here, we introduce an entirely new approach to multiplexed super-resolution microscopy by designing the blinking behavior of targets with engineered binding frequency and duration in DNA-PAINT. We assay this kinetic barcoding approach in silico and in vitro using DNA origami structures, show the applicability for multiplexed RNA and protein detection in cells, and finally experimentally demonstrate 124-plex super-resolution imaging within minutes.
Assuntos
DNA/química , Microscopia de Fluorescência/métodos , Proteínas/isolamento & purificação , RNA/isolamento & purificação , Simulação por Computador , Cinética , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Proteínas/química , RNA/químicaRESUMO
Receptor tyrosine kinases (RTKs) orchestrate cell motility and differentiation. Deregulated RTKs may promote cancer and are prime targets for specific inhibitors. Increasing evidence indicates that resistance to inhibitor treatment involves receptor cross-interactions circumventing inhibition of one RTK by activating alternative signaling pathways. Here, we used single-molecule super-resolution microscopy to simultaneously visualize single MET and epidermal growth factor receptor (EGFR) clusters in two cancer cell lines, HeLa and BT-20, in fixed and living cells. We found heteromeric receptor clusters of EGFR and MET in both cell types, promoted by ligand activation. Single-protein tracking experiments in living cells revealed that both MET and EGFR respond to their cognate as well as non-cognate ligands by slower diffusion. In summary, for the first time, we present static as well as dynamic evidence of the presence of heteromeric clusters of MET and EGFR on the cell membrane that correlates with the relative surface expression levels of the two receptors.
Assuntos
Membrana Celular/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Imagem Individual de Molécula/métodos , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Células HeLa , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Ligantes , Complexos Multiproteicos/metabolismo , Transdução de SinaisRESUMO
Super-resolution microscopy allows optical imaging below the classical diffraction limit of light with currently up to 20× higher spatial resolution. However, the detection of multiple targets (multiplexing) is still hard to implement and time-consuming to conduct. Here, we report a straightforward sequential multiplexing approach based on the fast exchange of DNA probes which enables efficient and rapid multiplexed target detection with common super-resolution techniques such as (d)STORM, STED, and SIM. We assay our approach using DNA origami nanostructures to quantitatively assess labeling, imaging, and washing efficiency. We furthermore demonstrate the applicability of our approach by imaging multiple protein targets in fixed cells.
Assuntos
Sondas de DNA/química , DNA/química , Nanoestruturas/química , Microscopia de Fluorescência , Imagem ÓpticaRESUMO
Aptamers are oligonucleotides with antibody-like binding function, selected from large combinatorial libraries. In this study, we modified a DNA aptamer library with N-hydroxysuccinimide esters, enabling covalent conjugation with cognate proteins. We selected for the ability to bind to mouse monoclonal antibodies, resulting in the isolation of two distinct covalent binding motifs. The covalent aptamers are specific for the Fc region of mouse monoclonal IgG1 and are cross-reactive with mouse IgG2a and other IgGs. Investigation into the covalent conjugation of the aptamers revealed a dependence on micromolar concentrations of Cu2+ ions which can be explained by residual catalyst remaining after modification of the aptamer library. The aptamers were successfully used as adapters in the formation of antibody-oligonucleotide conjugates (AOCs) for use in detection of HIV protein p24 and super-resolution imaging of actin. This work introduces a new method for the site-specific modification of native monoclonal antibodies and may be useful in applications requiring AOCs or other antibody conjugates.