Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Commun Biol ; 7(1): 799, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956304

RESUMO

In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties. In live mammalian cells, we target these chemogenetic tags to two intracellular structures simultaneously, where their fluorescence signals are clearly distinguished by FLIM. Due to the unique structure of certain fluorogens under study, their complexes with FAST mutants display a monophasic fluorescence decay, which may facilitate enhanced multiplexing efficiency by reducing signal cross-talks and providing optimal prerequisites for signal separation upon co-localized and/or spatially overlapped labeling.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Animais , Fluorescência , Mutação
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474299

RESUMO

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.


Assuntos
Corantes Fluorescentes , Proteínas , Corantes Fluorescentes/química
3.
Org Biomol Chem ; 21(45): 9082-9085, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942901

RESUMO

2-Allyloxybenzaldehydes undergo [2 + 1] cycloadditions under 365 nm LED irradiation to form the corresponding chroman-fused cyclopropanols. The reaction proceeds easily without any catalysts or additives in dimethyl sulfoxide.

4.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569365

RESUMO

The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Proteínas de Fluorescência Verde/metabolismo , Domínio Catalítico
5.
J Org Chem ; 88(14): 9737-9749, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37382499

RESUMO

General synthetic approach toward phenols with a polyfunctional side-chain is described. It is based on two subsequent [3,3]-sigmatropic rearrangements, in particular, Johnson-Claisen and aromatic Claisen. Facilitation of the reaction sequence is achieved by the separation of steps and discovery of the efficient catalysts for aromatic Claisen rearrangement. The best performance was achieved by the combination of rare earth metal triflate with 2,6-di-tert-butylpyridine. The reaction scope was established on 16 examples with 17-80% yield (on two steps). Synthetic equivalents for the related Ireland-Claisen and Eschenmoser Claisen/Claisen rearrangements were proposed. Further versality of the products was demonstrated by a number of post-modification transformations.

6.
Org Lett ; 25(26): 4892-4897, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37366567

RESUMO

We report the first total synthesis of racemic Odontosyllis undecimdonta luciferin, a thieno[3,2-f]thiochromene tricarboxylate comprising a 6-6-5-fused tricyclic skeleton with three sulfur atoms in different electronic states. The key transformation is based on tandem condensation of bifunctional thiol-phosphonate, obtained from dimethyl acetylene dicarboxylate, with benzothiophene-6,7-quinone. The presented convergent approach provides the synthesis of the target compound with a previously unreported fused heterocyclic core in 11 steps, thus allowing for unambiguous confirmation of the chemical structure of Odontosyllis luciferin by 2D-NMR spectroscopy.

7.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373071

RESUMO

In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.


Assuntos
Corantes , Proteínas de Fluorescência Verde , Solventes , Espectrometria de Fluorescência
8.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175667

RESUMO

In this work, we showed that the well-known NanoLuc luciferase can act as a fluorogen activating protein for various arylidene-imidazolones structurally similar to the Kaede protein chromophore. We showed that such compounds can be used as fluorescent sensors for this protein and can also be used in pairs with it in fluorescent microscopy as a genetically encoded tag.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/metabolismo , Luciferases/genética , Microscopia de Fluorescência
9.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232662

RESUMO

NanoFAST is a fluorogen-activating protein and can be considered one of the smallest encodable fluorescent tags. Being a shortened variant of another fluorescent tag, FAST, nanoFAST works nicely only with one out of all known FAST ligands. This substantially limits the applicability of this protein. To find the reason for such a behavior, we investigated the spatial structure and dynamics of nanoFAST, both in the apo state and in the complex with its fluorogen molecule, using the solution NMR spectroscopy. We showed that the truncation of FAST did not affect the structure of the remaining part of the protein. Our data suggest that the deleted N-terminus of FAST destabilizes the C-terminal domain in the apo state. While it does not contact the fluorogen directly, it serves as a free energy reservoir that enhances the ligand binding propensity of the protein. The structure of nanoFAST/HBR-DOM2 complex reveals the atomistic details of nanoFAST interactions with the rhodanine-based ligands and explains the ligand specificity. NanoFAST selects ligands with the lowest dissociation constants, 2,5-disubstituted 4-hydroxybenzyldienerhodainines, which allow the non-canonical intermolecular CH-N hydrogen bonding and provide the optimal packing of the ligand within the hydrophobic cavity of the protein.


Assuntos
Rodanina , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Proteínas
10.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014513

RESUMO

A new simple one-pot two-step protocol for the synthesis of 2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate from 2-(2-(benzylamino)benzylidene)malonate under the action of BF3·Et2O was developed. It was shown that the reaction proceeds through the formation of a stable iminium intermediate containing a difluoroboryl bridge in the dicarbonyl fragment of the molecule.


Assuntos
Quinolinas , Ácidos Carboxílicos , Ciclização
11.
J Phys Chem B ; 126(27): 5081-5093, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786966

RESUMO

Photophysical and photochemical properties of the green fluorescent protein (GFP) chromophore and derivatives underlie their bioimaging applications. To date, ultrafast spectroscopic tools represent the key for unraveling fluorescence mechanisms toward rational design of this powerful biomimetic framework. To correlate the excited-state intramolecular proton transfer (ESIPT) with chromophore emission properties, we implement experimental and computational tool sets to elucidate real-time electronic and structural dynamics of two archetypal ortho-GFP chromophores (o-HBDI and o-LHBDI) possessing an intramolecular hydrogen bond to undergo efficient ESIPT, only differing in a bridge-bond constraint. Using excited-state femtosecond stimulated Raman spectroscopy (FSRS), a low-frequency phenolic (P)-ring-deformation mode (∼562 cm-1) was uncovered to accompany ESIPT. The tautomerized chromophore undergoes either rapid P-ring isomerization to reach the ground state with essentially no fluorescence for o-HBDI or enhanced (up to an impressive 180-fold in acetonitrile) and solvent-polarity-dependent fluorescence by P-ring locking in o-LHBDI. The significant dependence of the fluorescence enhancement ratio on solvent viscosity confirms P-ring isomerization as the dominant nonradiative decay pathway for o-HBDI. This work provides crucial insights into the dynamic solute-solvent electrostatic and steric interactions, enabling the application-specific improvement of ESIPT-capable molecules as versatile fluorescence-based sensors and imaging agents from large Stokes shift emission to brighter probes in physiological environments.


Assuntos
Prótons , Análise Espectral Raman , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Solventes , Espectrometria de Fluorescência
12.
Commun Biol ; 5(1): 706, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840781

RESUMO

"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen. Using the spatial structure of the FAST/N871b complex, NMR relaxation analysis, and computer simulations, we identify the mobile regions in the complex and suggest mutations that could stabilize both the protein and the ligand. Two of our mutants appear brighter than the wild-type FAST, and these mutants provide up to 35% enhancement for several other fluorogens of similar structure, both in vitro and in vivo. Analysis of the mutants by NMR reveals that brighter mutants demonstrate the highest stability and lowest length of intermolecular H-bonds. Computer simulations provide the structural basis for such stabilization.


Assuntos
Corantes Fluorescentes , Proteínas , Fluorescência , Corantes Fluorescentes/química
13.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457212

RESUMO

A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified one-channel FRET measurement based on a previously reported fluorogen-activating protein, DiB1. Upon the addition of the cell-permeable chromophore, the fluorescence of the donor-fluorescent protein mNeonGreen decreases, allowing for a simplified one-channel FRET measurement. The reported chemically modulated FRET acceptor is compatible with live-cell experiments and allows for prolonged time-lapse experiments with dynamic energy transfer evaluation.


Assuntos
Corantes , Transferência Ressonante de Energia de Fluorescência , Ligantes , Microscopia de Fluorescência , Fotodegradação
14.
Nat Commun ; 13(1): 171, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013284

RESUMO

The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model.


Assuntos
Nadadeiras de Animais/diagnóstico por imagem , Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Proteínas Luminescentes/genética , Nadadeiras de Animais/lesões , Nadadeiras de Animais/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/instrumentação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Peróxido de Hidrogênio/química , Ácido Hipocloroso/síntese química , Ácido Hipocloroso/metabolismo , Proteínas Luminescentes/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Oxirredução , Fagocitose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra
15.
Photochem Photobiol ; 98(2): 311-324, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34714942

RESUMO

Strategic incorporation of a meta-dimethylamino (-NMe2 ) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m-NMe2 -LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ~200-fold decrease in fluorescence quantum yield of m-NMe2 -LpHBDI in alcohols (e.g., MeOH, EtOH and 2-PrOH) supports this GFP-derived compound as a fluorescence turn-on water sensor, with large fluorescence intensity differences between H2 O and ROH emissions in various H2 O/ROH binary mixtures. A combination of steady-state electronic spectroscopy, femtosecond transient absorption, ground-state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen-bonding chain between a solvent -OH group and the chromophore phenolic ring -NMe2 and -OH functional groups, wherein fluorescence differences arise from an extended hydrogen-bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge-transfer state. The absence of a meta-NMe2 group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without the meta-NMe2 group or with both meta-NMe2 and para-OH groups locked in a six-membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors.


Assuntos
Hidrogênio , Água , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Espectrometria de Fluorescência
16.
Front Mol Biosci ; 8: 753283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926576

RESUMO

Fluorescence can be exploited to monitor intermolecular interactions in real time and at a resolution up to a single molecule. It is a method of choice to study ligand-receptor interactions. However, at least one of the interacting molecules should possess good fluorescence characteristics, which can be achieved by the introduction of a fluorescent label. Gene constructs with green fluorescent protein (GFP) are widely used to follow the expression of the respective fusion proteins and monitor their function. Recently, a small synthetic analogue of GFP chromophore (p-HOBDI-BF2) was successfully used for tagging DNA molecules, so we decided to test its applicability as a potential fluorescent label for proteins and peptides. This was done on α-cobratoxin (α-CbTx), a three-finger protein used as a molecular marker of muscle-type, neuronal α7 and α9/α10 nicotinic acetylcholine receptors (nAChRs), as well as on azemiopsin, a linear peptide neurotoxin selectively inhibiting muscle-type nAChRs. An activated N-hydroxysuccinimide ester of p-HOBDI-BF2 was prepared and utilized for toxin labeling. For comparison we used a recombinant α-CbTx fused with a full-length GFP prepared by expression of a chimeric gene. The structure of modified toxins was confirmed by mass spectrometry and their activity was characterized by competition with iodinated α-bungarotoxin in radioligand assay with respective receptor preparations, as well as by thermophoresis. With the tested protein and peptide neurotoxins, introduction of the synthetic GFP chromophore induced considerably lower decrease in their affinity for the receptors as compared with full-length GFP attachment. The obtained fluorescent derivatives were used for nAChR visualization in tissue slices and cell cultures.

17.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948442

RESUMO

Bioimaging techniques require development of a wide variety of fluorescent probes that absorb and emit red light. One way to shift absorption and emission of a chromophore to longer wavelengths is to modify its chemical structure by adding polycyclic aromatic hydrocarbon (PAH) fragments, thus increasing the conjugation length of a molecule while maintaining its rigidity. Here, we consider four novel classes of conformationally locked Green Fluorescent Protein (GFP) chromophore derivatives obtained by extending their aromatic systems in different directions. Using high-level ab initio quantum chemistry calculations, we show that the alteration of their electronic structure upon annulation may unexpectedly result in a drastic change of their fluorescent properties. A flip of optically bright and dark electronic states is most prominent in the symmetric fluorene-based derivative. The presence of a completely dark lowest-lying excited state is supported by the experimentally measured extremely low fluorescence quantum yield of the newly synthesized compound. Importantly, one of the asymmetric modes of annulation provides a very promising strategy for developing red-shifted molecular emitters with an absorption wavelength of ∼600 nm, having no significant impact on the character of the bright S-S1 transition.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/síntese química , Hidrocarbonetos Policíclicos Aromáticos/química , Proteínas de Fluorescência Verde/química , Estrutura Molecular , Teoria Quântica , Espectrometria de Fluorescência
18.
PLoS Comput Biol ; 17(11): e1009555, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748541

RESUMO

The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design. It suggests that the easier task of fine-tuning the fluorogen-binding properties of an already functional protein in silico should be readily achievable. To test this hypothesis, we used Rosetta for computational ligand docking followed by protein binding pocket redesign to further improve the previously described FAP DiB1 that is capable of binding to a BODIPY-like dye M739. Despite an inaccurate initial docking of the chromophore, the incorporated mutations nevertheless improved multiple photophysical parameters as well as the overall performance of the tag. The designed protein, DiB-RM, shows higher brightness, localization precision, and apparent photostability in protein-PAINT super-resolution imaging compared to its parental variant DiB1. Moreover, DiB-RM can be cleaved to obtain an efficient split system with enhanced performance compared to a parental DiB-split system. The possible reasons for the inaccurate ligand binding pose prediction and its consequence on the outcome of the design experiment are further discussed.


Assuntos
Corantes Fluorescentes/química , Proteínas Luminescentes/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Compostos de Boro/química , Biologia Computacional , Cristalografia por Raios X , Desenho de Fármacos , Fluorescência , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Engenharia de Proteínas/estatística & dados numéricos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Software
19.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680042

RESUMO

Green fluorescent protein (GFP) chromophore and its congeners draw significant attention mostly for bioimaging purposes. In this work we probed these compounds as antiviral agents. We have chosen LTR-III DNA G4, the major G-quadruplex (G4) present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), as the target for primary screening and designing antiviral drug candidates. The stabilization of this G4 was previously shown to suppress viral gene expression and replication. FRET-based high-throughput screening (HTS) of 449 GFP chromophore-like compounds revealed a number of hits, sharing some general structural features. Structure-activity relationships (SAR) for the most effective stabilizers allowed us to establish structural fragments, important for G4 binding. Synthetic compounds, developed on the basis of SAR analysis, exhibited high LTR-III G4 stabilization level. NMR spectroscopy and molecular modeling revealed the possible formation of LTR-III G4-ligand complex with one of the lead selective derivative ZS260.1 positioned within the cavity, thus supporting the LTR-III G4 attractiveness for drug targeting. Selected compounds showed moderate activity against HIV-I (EC50 1.78-7.7 µM) in vitro, but the activity was accompanied by pronounced cytotoxicity.


Assuntos
Quadruplex G , Proteínas de Fluorescência Verde/química , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/química , Proteínas de Fluorescência Verde/farmacologia , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/efeitos dos fármacos , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Relação Estrutura-Atividade
20.
Phys Chem Chem Phys ; 23(27): 14636-14648, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212170

RESUMO

Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore (i.e., HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated "floppy" chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck-Condon energy (EFC) or Stokes shift, and knrvs. EFC, as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Halogenação , Cinética , Luz , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica , Espectrometria de Fluorescência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA