Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2312008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501999

RESUMO

Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon-compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three-terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter-deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room-temperature TMR effect. First-principles calculations explain the TMR in terms of the momentum-resolved spin-dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.

2.
Nanotechnology ; 34(49)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37669644

RESUMO

Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips.

4.
Nat Commun ; 12(1): 4555, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315883

RESUMO

Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii-Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.

5.
Nat Commun ; 12(1): 3828, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158511

RESUMO

There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn3/Pt devices. A six-terminal double-cross device is constructed, with an IrMn3 pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn3 after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn3 pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.

6.
Sci Rep ; 11(1): 8504, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875725

RESUMO

Tetherless sensors have long been positioned to enable next generation applications in biomedical, environmental, and industrial sectors. The main challenge in enabling these advancements is the realization of a device that is compact, robust over time, and highly efficient. This paper presents a tetherless optical tag which utilizes optical energy harvesting to realize scalable self-powered devices. Unlike previous demonstrations of optically coupled sensor nodes, the device presented here amplifies signals and encodes data on the same optical beam that provides its power. This optical interrogation modality results in a highly efficient data link. These optical tags support data rates up to 10 Mb/s with an energy consumption of ~ 3 pJ/bit. As a proof-of-concept application, the optical tag is combined with a spintronic microwave detector based on a magnetic tunnel junction (MTJ). We used this hybrid opto-spintronic system to perform self-powered transduction of RF waves at 1 GHz to optical frequencies at ~ 200 THz, while carrying an audio signal across (see Supplementary Data for audio files).

7.
J Am Heart Assoc ; 5(7)2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27451458

RESUMO

BACKGROUND: Because of the unique electromagnetic characteristics of the magnetoelastic microwire, the changes in the pressure of a fluid will provoke a variation of the mechanical pressure on the sensor, which will cause a variation of its magnetization that will be detectable wirelessly. Thus, a wireless system can be developed for following up vascular surgery procedures. METHODS AND RESULTS: The sensor consists of a magnetoelastic microwire ring, which was integrated into an in vitro model with pulsatile flow. Different degrees of stenosis were simulated in different locations both in bovine artery as well as in a polytetrafluoroethylene anastomosis. A Fourier analysis of the registered signals and a statistical analysis using Pearson test and receiver operating characteristic (ROC) curves were made. A Pearson index of 0.945 (P<0.001) was obtained between the invasive pressure of the fluid and the power of the signal transmitted by the sensor in bovine artery. The sensor obtained very good ROC curves upon analyzing the signals registered, both in the case of preanastomotic stenosis (area under the curve [AUC], 0.98; 95% CI, 0.97-1.00), of anastomosis (AUC, 0.93; 95% CI, 0.86-0.99), as well as distal (AUC, 0.88; 95% CI, 0.79-0.98), compared to the control group. CONCLUSIONS: The magnetoelastic microwire has shown that it is capable of detecting, locating, and quantifying the degree of stenosis in bovine artery, as well as in a latero-terminal anastomosis, with a high statistical potency. For the first time, a wireless in vitro sensor has been developed for the postoperative follow-up of vascular surgery procedures.


Assuntos
Assistência ao Convalescente , Artérias/fisiopatologia , Cuidados Pós-Operatórios , Telemetria/instrumentação , Procedimentos Cirúrgicos Vasculares , Tecnologia sem Fio/instrumentação , Animais , Área Sob a Curva , Artérias/patologia , Bovinos , Constrição Patológica , Radiação Eletromagnética , Análise de Fourier , Técnicas In Vitro , Imãs , Modelos Anatômicos , Modelos Cardiovasculares , Politetrafluoretileno , Fluxo Pulsátil , Curva ROC
8.
J Pharm Pharmacol ; 68(7): 873-82, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27138975

RESUMO

BACKGROUND: Drug permeation through skin, or a synthetic membrane, from locally acting pharmaceutical products can be influenced by the permeation behaviour of pharmaceutical excipients. OBJECTIVE: Terahertz time-domain technology is investigated as a non-invasive method for a direct and accurate measurement of excipients permeation through synthetic membranes or human skin. METHODS: A series of in-vitro release and skin permeation experiments of liquid excipients (e.g. propylene glycol and polyethylene glycol 400) has been conducted with vertical diffusion cells. The permeation profiles of excipients through different synthetic membranes or skin were obtained using Terahertz pulses providing a direct measurement. Corresponding permeation flux and permeability coefficient values were calculated based on temporal changes of the terahertz pulses. RESULTS: The influence of different experimental conditions, such as the polarity of the membrane and the viscosity of the permeant, was assessed in release experiments. Specific transmembrane flux values of those excipients were directly calculated with statistical differences between cases. Finally, an attempt to estimate the skin permeation of propylene glycol with this technique was also achieved. All these permeation results were likely comparable to those obtained by other authors with usual analytical techniques. CONCLUSION: Terahertz time-domain technology is shown to be a suitable technique for an accurate and non-destructive measurement of the permeation of liquid substances through different synthetic membranes or even human skin.


Assuntos
Química Farmacêutica/métodos , Membranas Artificiais , Polietilenoglicóis/farmacocinética , Propilenoglicol/farmacocinética , Absorção Cutânea , Administração Cutânea , Excipientes/administração & dosagem , Excipientes/farmacocinética , Humanos , Técnicas In Vitro , Permeabilidade
9.
Med Phys ; 41(4): 041902, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24694133

RESUMO

PURPOSE: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. METHODS: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360°, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. RESULTS: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. CONCLUSIONS: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verification in a more relevant phantom is required in order to foresee the real potential of this approach.


Assuntos
Metais/química , Micro-Ondas , Análise Espectral/métodos , Stents , Imagens de Fantasmas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA