Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1868(12): 119133, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450214

RESUMO

The respiratory chain, embedded in the inner mitochondrial membrane, is organized as a network of individual complexes, as well as large supercomplex structures. In the yeast S. cerevisiae, these supercomplexes consist of a dimeric cytochrome bc1-complex adjoined by one or two copies of cytochrome c oxidase. The formation of these complexes is a dynamic process and is regulated by various factors in order to adapt to environmental and metabolic changes. These adaptions occur at the level of enzyme regulation, complex assembly, as well as altered nuclear and mitochondrial transcription and translation. Members of the Rcf protein family (Rcf1, Rcf2 and Rcf3) are required for respiratory complex biogenesis and act mainly by regulating the assembly and enzyme activity of complex IV within supercomplexes. Rcf1 functions in the assembly process via the COX3 module, whereas Rcf2 and Rcf3 are responsible for enzymatic regulation. In this study, we have extended this knowledge to show that Rcf2 and Rcf3 can also associate with newly synthesized mitochondrial encoded proteins, such as Cox3, and therefore contribute to complex IV assembly. Since the Rcf proteins have overlapping regions of sequence similarities, we engineered novel fusion proteins of Rcf1 and Rcf3, with parts of Rcf2, to probe which of the Rcf protein domains can be attributed to their functions. The fusion proteins could compensate for the individual phenotypes of the complexIV assembly defect and the lack of complex IV regulation. Finally, the role of Rcf proteins for defined species of respiratory chain complexes in a hypoxic model was investigated, uncovering a unique association of Rcf2 with the hypoxic III2IV supercomplex. We therefore suggest an involvement of Rcf2 for adaption of the respiratory chain to altering oxygen levels.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fosforilação Oxidativa , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
2.
FEBS Lett ; 595(2): 157-168, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125709

RESUMO

The majority of mitochondrial proteins are nuclear encoded and imported into mitochondria as precursor proteins via dedicated translocases. The translocase of the inner membrane 22 (TIM22) is a multisubunit molecular machine specialized for the translocation of hydrophobic, multi-transmembrane-spanning proteins with internal targeting signals into the inner mitochondrial membrane. Here, we undertook a crosslinking-mass spectrometry (XL-MS) approach to determine the molecular arrangement of subunits of the human TIM22 complex. Crosslinking of the isolated TIM22 complex using the BS3 crosslinker resulted in the broad generation of crosslinks across the majority of TIM22 components, including the small TIM chaperone complex. The crosslinking data uncovered several unexpected features, opening new avenues for a deeper investigation into the steps required for TIM22-mediated translocation in humans.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Succinimidas/química , Cromatografia Líquida , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte da Membrana Mitocondrial/química , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Espectrometria de Massas em Tandem
3.
EMBO J ; 39(14): e104105, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32567732

RESUMO

Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1 Fo -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1 Fo -ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae.


Assuntos
Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Células HeLa , Humanos , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Complexos Multiproteicos/genética
4.
Mol Cell Proteomics ; 19(7): 1161-1178, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332106

RESUMO

Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins, but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labeling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labeled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly because of the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8Δ mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Marcação por Isótopo/métodos , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida , Reagentes de Ligações Cruzadas/química , Complexo I de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação Oxidativa , Ligação Proteica , Mapas de Interação de Proteínas , Proteômica , Complexo Piruvato Desidrogenase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Massas em Tandem
5.
J Mol Biol ; 432(7): 2067-2079, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32061935

RESUMO

The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Cobre/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Compostos de Sulfidrila/química , Proteínas de Transporte/genética , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Células HEK293 , Humanos , Metalochaperonas , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Mutação , Transporte Proteico
6.
J Mol Biol ; 431(15): 2835-2851, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31103774

RESUMO

Mitochondrial membrane proteins with internal targeting signals are inserted into the inner membrane by the carrier translocase (TIM22 complex). For this, precursors have to be initially directed from the TOM complex in the outer mitochondrial membrane across the intermembrane space toward the TIM22 complex. How these two translocation processes are topologically coordinated is still unresolved. Using proteomic approaches, we find that the human TIM22 complex associates with the mitochondrial contact site and cristae organizing system (MICOS) complex. This association does not appear to be conserved in yeast, whereby the yeast MICOS complex instead interacts with the presequence translocase. Using a yeast mic10Δ strain and a HEK293T MIC10 knockout cell line, we characterize the role of MICOS for protein import into the mitochondrial inner membrane and matrix. We find that a physiological cristae organization promotes efficient import via the presequence pathway in yeast, while in human mitochondria, the MICOS complex is dispensable for protein import along the presequence pathway. However, in human mitochondria, the MICOS complex is required for the efficient import of carrier proteins into the mitochondrial inner membrane. Our analyses suggest that in human mitochondria, positioning of the carrier translocase at the crista junction, and potentially in vicinity to the TOM complex, is required for efficient transport into the inner membrane.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mapas de Interação de Proteínas , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteômica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
EMBO Mol Med ; 11(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30885959

RESUMO

Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.


Assuntos
Proteínas Mitocondriais/metabolismo , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dissulfetos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mutantes/metabolismo , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ubiquitina/metabolismo
8.
Cell Stress ; 2(8): 184-199, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31225486

RESUMO

Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.

9.
J Biol Chem ; 291(45): 23769-23778, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27662906

RESUMO

The mitochondrial electron transport chain consists of individual protein complexes arranged into large macromolecular structures, termed respiratory chain supercomplexes or respirasomes. In the yeast Saccharomyces cerevisiae, respiratory chain supercomplexes form by association of the bc1 complex with the cytochrome c oxidase. Formation and maintenance of these assemblies are promoted by specific respiratory supercomplex factors, the Rcf proteins. For these proteins a regulatory function in bridging the electron transfer within supercomplexes has been proposed. Here we report on the maturation of Rcf2 into an N- and C-terminal peptide. We show that the previously uncharacterized Rcf3 (YBR255c-A) is a homolog of the N-terminal Rcf2 peptide, whereas Rcf1 is homologous to the C-terminal portion. Both Rcf3 and the C-terminal fragment of Rcf2 associate with monomeric cytochrome c oxidase and respiratory chain supercomplexes. A lack of Rcf2 and Rcf3 increases oxygen flux through the respiratory chain by up-regulation of the cytochrome c oxidase activity. A double gene deletion of RCF2 and RCF3 affects cellular survival under non-fermentable growth conditions, suggesting an overlapping role for both proteins in the regulation of the OXPHOS activity. Furthermore, our data suggest an association of all three Rcf proteins with the bc1 complex in the absence of a functional cytochrome c oxidase and identify a supercomplex independent interaction network of the Rcf proteins.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Deleção de Genes , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochim Biophys Acta ; 1863(7 Pt A): 1624-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27083394

RESUMO

The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Potencial da Membrana Mitocondrial , Consumo de Oxigênio , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Tempo
11.
RNA Biol ; 13(3): 320-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26821976

RESUMO

A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Apoptose , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Membranas Mitocondriais/metabolismo , Transdução de Sinais
12.
Cell Rep ; 12(10): 1644-55, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26321642

RESUMO

Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Mitocondriais/fisiologia , Chaperonas Moleculares/fisiologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Estabilidade Enzimática , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Multimerização Proteica , Subunidades Proteicas/metabolismo , Transporte Proteico
13.
Cell Metab ; 21(6): 823-33, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25959673

RESUMO

Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency.


Assuntos
Cardiomiopatias/metabolismo , Proteínas de Transporte/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Cardiomiopatias/genética , Proteínas de Transporte/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Células HEK293 , Humanos , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Saccharomyces cerevisiae
14.
FEBS Lett ; 588(17): 2985-92, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24928273

RESUMO

The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxidation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron transporting complexes bc1 complex and the cytochrome c oxidase assemble into large supercomplexes, allowing efficient energy transduction. Currently, we have only limited information about what determines the structure of the supercomplex. Here, we characterize Aim24 in baker's yeast as a protein, which is integrated in the mitochondrial inner membrane and is required for the structural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24 has a function in stabilizing the respiratory chain supercomplexes.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Sequência de Aminoácidos , Meios de Cultura , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Estabilidade Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
15.
EMBO J ; 33(15): 1624-38, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942160

RESUMO

Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F1-ATPase core domain have been identified, insight into how the nuclear-encoded F1-domain assembles with the membrane-embedded Fo-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1-module to the membrane embedded Fo-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase.


Assuntos
Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
J Cell Biol ; 204(7): 1083-6, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24687277

RESUMO

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex "mitochondrial contact site and cristae organizing system" and its subunits Mic10 to Mic60.


Assuntos
Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Subunidades Proteicas/química , Animais , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Terminologia como Assunto
17.
Proc Natl Acad Sci U S A ; 110(22): 8936-41, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23676277

RESUMO

The mitochondrial inner membrane organizing system (MINOS) is a conserved large hetero-oligomeric protein complex in the mitochondrial inner membrane, crucial for the maintenance of cristae morphology. MINOS has been suggested to represent the core of an extended protein network that controls mitochondrial function and structure, and has been linked to several human diseases. The spatial arrangement of MINOS within mitochondria is ill-defined, however. Using super-resolution stimulated emission depletion (STED) microscopy and immunogold electron microscopy, we determined the distribution of three known human MINOS subunits (mitofilin, MINOS1, and CHCHD3) in mammalian cells. Super-resolution microscopy revealed that all three subunits form similar clusters within mitochondria, and that MINOS is more abundant in mitochondria around the nucleus than in peripheral mitochondria. At the submitochondrial level, mitofilin, a core MINOS subunit, is preferentially localized at cristae junctions. In primary human fibroblasts, mitofilin labeling uncovered a regularly spaced pattern of clusters arranged in parallel to the cell growth surfaces. We suggest that this array of MINOS complexes might explain the observed phenomenon of largely horizontally arranged cristae junctions that connect the inner boundary membrane to lamellar cristae. The super-resolution images demonstrate an unexpectedly high level of regularity in the nanoscale distribution of the MINOS complex in human mitochondria, supporting an integrating role of MINOS in the structural organization of the organelle.


Assuntos
Microscopia de Fluorescência/métodos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Animais , Chlorocebus aethiops , Fibroblastos , Células HeLa , Humanos , Microscopia Eletrônica , Microscopia Imunoeletrônica , Membranas Mitocondriais/ultraestrutura , Nanotecnologia , Saccharomyces cerevisiae , Células Vero
18.
J Biol Chem ; 287(40): 33314-26, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22829595

RESUMO

The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Bicamadas Lipídicas/química , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Biofísica/métodos , Cátions , Dicroísmo Circular , Eletrofisiologia/métodos , Lipossomos/química , Potenciais da Membrana , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Peptídeos/química , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo
19.
Cell Metab ; 15(3): 336-47, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22342701

RESUMO

The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Imunoprecipitação , Complexos Multienzimáticos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Biol Cell ; 23(2): 247-57, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22114354

RESUMO

The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Células HEK293 , Humanos , Proteínas de Membrana/genética , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA