Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Rev Sci Instrum ; 92(2): 023908, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648142

RESUMO

Solid-phase epitaxy (SPE) and other three-dimensional epitaxial crystallization processes pose challenging structural and chemical characterization problems. The concentration of defects, the spatial distribution of elastic strain, and the chemical state of ions each vary with nanoscale characteristic length scales and depend sensitively on the gas environment and elastic boundary conditions during growth. The lateral or three-dimensional propagation of crystalline interfaces in SPE has nanoscale or submicrometer characteristic distances during typical crystallization times. An in situ synchrotron hard x-ray instrument allows these features to be studied during deposition and crystallization using diffraction, resonant scattering, nanobeam and coherent diffraction imaging, and reflectivity. The instrument incorporates a compact deposition system allowing the use of short-working-distance x-ray focusing optics. Layers are deposited using radio-frequency magnetron sputtering and evaporation sources. The deposition system provides control of the gas atmosphere and sample temperature. The sample is positioned using a stable mechanical design to minimize vibration and drift and employs precise translation stages to enable nanobeam experiments. Results of in situ x-ray characterization of the amorphous thin film deposition process for a SrTiO3/BaTiO3 multilayer illustrate implementation of this instrument.

2.
ACS Appl Mater Interfaces ; 12(51): 57598-57608, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33290036

RESUMO

A multistep phase sequence following the crystallization of amorphous Al2O3 via solid-phase epitaxy (SPE) points to methods to create low-defect-density thin films of the metastable cubic γ-Al2O3 polymorph. An amorphous Al2O3 thin film on a (0001) α-Al2O3 sapphire substrate initially transforms upon heating to form epitaxial γ-Al2O3, followed by a transformation to monoclinic θ-Al2O3, and eventually to α-Al2O3. Epitaxial γ-Al2O3 layers with low mosaic widths in X-ray rocking curves can be formed via SPE by crystallizing the γ-Al2O3 phase from amorphous Al2O3 and avoiding the microstructural inhomogeneity arising from the spatially inhomogeneous transformation to θ-Al2O3. A complementary molecular dynamics (MD) simulation indicates that the amorphous layer and γ-Al2O3 have similar Al coordination geometry, suggesting that γ-Al2O3 forms in part because it involves the minimum rearrangement of the initially amorphous configuration. The lattice parameters of γ-Al2O3 are consistent with a structure in which the majority of the Al vacancies in the spinel structure occupy sites with tetrahedral coordination, consistent with the MD results. The formation of Al vacancies at tetrahedral spinel sites in epitaxial γ-Al2O3 can minimize the epitaxial elastic deformation of γ-Al2O3 during crystallization.

3.
ACS Appl Mater Interfaces ; 12(18): 20859-20866, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282183

RESUMO

The growth of single crystals of Ge-rich SiGe alloys in an extended composition range is demonstrated using the nanomembrane (NM) platform and III-V growth substrates. Thin films of high-Ge-content SiGe films are grown on GaAs(001) to below the kinetic critical thickness and released from the growth substrate by selectively etching a release layer to relax the strain. The resulting crystalline nanomembranes at the natural lattice constant of the alloy are transferred to a new host and epitaxially overgrown at similar compositions to make a thicker single crystal. Straightforward critical-thickness calculations demonstrate that a very wide range of group IV alloys, including those involving Sn, can be fabricated using the NM platform and the proper choice of III-V substrate. Motivations for making new group IV alloys center on band gap engineering for the development of novel group IV optoelectronic structures and devices.

4.
J Phys Chem A ; 124(9): 1682-1697, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027504

RESUMO

The kinetics of chemical reactions occurring during the metal-organic vapor phase epitaxy (MOVPE) of GaAs1-yBiy have been studied using density functional theory (DFT). GaAs1-yBiy is a metastable semiconductor alloy that has potential applications in high-performance long-wavelength emitters. Its growth is complicated by the low solubility of Bi within the GaAs lattice, which leads to phase segregation under conventional III-V semiconductor growth conditions. In this study, the thermochemical and kinetic parameters of the gas-phase pyrolysis and surface reactions occurring in the MOVPE growth of GaAs1-yBiy from trimethyl bismuth, tertiary butyl arsine, and triethyl gallium are calculated from first-principles electronic structure and vibrational mode calculations. These calculations indicate that the pyrolysis products AsH2 and Bi(CH3)2 are the principle sources for the deposition of their respective metallic elements. The surface-adsorbed methyl species and their interaction with the gas-phase pyrolysis products lead to the self-limiting growth described within this model. The calculated thermochemical and kinetic values provide initial parameters for the development of a microkinetic model of GaAs1-yBiy deposition.

5.
ACS Appl Mater Interfaces ; 9(46): 41034-41042, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29094920

RESUMO

Integration of emerging complex-oxide compounds into sophisticated nanoscale single-crystal geometries faces significant challenges arising from the kinetics of vapor-phase thin-film epitaxial growth. A comparison of the crystallization of the model perovskite SrTiO3 (STO) on (001) STO and oxidized (001) Si substrates indicates that there is a viable alternative route that can yield three-dimensional epitaxial synthesis, an approach in which STO is crystallized from an amorphous thin film by postdeposition annealing. The crystallization of amorphous STO on single-crystal (001) STO substrates occurs via solid-phase epitaxy (SPE), without nucleation and with a temperature-dependent amorphous/crystalline interface velocity. In comparison, the crystallization of STO on SiO2/(001) Si substrates requires nucleation, resulting in a polycrystalline film with crystal sizes on the order of 10 nm. A comparison of the temperature dependence of the nucleation and growth processes for these two substrates indicates that it will be possible to create crystalline STO materials using low-temperature crystallization from a crystalline seed, even in the presence of interfaces with other materials. These processes provide a potential route for the formation of single crystals with intricate three-dimensional nanoscale geometries.

6.
ACS Appl Mater Interfaces ; 9(12): 11231-11239, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28252289

RESUMO

An ultrathin MgO coating was synthesized via atomic layer deposition (ALD) to improve the surface properties of the Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathode. An in-situ quartz crystal sensor was used to monitor the "self-limiting" surface reactions during ALD process and estimate the density of the deposited film. The electrochemical performance of the MgO-coated NMC cathode was evaluated in a half-cell assembly and compared to other ALD-based coatings, such as Al2O3 and ZrO2. Cyclic voltammetry studies suggested that ALD MgO has a higher Li-diffusion coefficient which resulted in lower overpotential on the NMC cathode surface and improved Li-ion battery rate performance. MgO-coated NMC also yielded improved capacity retention over uncoated NMC in a long-range cycling test.

7.
ACS Appl Mater Interfaces ; 8(16): 10572-80, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27035035

RESUMO

Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

8.
ACS Appl Mater Interfaces ; 7(30): 16573-80, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26168188

RESUMO

Atomic layer deposition (ALD) was used to coat γ-Al2O3 particles with oxide films of varying Mg/Al atomic ratios, which resulted in systematic variation of the acid and base site areal densities. Variation of Mg/Al also affected morphological features such as crystalline phase, pore size distribution, and base site proximity. Areal base site density increased with increasing Mg content, while acid site density went through a maximum with a similar number of Mg and Al atoms in the coating. This behavior leads to nonlinearity in the relationship between Mg/Al and acid/base site ratio. The physical and chemical properties were elucidated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, and CO2 and NH3 temperature-programmed desorption (TPD). Fluorescence emission spectroscopy of samples grafted with 1-pyrenebutyric acid (PBA) was used for analysis of base site proximity. The degree of base site clustering was correlated to acid site density. Catalytic activity in the self-condensation of acetone was dependent on sample base site density and independent of acid site density.

9.
ChemSusChem ; 7(12): 3247-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257472

RESUMO

Whereas sintering and leaching of copper nanoparticles during liquid-phase catalytic processing can be prevented by using atomic layer deposition (ALD) to overcoat the nanoparticles with AlOx , this acidic overcoat leads to reversible deactivation of the catalyst by resinification and blocking of the pores within the overcoat during hydrogenation of furfural. We demonstrate that decreasing the overcoat thickness from 45 to 5 ALD cycles is an effective method to increase the rate per gram of catalyst and to decrease the rate of deactivation for catalysts pretreated at 673 K, and a fully regenerable copper catalyst can be produced with only five ALD cycles of AlOx . Moreover, although an overcoat of MgOx does not lead to stabilization of copper nanoparticles against sintering and leaching during liquid-phase hydrogenation reactions, the AlOx overcoat can be chemically modified to decrease acidity and deactivation through the addition of MgOx , while maintaining stability of the copper nanoparticles.


Assuntos
Óxido de Alumínio/química , Cobre/química , Catálise
10.
Nano Lett ; 13(12): 5979-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274630

RESUMO

Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (~10 nm) SiNx layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ~ 20 nm and micrometer-scale lengths were achieved with a density of ~ 5 × 10(10) cm(2). The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.


Assuntos
Arsenicais/química , Índio/química , Nanofios/química , Polímeros/química , Cristalização , Gálio/química , Metacrilatos/química , Microscopia Eletrônica de Transmissão , Poliestirenos/química
11.
Angew Chem Int Ed Engl ; 52(51): 13808-12, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24282166

RESUMO

Atomic layer deposition (ALD) of an alumina overcoat can stabilize a base metal catalyst (e.g., copper) for liquid-phase catalytic reactions (e.g., hydrogenation of biomass-derived furfural in alcoholic solvents or water), thereby eliminating the deactivation of conventional catalysts by sintering and leaching. This method of catalyst stabilization alleviates the need to employ precious metals (e.g., platinum) in liquid-phase catalytic processing. The alumina overcoat initially covers the catalyst surface completely. By using solid state NMR spectroscopy, X-ray diffraction, and electron microscopy, it was shown that high temperature treatment opens porosity in the overcoat by forming crystallites of γ-Al2 O3 . Infrared spectroscopic measurements and scanning tunneling microscopy studies of trimethylaluminum ALD on copper show that the remarkable stability imparted to the nanoparticles arises from selective armoring of under-coordinated copper atoms on the nanoparticle surface.

12.
Annu Rev Chem Biomol Eng ; 4: 187-209, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23540290

RESUMO

There is an increasing technological need for a wider array of semiconducting materials that will allow greater control over the physical and electronic structure within multilayer heterostructures. This need has led to an expansion in the range of semiconducting alloys explored and used in new applications. These alloy semiconductors are often complicated by a limited range of miscibility. The current research has focused on the properties, stability, and detailed chemistry required to realize these materials. The use of synthetic conditions that permit the growth of these alloys to be dominated by kinetic rather than mass-transport considerations has allowed many of these nominally unstable materials to be grown and used in device structures. These materials have found important applications within optical communications as emitters and detectors and in solid-state lighting.


Assuntos
Ligas/química , Óptica e Fotônica , Semicondutores , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos
13.
Langmuir ; 28(32): 11890-8, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22809291

RESUMO

Single-stranded DNA immobilized on an III-V semiconductor is a potential high-sensitivity biosensor. The chemical and electronic changes occurring upon the binding of DNA to the InAs surface are essential to understanding the DNA-immobilization mechanism. In this work, the chemical properties of DNA-immobilized InAs surfaces were determined through high-resolution X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS). Prior to DNA functionalization, HF- and NH(4)OH- based aqueous etches were used to remove the native oxide from the InAs surface. The initial chemical state of the surface resulting from these etches were characterized prior to functionalization. F-tagged thiolated single-stranded DNA (ssDNA) was used as the probe species under two different functionalization methods. The presence of DNA immobilized on the surface was confirmed from the F 1s, N 1s, and P 2p peaks in the XPS spectra. The presence of salt had a profound effect on the density of immobilized DNA on the InAs surface. To study the interfacial chemistry, the surface was treated with thiolated ssDNA with and without the mercaptohexanol molecule. An analysis of the As 3d and In 3d spectra indicates that both In-S and As-S are present on the surface after DNA functionalization. The amount of In-S and As-S was determined by the functionalization method as well as the presence of mercaptohexanol during functionalization. The orientation of the adsorbed ssDNA is determined by polarization-dependent NEXAFS utilizing the N K-edge. The immobilized ssDNA molecule has a preferred tilt angle with respect to the substrate normal, but with a random azimuthal distribution.


Assuntos
Arsenicais/química , Sondas de DNA/química , DNA de Cadeia Simples/química , Índio/química , Espectroscopia Fotoeletrônica , Espectroscopia por Absorção de Raios X , Sequência de Bases , Sondas de DNA/genética , DNA de Cadeia Simples/genética , Óxidos/química , Propriedades de Superfície
14.
Opt Express ; 18(12): 12630-45, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588390

RESUMO

The ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').


Assuntos
Imageamento Tridimensional/economia , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Análise Espectral/economia , Análise Espectral/métodos , Simulação por Computador , Fenômenos Ópticos
15.
Opt Express ; 17(3): 1372-84, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19188966

RESUMO

A diffuse reflectance spectroscopy system was modified as a step towards miniaturization and spectral imaging of tissue absorption and scattering. The modified system uses a tunable source and an optical fiber for illumination and a photodiode in contact with tissue for detection. Compared to the previous system, it is smaller, less costly, and has comparable performance in extracting optical properties in tissue phantoms. Wavelength reduction simulations show the feasibility of replacing the source with LEDs to further decrease system size and cost. Simulated crosstalk analysis indicates that this evolving system can be multiplexed for spectral imaging in the future.


Assuntos
Luz , Óptica e Fotônica/instrumentação , Imagens de Fantasmas , Espalhamento de Radiação , Análise Espectral/métodos , Absorção/efeitos da radiação , Simulação por Computador , Hemoglobinas/metabolismo , Humanos , Método de Monte Carlo
16.
J Biomed Opt ; 13(6): 060505, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19123646

RESUMO

A hybrid optical device that uses a multimode fiber coupled to a tunable light source for illumination and a 2.4-mm photodiode for detection in contact with the tissue surface is developed as a first step toward our goal of developing a cost-effective, miniature spectral imaging device to map tissue optical properties in vivo. This device coupled with an inverse Monte Carlo model of reflectance is demonstrated to accurately quantify tissue absorption and scattering in tissue-like turbid synthetic phantoms with a wide range of optical properties. The overall errors for quantifying the absorption and scattering coefficients are 6.0+/-5.6 and 6.1+/-4.7%, respectively. Compared with fiber-based detection, having the detector right at the tissue surface can significantly improve light collection efficiency, thus reducing the requirement for sophisticated detectors with high sensitivity, and this design can be easily expanded into a quantitative spectral imaging system for mapping tissue optical properties in vivo.


Assuntos
Interpretação de Imagem Assistida por Computador/instrumentação , Iluminação/instrumentação , Nefelometria e Turbidimetria/instrumentação , Fotometria/instrumentação , Radiometria/instrumentação , Análise Espectral/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Interpretação de Imagem Assistida por Computador/métodos , Luz , Iluminação/economia , Iluminação/métodos , Nefelometria e Turbidimetria/economia , Nefelometria e Turbidimetria/métodos , Imagens de Fantasmas , Fotometria/economia , Fotometria/métodos , Radiometria/economia , Radiometria/métodos , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Análise Espectral/economia , Análise Espectral/métodos , Transdutores/economia , Estados Unidos
17.
Langmuir ; 22(19): 8121-6, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16952251

RESUMO

We demonstrate that photochemical functionalization can be used to functionalize and photopattern the surface of gallium nitride crystalline thin films with well-defined molecular and biomolecular layers. GaN(0001) surfaces exposed to a hydrogen plasma will react with organic molecules bearing an alkene (C=C) group when illuminated with 254 nm light. Using a bifunctional molecule with an alkene group at one end and a protected amine group at the other, this process can be used to link the alkene group to the surface, leaving the protected amine exposed. Using a simple contact mask, we demonstrate the ability to directly pattern the spatial distribution of these protected amine groups on the surface with a lateral resolution of <12 mum. After deprotection of the amines, single-stranded DNA oligonucleotides were linked to the surface using a bifunctional cross-linker. Measurements using fluorescently labeled complementary and noncomplementary sequences show that the DNA-modified GaN surfaces exhibit excellent selectivity, while repeated cycles of hybridization and denaturation in urea show good stability. These results demonstrate that photochemical functionalization can be used as an attractive starting point for interfacing molecular and biomolecular systems with GaN and other compound semiconductors.


Assuntos
DNA de Cadeia Simples/química , Gálio/química , Membranas Artificiais , Acetamidas , Alcanos/química , Alcenos/química , Reagentes de Ligações Cruzadas/química , Fluoracetatos , Modelos Químicos , Estrutura Molecular , Fotoquímica , Análise Espectral , Propriedades de Superfície , Ácido Trifluoracético/química
18.
Inorg Chem ; 38(20): 4539-4548, 1999 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-11671168

RESUMO

Treatment of yttrium metal with bis(pentafluorophenyl)mercury (1.5 equiv), 3,5-di-tert-butylpyrazole (3 equiv), and pyridine (2 equiv) in toluene at ambient temperature for 120 h afforded tris(3,5-di-tert-butylpyrazolato)bis(pyridine)yttrium(III) (33%). In an analogous procedure, the reaction of erbium metal with 3,5-dialkylpyrazole (alkyl = methyl or tert-butyl), bis(pentafluorophenyl)mercury, and a neutral nitrogen donor (4-tert-butylpyridine, pyridine, n-butylimidazole, or 3,5-di-tert-butylpyrazole) yielded tris(3,5-di-tert-butylpyrazolato)bis(4-tert-butylpyridine)erbium(III) (63%), tris(3,5-di-tert-butylpyrazolato)bis(pyridine)erbium(III) (88%), tris(3,5-di-tert-butylpyrazolato)bis(n-butylimidazole)erbium(III) (48%), tris(3,5-dimethylpyrazolato)bis(4-tert-butylpyridine)erbium(III) (50%), and tris(3,5-di-tert-butylpyrazolato)(3,5-di-tert-butylpyrazole)erbium(III) (59%), respectively. Treatment of tris(cyclopentadienyl)lutetium(III) or tris(cyclopentadienyl)erbium(III) with 3,5-di-tert-butylpyrazole (3 equiv) and 4-tert-butylpyridine (2 equiv) in toluene at ambient temperature for 24 h afforded tris(3,5-di-tert-butylpyrazolato)bis(4-tert-butylpyridine)lutetium(III) (83%) and tris(3,5-di-tert-butylpyrazolato)bis(4-tert-butylpyridine)erbium(III) (41%), respectively. The X-ray crystal structures of all new complexes were determined. The X-ray structure analyses revealed seven- and eight-coordinate lanthanide complexes with all-nitrogen coordination spheres and eta(2)-pyrazolato ligands. Molecular orbital calculations were carried out on dichloro(pyrazolato)diammineyttrium(III). The calculations demonstrate that eta(2)-bonding of the pyrazolato ligand is favored over the eta(1)-bonding mode and give insight into the bonding between yttrium and the pyrazolato ligands. Complexes bearing 3,5-di-tert-butylpyrazolato ligands can be obtained in a high state of purity and sublime without decomposition (150 degrees C, 0.1 mmHg). Application of these complexes as source compounds for chemical vapor deposition processes is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA