Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 541-563, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36170658

RESUMO

Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Mutação , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
2.
Diabetologia ; 67(5): 940-951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366195

RESUMO

AIMS/HYPOTHESIS: The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS: A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS: Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION: Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.


Assuntos
Hiperinsulinismo Congênito , Diabetes Gestacional , Canais de Potássio Corretores do Fluxo de Internalização , Recém-Nascido , Adulto , Pessoa de Meia-Idade , Feminino , Gravidez , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Hiperinsulinismo Congênito/genética , Compostos de Sulfonilureia/uso terapêutico , Mutação/genética , Glibureto , Trifosfato de Adenosina/metabolismo
3.
Diabetologia ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38871836

RESUMO

AIMS/HYPOTHESIS: Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS: We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS: Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION: [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.

4.
J Biol Chem ; 299(6): 104816, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178920

RESUMO

Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second-line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild-type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to the control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model but also in healthy human islets and islets from HI patients.


Assuntos
Hiperinsulinismo , Receptores de Somatomedina , Animais , Criança , Humanos , Lactente , Camundongos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Glucose/metabolismo , Hiperinsulinismo/tratamento farmacológico , Hipoglicemia/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Somatomedina/agonistas
5.
J Biol Chem ; 299(8): 104986, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392854

RESUMO

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Assuntos
3-Hidroxiacil-CoA Desidrogenase , Aminoácidos , Hiperinsulinismo Congênito , Hipoglicemia , Secreção de Insulina , Células Secretoras de Insulina , Animais , Camundongos , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Hipoglicemia/enzimologia , Hipoglicemia/genética , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Camundongos Knockout , 3-Hidroxiacil-CoA Desidrogenase/deficiência , 3-Hidroxiacil-CoA Desidrogenase/genética , Células Secretoras de Insulina/enzimologia , Hiperinsulinismo Congênito/genética
6.
Clin Genet ; 105(5): 549-554, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38225536

RESUMO

Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.


Assuntos
Hiperinsulinismo Congênito , Canais de Potássio Corretores do Fluxo de Internalização , Lactente , Animais , Ratos , Masculino , Humanos , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Células HEK293 , Receptores de Droga/genética , Receptores de Droga/metabolismo , Mutação/genética , Hiperinsulinismo Congênito/genética , Trifosfato de Adenosina , Potássio/metabolismo
7.
Rev Med Liege ; 79(3): 168-174, 2024 Mar.
Artigo em Francês | MEDLINE | ID: mdl-38487911

RESUMO

Congenital hyperinsulinism is the most common cause of recurrent hypoglycemia in newborns and children. Early diagnosis and rapid management are essential to avoid hypoglycaemic brain injury and later neurological complications. Management of those patients involves biological evaluation, molecular genetics, imaging techniques and surgical advances. We report the case of a newborn with recurrent hypoglycemia due to congenital hyperinsulinism (CHI) caused by a new variant in the ABCC8 gene. Fluorine 18-L-3,4 Dihydroxyphenylalanine Positron Emission Tomography (18F-DOPA PET/CT scan) reported a focal lesion at the isthmus of the pancreas which has been removed by laparoscopic surgery with a complete recovery for the patient.


L'hyperinsulinisme congénital est la cause la plus fréquente d'hypoglycémies récidivantes chez le nouveau-né et l'enfant. Un diagnostic et une prise en charge précoces sont primordiaux pour éviter les conséquences potentielles sur le développement neurologique. Ces derniers reposent sur la conjonction d'éléments biologiques, génétiques et d'imagerie. Nous rapportons le cas d'un nouveau-né présentant des hypoglycémies récidivantes. La mise au point mettra en évidence un hyperinsulinisme congénital (CHI) lié à un variant non encore décrit au sein du gène ABCC8. L'imagerie par Fluorine 18-L-3,4 Dihydroxyphenylalanine Positron Emission Tomography/Computed Tomography-scanner (18F-DOPA PET/CT scan) a mis en évidence une forme focale de l'hyperinsulinisme justifiant une prise en charge chirurgicale amenant à une guérison complète et à l'arrêt de tout traitement médicamenteux.


Assuntos
Hiperinsulinismo Congênito , Laparoscopia , Criança , Humanos , Recém-Nascido , Lactente , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hiperinsulinismo Congênito/diagnóstico por imagem , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Pâncreas/patologia , Pâncreas/cirurgia , Tomografia por Emissão de Pósitrons/métodos
8.
Endocr Pract ; 29(12): 980-985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683825

RESUMO

OBJECTIVE: Due to a perceived rise in hyperinsulinemic hypoglycemia (HH) cases over time, notably during the COVID-19 pandemic, institutional experiences between 2013 and 2021 were reviewed to evaluate trends, characteristics, and outcomes in children with HH. METHODS: Charts of all children diagnosed with HH during the study period and evaluated by Pediatric Endocrinology were reviewed. HH was defined per Pediatric Endocrine Society guidelines. Regression analysis compared rates of change in HH cases and maternal risk factors over time. RESULTS: The incidence of HH began to rise in April 2016 and became significant in March 2017 (P < .001), with a more rapid rate of rise during the first year of the COVID-19 pandemic (P < .001). Seventy-four children with HH were identified over 9 years; 43% (n = 32) were diagnosed in 2020-2021. Maternal hypertensive disorders demonstrated longitudinal association with hyperinsulinism cases (P < .001). CONCLUSION: While HH diagnoses were on the rise for much of the 9-year study period, nearly half of all infants were diagnosed during the COVID-19 pandemic in 2020 to 21. The trends in HH diagnoses correlated with maternal hypertensive disorders. More studies exploring the roles of maternal health, hypertension, and stress and development of HH in offspring are needed.


Assuntos
COVID-19 , Hiperinsulinismo , Hipertensão Induzida pela Gravidez , Hipoglicemia , Lactente , Feminino , Gravidez , Humanos , Criança , Hipoglicemia/epidemiologia , Incidência , Saúde Materna , Pandemias , Hiperinsulinismo/complicações , Hiperinsulinismo/epidemiologia , COVID-19/epidemiologia , COVID-19/complicações
9.
Pediatr Surg Int ; 39(1): 183, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37079145

RESUMO

PURPOSE: Recurrent severe hypoglycemic attacks often persist even after performing pancreatectomy for medically unresponsive congenital hyperinsulinism (CHI). In this study, we present our experience with redo pancreatectomy for CHI. METHODS: We reviewed all children who underwent pancreatectomy for CHI between January 2005 and April 2021 in our center. A comparison was made between patients whose hypoglycemia was controlled after primary pancreatectomy and patients who required reoperation. RESULTS: A total of 58 patients underwent pancreatectomy for CHI. Refractory hypoglycemia after pancreatectomy occurred in 10 patients (17%), who subsequently underwent redo pancreatectomy. All patients who required redo pancreatectomy had positive family history of CHI (p = 0.0031). Median extent of initial pancreatectomy was lesser in the redo group with borderline level of statistical significance (95% vs. 98%, p = 0.0561). Aggressive pancreatectomy at the initial surgery significantly (p = 0.0279) decreased the risk for the need to redo pancreatectomy; OR 0.793 (95% CI 0.645-0.975). Incidence of diabetes was significantly higher in the redo group (40% vs. 9%, p = 0.033). CONCLUSION: Pancreatectomy with 98% extent of resection for diffuse CHI, especially with positive family history of CHI, is warranted to decrease the chance of reoperation for persistent severe hypoglycemia.


Assuntos
Hiperinsulinismo Congênito , Pancreatectomia , Criança , Humanos , Lactente , Incidência , Hiperinsulinismo Congênito/epidemiologia , Hiperinsulinismo Congênito/cirurgia
10.
Rev Endocr Metab Disord ; 23(5): 1063-1078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996042

RESUMO

Maturity-Onset Diabetes of the Youth (MODY) diabetes remains commonly misdiagnosed. A monogenic form should be suspected in individuals presenting hyperinsulinemic hypoglycemia (HH) associated with, either later development of MODY (hypoglycemia-remission-diabetes sequence), or with first/second-degree family history of diabetes. Herein, we aimed to describe this individual or family monogenic association between HH and diabetes, and identify potential genotype-phenotype correlations. We conducted a systematic review of 26 studies, including a total of 67 patients with this association resulting from variants in GCK (n = 5 cases), ABCC8 (n = 29), HNF1A (n = 5), or HNF4A (n = 28). A family history of hypoglycemia and/or diabetes was present in 91% of cases (61/67). Median age at first hypoglycemia was 24 h after birth. Diazoxide was initiated in 46 children (46/67-69%); responsiveness was found in 91% (42/46). Median HH duration was three years (1 day-25 years). Twenty-three patients (23/67-34%) later developed diabetes (median age: 13 years; range: 8-48); more frequently in those untreated with diazoxide. This association was most commonly inherited in an autosomal dominant manner (43/48-90%). Some genes were associated with less severe initial hypoglycemia (HNF1A), shorter duration of HH (HNF4A), and more maternal (ABCC8) or paternal (HNF4A) transmission. This study illustrates that the same genotype can give a biphasic phenotype in the same person or a reverse phenotype in the same family. Wider awareness of this association is necessary in pediatrics to establish annual monitoring of patients who have presented HH, and during maternity to screen diabetes and optimize genetic counseling and management of pregnancy, childbirth, and the newborn.PROSPERO registration: CRD42020178265.


Assuntos
Hiperinsulinismo Congênito , Diabetes Mellitus Tipo 2 , Criança , Hiperinsulinismo Congênito/genética , Diabetes Mellitus Tipo 2/genética , Diazóxido/uso terapêutico , Feminino , Humanos , Mutação , Fenótipo , Gravidez
11.
Am J Med Genet A ; 188(8): 2429-2433, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621279

RESUMO

Congenital hyperinsulinism (CHI) is genetically heterogeneous, caused by pathogenic variants in multiple known genes regulating insulin secretion from the pancreatic ß-cells. The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1), a key player in insulin secretion, and pathogenic variants in ABCC8 are the most common cause of CHI. With increased application of genetic testing in clinical practice, variants of unknown clinical significance (VUS) are commonly reported. Additional functional investigation for variant pathogenicity is fundamental in establishing definitive molecular diagnosis and in guiding clinical management. However, due to the lack of ubiquitous tissue expression of these genes, obtaining functional studies on affected tissue has been challenging. We present a case of severe congenital hyperinsulinism which required a near-total pancreatectomy. CHI gene sequencing identified a homozygous silent variant in ABCC8 located on the last nucleotide of exon 38, c.4608G>A (p.Ala1536Ala). The total RNA was isolated from pancreas resected at the time of pancreatectomy. RNA sequencing and expression analysis demonstrated exon 38 skipping and decreased RNA expression, which supports the pathogenicity of this variant. This case highlights the feasibility of functional studies of VUS on resected pancreatic tissue. The result expands the mutation spectrum in ABCC8 and allows precise genetic counseling to affected families.


Assuntos
Hiperinsulinismo Congênito , Hiperinsulinismo , Canais de Potássio Corretores do Fluxo de Internalização , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/cirurgia , Éxons/genética , Humanos , Hiperinsulinismo/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA , Receptores de Sulfonilureias/genética
12.
Bioorg Med Chem Lett ; 71: 128807, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605837

RESUMO

SST5 receptor activation potently inhibits insulin secretion from pancreatic ß-cells, and an orally available nonpeptide selective SST5 agonist may be used to effectively manage the blood glucose levels of congenital HI patients to avoid severe hypoglycemia. Our medicinal chemistry efforts have led to the discovery of 4-(3-aminopyrrolidinyl)-3-aryl-5-(benzimidazol-2-yl)-pyridine analogs as potent SST5 agonists. This class of molecules exhibits excellent human SST5 potency and selectivity against SST1, SST2, SST3 and SST4 receptors. Leading compound 3-{4-[(3S)-3-aminopyrrolidin-1-yl]-5-(4-methyl-1H-1,3-benzodiazol-2-yl)pyridin-3-yl-5-fluorobenzonitrile (28, CRN02481) showed limited off-target activity and good pharmacokinetic profiles in both male Sprague Dawley rats and Beagle dogs to advance into further preclinical evaluations.


Assuntos
Hiperinsulinismo Congênito , Somatostatina , Animais , Hiperinsulinismo Congênito/tratamento farmacológico , Cães , Humanos , Masculino , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Somatostatina/agonistas , Somatostatina/farmacologia , Somatostatina/fisiologia
13.
Eur J Pediatr ; 181(7): 2779-2788, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35507217

RESUMO

This study aimed to assess mental health, family burden, and quality of life (PQoL) in parents of children with persistent congenital hyperinsulinism (CHI). Forty-eight individual CHI parents (75% female) completed self-reported questionnaires and screening tools for anxiety (GAD-7), depression (PHQ-8), PQoL (ULQIE), and family burden (FaBeL). Additional data on sociodemographics, social support, and child- and disease-related data were recorded. 29.8% of parents showed major depressive symptoms and 38.3% had a probable general anxiety disorder, including 20.8% who had both. The family burden was moderate and assessment of PQoL yielded average scores. Neurological impairment in an affected child (p = .002 and p < .001, respectively) and lower working hours (p = .001 and p = .012, respectively) were the strongest predictors of worse GAD-7 and PHQ-8 scores. Furthermore, lower working hours (p = .012) and comorbidities in the affected child (p = .007) were significantly associated with lower PQoL. Mothers had worse GAD-7 scores (p = .006) and lower PQoL (p = .035) than fathers. Indication of sleep disturbance was associated with worse PHQ-8 scores (p = .003), higher family burden (p = .039), and reduced PQoL (p = .003). A higher number of caretakers besides parents was associated with decreased family burden (p = .019), improved PQoL (p < .001), and lower scores for anxiety (p = .016) and depressive (p = .021) symptoms.    Conclusion: Symptoms of depression and anxiety are alarmingly prevalent in parents of children with CHI. Psychological screening of parents should be initiated to ensure early identification of psychological strains and psychosocial support should be offered as needed. A good support network and regular work activities can improve parental mental health and well-being. What is Known: • Psychosocial strains and reduced quality of life are common in parents of chronically ill children. What is New: • In this first study evaluating mental health, family burden, and quality of life in parents of children with congenital hyperinsulinism (CHI), symptoms of depression and anxiety were alarmingly prevalent. • Parents of children with CHI should receive regular psychological screening and psychosocial support should be offered as needed. A good support network and regular work activities can improve parental mental health and well-being.


Assuntos
Hiperinsulinismo Congênito , Transtorno Depressivo Maior , Ansiedade/diagnóstico , Ansiedade/etiologia , Ansiedade/psicologia , Transtornos de Ansiedade/psicologia , Hiperinsulinismo Congênito/diagnóstico , Depressão/diagnóstico , Depressão/etiologia , Feminino , Humanos , Masculino , Mães/psicologia , Pais/psicologia , Qualidade de Vida/psicologia , Inquéritos e Questionários
14.
Pediatr Radiol ; 52(4): 693-701, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34668049

RESUMO

Hyperinsulinemic hypoglycemia of infancy, also known as congenital hyperinsulinism, is a group of disorders characterized by dysregulated insulin release. Neonates with severe, persistent hyperinsulinemic hypoglycemia who are unresponsive to medical therapy require pancreatectomy to prevent brain damage from hypoglycemia. To date, multiple genetic mutations and syndromes and several unique histopathological entities have been identified in children with hyperinsulinism. Histopathology is characterized as diffuse, focal or atypical. Surgical resection of a focal lesion results in a cure in up to 97% of these children. Imaging with 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (18F-FDOPA) positron emission tomography (PET) is the test of choice for identifying and localizing a focal lesion and has proved to be an invaluable guide for surgical resection. Genetic evaluation is essential for determining who will benefit from PET imaging. This article provides an approach to determine who should be imaged, how to set up a protocol and how to interpret the imaging findings. The diagnosis and management of this disorder require a multidisciplinary approach to prevent brain damage from hypoglycemia.


Assuntos
Hiperinsulinismo Congênito , Criança , Hiperinsulinismo Congênito/diagnóstico por imagem , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/cirurgia , Di-Hidroxifenilalanina/genética , Humanos , Lactente , Recém-Nascido , Mutação , Tomografia por Emissão de Pósitrons/métodos
15.
Yi Chuan ; 44(9): 810-818, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384957

RESUMO

Congenital hyperinsulinemia (CHI) is a disease phenotype characterized by persistent or recurrent hypoglycemia due to abnormal secretion of insulin by ß cells of the pancreas. CHI induced by activation mutation of a single allele of glucokinase (GCK) is the rarest type. In this paper, the clinical data of a patient with hypoglycemia of unknown cause were collected without obvious clinical symptoms. And a heterozygous missense mutation (c.295T> C:p.W99R) was detected in exon 3 of the GCK gene. The mutation was found in both the son and daughter of the proband, and the blood glucose level was low, while the others were normal. By summarizing and analyzing the characteristics of this case and the genetic pedigree of the family, the possibility of congenital hyperinsulinemia caused by a single gene mutation should be considered for hypoglycemia whose etiology is difficult to be determined clinically. This case also provides new clinical data for subsequent genetic studies of the disease.


Assuntos
Hiperinsulinismo , Hipoglicemia , Humanos , Glucoquinase/genética , Hipoglicemia/genética , Mutação , Testes Genéticos , Hiperinsulinismo/genética
16.
Hum Mutat ; 42(4): 408-420, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410562

RESUMO

ABCC8 encodes the SUR1 subunit of the ß-cell ATP-sensitive potassium channel whose loss of function causes congenital hyperinsulinism (CHI). Molecular diagnosis is critical for optimal management of CHI patients. Unfortunately, assessing the impact of ABCC8 variants on RNA splicing remains very challenging as this gene is poorly expressed in leukocytes. Here, we performed bioinformatics analysis and cell-based minigene assays to assess the impact on splicing of 13 ABCC8 variants identified in 20 CHI patients. Next, channel properties of SUR1 proteins expected to originate from minigene-detected in-frame splicing defects were analyzed after ectopic expression in COSm6 cells. Out of the analyzed variants, seven induced out-of-frame splicing defects and were therefore classified as recessive pathogenic, whereas two led to skipping of in-frame exons. Channel functional analysis of the latter demonstrated their pathogenicity. Interestingly, the common rs757110 SNP increased exon skipping in our system suggesting that it may act as a disease modifier factor. Our strategy allowed determining the pathogenicity of all selected ABCC8 variants, and CHI-inheritance pattern for 16 out of the 20 patients. This study highlights the value of combining RNA and protein functional approaches in variant interpretation and reveals the minigene splicing assay as a new tool for CHI molecular diagnostics.


Assuntos
Biologia Computacional , Hiperinsulinismo Congênito , Receptores de Sulfonilureias , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Éxons/genética , Humanos , Splicing de RNA/genética , Receptores de Sulfonilureias/genética
17.
Diabetologia ; 64(12): 2687-2700, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34532767

RESUMO

AIMS/HYPOTHESIS: The mammalian enzyme glucokinase (GK), expressed predominantly in liver and pancreas, plays an essential role in carbohydrate metabolism. Monogenic GK disorders emphasise the role of GK in determining the blood glucose set point. METHODS: A family with congenital hyperinsulinism (CHI) was examined for GCK gene variants by Sanger sequencing. A combined approach, involving kinetic analysis (also using GK activators and inhibitors), intracellular translocation assays, insulin secretion measurements and structural modelling, was used to investigate the novel variant compared with known variants. RESULTS: We report on the novel gain-of-function GCK variant p.Val455Leu (V455L), inherited as an autosomal dominant trait in a German family with CHI and concomitant obesity (fasting blood glucose 2.1 mmol/l, BMI 45.0 kg/m2, HOMA-IR 1.5 in an adult female family member); one male family member developed type 2 diabetes until age 35 years (with fasting glucose 2.8-3.7 mmol/l, BMI 38.9 kg/m2, HOMA-IR 4.6). Kinetic characterisation of the V455L variant revealed a significant increase in glucose affinity (glucose concentration at which reaction rate is half its maximum rate [S0.5]: mutant 2.4 ± 0.3 mmol/l vs wild-type 7.6 ± 1.0 mmol/l), accompanied by a distinct additive susceptibility to both the endogenous activator fructose 2,6-bisphosphatase and the synthetic allosteric activator RO-28-1675. The effect of RO-28-1675 was more pronounced when compared with the previously known GK variants V455M and V455E. Binding to the inhibitor glucokinase regulatory protein was unimpaired for V455L and V455E but was reduced for V455M, whereas mannoheptulose inhibited all GK variants and the wild-type enzyme. Structural analyses suggested a role for residue 455 in rearrangements between the inactive and active conformations of GK and also in allosteric activation. Comparison with V455M and V455E and an overview of activating GK variants provided a context for the novel sequence aberration in terms of altered GK enzyme characteristics caused by single amino acid changes. CONCLUSION/INTERPRETATION: We provide new knowledge on the structure-function relationship of GK, with special emphasis on enzyme activation, potentially yielding fresh strategic insights into breaking the vicious circle of fluctuating blood glucose levels and the attendant risk of long-lasting metabolic changes in both CHI and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Regulação Alostérica/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucoquinase/genética , Glucose/metabolismo , Hiperinsulinismo/genética , Cinética , Masculino , Mamíferos/metabolismo , Aumento de Peso
18.
Diabetologia ; 64(3): 630-640, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404684

RESUMO

AIMS/HYPOTHESIS: Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. METHODS: We derived iPSCs from a patient carrying a homozygous ABCC8V187D mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the KATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. RESULTS: SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological KATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to KATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. CONCLUSIONS/INTERPRETATION: We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for KATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.


Assuntos
Hiperinsulinismo Congênito/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores de Sulfonilureias/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Hiperinsulinismo Congênito/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiopatologia , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Fenótipo , Receptores de Sulfonilureias/genética
19.
Clin Endocrinol (Oxf) ; 94(6): 940-948, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33595839

RESUMO

BACKGROUND: The most severe forms of congenital hyperinsulinism (CHI) are caused by inactivating mutations of two KATP channel genes, KCNJ11 and ABCC8. Unresponsiveness to diazoxide and need for subtotal pancreatectomy can usually be predicted by genetic form, particularly biallelic mutations in KATP channel genes. A few reports indicated marked clinical heterogeneity in siblings with identical biallelic mutations in ABCC8. The clinical heterogeneity in biallelic KATP CHI was speculated to be caused by epigenetic and environmental factors or related to differences in splicing factor machinery. OBJECTIVE: To elucidate the clinical pathophysiology, especially heterogeneity, among three cases with CHI caused by a homogenous novel mutation. PATIENTS AND METHODS: We report a case series that includes two siblings and one unrelated individual with CHI caused by a homogenous 1-bp deletion around the splice acceptor site at the exon 35 mutation of ABCC8, which exhibited markedly distinct phenotypes. To assess the effect of the mutation on splicing, we performed digital droplet polymerase chain reaction (ddPCR) on normal pancreas tissue and a patient's lymphocytes. RESULTS: ddPCR of ABCC8 cDNA revealed that expression of exon 35 and its upstream and downstream regions did not differ. These data suggested that clinical heterogeneity may not be caused by differences in splicing factor machinery. CONCLUSION: The phenotypic variation in homozygotes could not be explained by splicing abnormalities. Though early genetic diagnosis of KATP CHI could contribute to selecting appropriate therapeutic options, more deliberate selection of therapeutic options in diffuse CHI due to biallelic ABCC8 mutations may be required.


Assuntos
Hiperinsulinismo Congênito , Variação Biológica da População , Hiperinsulinismo Congênito/genética , Diazóxido , Humanos , Mutação , Receptores de Sulfonilureias/genética
20.
J Inherit Metab Dis ; 44(1): 240-252, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876354

RESUMO

Short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), encoded by the HADH gene, is a ubiquitously expressed mitochondrial enzyme involved in fatty acid oxidation. This protein also plays a role in insulin secretion as recessive HADH mutations cause congenital hyperinsulinism of infancy (CHI) via loss of an inhibitory interaction with glutamate dehydrogenase (GDH). Here, we present a functional evaluation of 16 SCHAD missense variants identified either in CHI patients or by high-throughput sequencing projects in various populations. To avoid interactions with endogenously produced SCHAD protein, we assessed protein stability, subcellular localization, and GDH interaction in a SCHAD knockout HEK293 cell line constructed by CRISPR-Cas9 methodology. We also established methods for efficient SCHAD expression and purification in E. coli, and tested enzymatic activity of the variants. Our analyses showed that rare variants of unknown significance identified in populations generally had similar properties as normal SCHAD. However, the CHI-associated variants p.Gly34Arg, p.Ile184Phe, p.Pro258Leu, and p.Gly303Ser were unstable with low protein levels detectable when expressed in HEK293 cells. Moreover, CHI variants p.Lys136Glu, p.His170Arg, and p.Met188Val presented normal protein levels but displayed clearly impaired enzymatic activity in vitro, and their interaction with GDH appeared reduced. Our results suggest that pathogenic missense variants of SCHAD either make the protein target of a post-translational quality control system or can impair the function of SCHAD without influencing its steady-state protein level. We did not find any evidence that rare SCHAD missense variants observed only in the general population and not in CHI patients are functionally affected.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/genética , Hiperinsulinismo Congênito/enzimologia , Hiperinsulinismo Congênito/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Glutamato Desidrogenase/metabolismo , Células HEK293 , Humanos , Secreção de Insulina/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA