Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421030

RESUMO

Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080TM photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF2 substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 µm wavelengths since MLAs were only ∼10 µm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 µm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible-IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved.

2.
Nanomaterials (Basel) ; 13(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37368324

RESUMO

Herein, we give an overview of several less explored structural and optical characterization techniques useful for biomaterials. New insights into the structure of natural fibers such as spider silk can be gained with minimal sample preparation. Electromagnetic radiation (EMR) over a broad range of wavelengths (from X-ray to THz) provides information of the structure of the material at correspondingly different length scales (nm-to-mm). When the sample features, such as the alignment of certain fibers, cannot be characterized optically, polarization analysis of the optical images can provide further information on feature alignment. The 3D complexity of biological samples necessitates that there be feature measurements and characterization over a large range of length scales. We discuss the issue of characterizing complex shapes by analysis of the link between the color and structure of spider scales and silk. For example, it is shown that the green-blue color of a spider scale is dominated by the chitin slab's Fabry-Pérot-type reflectivity rather than the surface nanostructure. The use of a chromaticity plot simplifies complex spectra and enables quantification of the apparent colors. All the experimental data presented herein are used to support the discussion on the structure-color link in the characterization of materials.

3.
Materials (Basel) ; 16(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903030

RESUMO

Ultra-short 230 fs laser pulses of 515 nm wavelength were tightly focused into 700 nm focal spots and utilised in opening ∼400 nm nano-holes in a Cr etch mask that was tens-of-nm thick. The ablation threshold was found to be 2.3 nJ/pulse, double that of plain silicon. Nano-holes irradiated with pulse energies below this threshold produced nano-disks, while higher energies produced nano-rings. Both these structures were not removed by either Cr or Si etch solutions. Subtle sub-1 nJ pulse energy control was harnessed to pattern large surface areas with controlled nano-alloying of Si and Cr. This work demonstrates vacuum-free large area patterning of nanolayers by alloying them at distinct locations with sub-diffraction resolution. Such metal masks with nano-hole opening can be used for formation of random patterns of nano-needles with sub-100 nm separation when applied to dry etching of Si.

4.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296122

RESUMO

Control of light absorption and transmission by metal-insulator-metal (MIM) metasurfaces are promising for applications in optical windows. This study shows the realization of photo-thermal energy conversion for radiative cooling by MIM metasurfaces with thin metal substrate and Indium-Tin-Oxide (ITO). High transparency of ITO at visible wavelengths and high absorption at mid-infrared wavelengths were realized for future applications of efficient cooling or heating applicable for living and working spaces. The MIM (ITO/CaF2/ITO) metasurface was patterned with low-resolution photo-lithography as a demonstration of further simplification and possible scalability of the patterning for practical window applications.

5.
Nanoscale Horiz ; 7(9): 1047-1053, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35796230

RESUMO

Polarisation analysis of light-matter interactions established for propagating optical far-fields is now extended into an evanescent field as demonstrated in this study using an attenuated total reflection (ATR) setup and a synchrotron source at THz frequencies. Scalar intensity E2, rather than a vector E-field, is used for absorbance analysis of the s- and p-components of the linearly polarised incident light. Absorption and phase changes induced by the sample and detected at the transmission port of the ATR accessory revealed previously non-accessible anisotropy in the absorption-dispersion properties of the sample probed by the evanescent optical near-field. Mapping of the sample's anisotropy perpendicular to its surface by the non-propagating light field is validated and the cos2 θ absorbance dependence was observed for the angle θ, where θ = 0° is aligned with the sample's surface. A four-polarisation method is presented for the absorbance mapping and a complimentary retardance spectrum is retrieved from the same measurement of the angular dependence of transmittance in structurally complex poly-hydroxybutyrate (PHB) and poly-L-lactic acid (PLLA) samples with amorphous and banded-spherulite (radially isotropic) crystalline regions. A possibility of all 3D mapping of anisotropy (polarisation tomography) is outlined.

6.
Opt Express ; 30(3): 4058-4070, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209651

RESUMO

Detailed spectral analysis of radiation absorption and scattering behaviors of metasurfaces was carried out via finite-difference time-domain (FDTD) photonic simulations. It revealed that, for typical metal-insulator-metal (MIM) nanodisc metasurfaces, absorbance and scattering cross-sections exhibit a ratio of σabs/σsca = 1 at the absorption peak spectral position. This relationship was likewise found to limit the attainable photo-thermal conversion efficiency in experimental and application contexts. By increasing the absorption due to optical materials, such as Cr metal nano-films typically used as an adhesion layer, it is possible to control the total absorption efficiency η = σabs/σsca and to make it the dominant extinction mechanism. This guided the design of MIM metasurfaces tailored for near-perfect-absorption and emission of thermal radiation. We present the fabrication as well as the numerical and experimental spectral characterisation of such optical surfaces.

7.
Anal Chem ; 93(43): 14448-14453, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668693

RESUMO

The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid-liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid-liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.

8.
Sci Rep ; 11(1): 5432, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686156

RESUMO

Er3+/Dy3+ co-doped double-clad ZBLAN optical fiber has been used to obtain amplified spontaneous emission (ASE) broadband light sources cladding-pumped by 980-nm multimode laser diode (LD) sources. It has been demonstrated that mid-infrared broadband emission extending from 2515 to 3735 nm was obtained by energy transfer between Er3+ and Dy3+. We experimentally investigated the optimum design of Er3+/Dy3+ co-doped ZBLAN fiber in terms of ion concentration, fiber length, pumping configuration, and pumping power. The ASE output power was more than 2.5 mW when the LD pump power was set at 5 W. To assess its potential for gas sensing applications, the fabricated ASE light source was used to successfully detect methane gas with concentrations at 1% and 5%. The simple and stable construction of our ASE light source is suitable for practical purposes.

9.
Micromachines (Basel) ; 11(9)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872613

RESUMO

Lithography-free black metals composed of a nano-layered stack of materials are attractive not only due to their optical properties but also by virtue of fabrication simplicity and the cost reduction of devices based on such structures. We demonstrate multi-layer black metal layered structures with engineered electromagnetic absorption in the mid-infrared (MIR) wavelength range. Characterization of thin SiO2 and Si films sandwiched between two Au layers by way of experimental electromagnetic radiation absorption and thermal radiation emission measurements as well as finite difference time domain (FDTD) numerical simulations is presented. Comparison of experimental and simulation data derived optical properties of multi-layer black metals provide guidelines for absorber/emitter structure design and potential applications. In addition, relatively simple lithography-free multi-layer structures are shown to exhibit absorber/emitter performance that is on par with what is reported in the literature for considerably more elaborate nano/micro-scale patterned metasurfaces.

10.
Opt Express ; 28(17): 25383-25391, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907060

RESUMO

Formation of metal hydrides is a signature chemical property of hydrogen and it can be leveraged to enact both storage and detection of this technologically important yet extremely volatile gas. Palladium shows particular promise as a hydrogen storage medium as well as a platform for creating rapid and reliable H2 optical sensor devices. Furthermore, alloying Pd with other noble metals provides a technologically simple yet powerful way of enacting control over the structural and catalytic properties of the resultant material. Similarly, in addition to alloying, different top-down and bottom-up Pd nanostructuring methods have been proposed and investigated specifically for creating optical H2 sensors. In this work it was determined that the hydrogen sensing ability of a series of Pd-Au alloy films could be improved by way of a hydrogen over exposure (HOE) treatment. Structural investigation showed that the HOE treatment, in addition to irreversibly altering the film morphology, results in a 1 to 2% expansion in the lattice constant of the metal. By combining a cyclic HOE treatment and alloy aging through annealing, the hydrogen detection sensitivity and response rates of Pd-Au films could be stabilized so that their performance would no longer be appreciably affected by repeated hydrogen uptake and release cycles. This work takes a further step towards routine all-optical detection of part-per-million level hydrogen gas concentrations in Pd-Au alloy films and discussion of ways to enhance response rates is provided.

11.
Micromachines (Basel) ; 11(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932670

RESUMO

Metasurfaces of gold (Au) nanoparticles on a SiO2-Si substrate were fabricated for the enhancement of second harmonic generation (SHG) using electron beam lithography and lift-off. Triangular Au nanoprisms which are non-centro-symmetric and support second-order nonlinearity were examined for SHG. The thickness of the SiO2 spacer is shown to be an effective parameter to tune for maximising SHG. Electrical field enhancement at the fundamental wavelength was shown to define the SHG intensity. Numerical modeling of light enhancement was verified by experimental measurements of SHG and reflectivity spectra at the normal incidence. At the plasmonic resonance, SHG is enhanced up to ∼3.5 × 103 times for the optimised conditions.

12.
Micromachines (Basel) ; 11(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751390

RESUMO

The thermal properties of novel nanomaterials play a significant role in determining the performance of the material in technological applications. Herein, direct measurement of the temperature diffusivity of nanocellulose-doped starch-polyurethane nanocomposite films was carried out by the micro-contact method. Polymer films containing up to 2 wt%. of nanocellulose were synthesised by a simple chemical process and are biodegradable. Films of a high optical transmittance T≈80% (for a 200 µm thick film), which were up to 44% crystalline, were characterised. Two different modalities of temperature diffusivity based on (1) a resistance change and (2) micro-thermocouple detected voltage modulation caused by the heat wave, were used for the polymer films with cross sections of ∼100 µm thickness. Twice different in-plane α‖ and out-of-plane α⟂ temperature diffusivities were directly determined with high fidelity: α‖=2.12×10-7 m2/s and α⟂=1.13×10-7 m2/s. This work provides an example of a direct contact measurement of thermal properties of nanocellulose composite biodegradable polymer films. The thermal diffusivity, which is usually high in strongly interconnected networks and crystals, was investigated for the first time in this polymer nanocomposite.

13.
Opt Express ; 28(11): 16012-16026, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549433

RESUMO

The self-organised conical needles produced by plasma etching of silicon (Si), known as black silicon (b-Si), create a form-birefringent surface texture when etching of Si orientated at angles of θi < 50 - 70° (angle between the Si surface and vertical plasma E-field). The height of the needles in the form-birefringent region following 15 min etching was d ∼ 200 nm and had a 100 µm width of the optical retardance/birefringence, characterised using polariscopy. The height of the b-Si needles corresponds closely to the skin-depth of Si ∼λ/4 for the visible spectral range. Reflection-type polariscope with a voltage-controlled liquid-crystal retarder is proposed to directly measure the retardance Δn × d/λ ≈ 0.15 of the region with tilted b-Si needles. The quantified form birefringence of Δn = -0.45 over λ = 400 - 700 nm spectral window was obtained. Such high values of Δn at visible wavelengths can only be observed in the most birefringence calcite or barium borate as well as in liquid crystals. The replication of b-Si into Ni-shim with high fidelity was also demonstrated and can be used for imprinting of the b-Si nanopattern into other materials.

14.
Micromachines (Basel) ; 11(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295221

RESUMO

Realisation of a perfect absorber A = 1 with transmittance and reflectance T = R = 0 by a thin metasurface is one of the hot topics in recent nanophotonics prompted by energy harvesting and sensor applications ( A + R + T = 1 is the energy conservation). Here we tested the optical properties of over 400 structures of metal-insulator-metal (MIM) metasurfaces for a range of variation in thickness of insulator, diameter of a disc and intra-disc distance both experimentally and numerically. Conditions of a near perfect absorption A > 95 % with simultaneously occurring anti-reflection property ( R < 5 % ) was experimentally determined. Differences between the bulk vs. nano-thin film properties at mid-IR of the used materials can be of interest for plasmonic multi-metal alloys and high entropy metals.

15.
Micromachines (Basel) ; 11(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121168

RESUMO

We demonstrate a concept and fabrication of lithography-free layered metal-SiO2 thin-film structures which have reduced reflectivity (black appearance), to as low as 0.9%, with 4.9% broadband reflectance (8.9% for soda lime) in the 500-1400 nm range. The multi-layered (four layers) thin-film metamaterial is designed so that optical impedance matching produces minimal reflectance and transmittance within the visible and infra-red (IR) spectral region for a range of incident angles. The structure has enhanced absorbance and is easily tuned for reduced minimal transmission and reflection. This approach should allow for novel anti-reflection surfaces by impedance matching to be realized.

16.
Sensors (Basel) ; 20(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877934

RESUMO

Hydrogen gas has attracted attention as a new energy carrier, and simple but highly sensitive hydrogen sensors are required. We fabricated an optical hydrogen sensor based on a silicon microring resonator (MRR) with tungsten oxide (WO3) using a complementary metal-oxide-semiconductor (CMOS)-compatible process for the MRR and a sol-gel method for the WO3 layer and investigated its sensing characteristics at device temperatures of 5, 20, and 30 °C. At each temperature, a hydrogen concentration of as low as 0.1 vol% was successfully detected. The gas sensitivity increased with decreasing temperature. The dependence of the sensitivity on the device temperature can be attributed to the thickness of tungsten bronze (HxWO3) formed by WO3 during exposure to hydrogen gas. In addition, a hydrogen gas sensor based on a silicon-MRR-enhanced Mach-Zehnder interferometer (MRR-MZI) is proposed and its significantly high sensing ability using improved changes in the transmittance of light is theoretically discussed.

17.
ACS Sens ; 4(9): 2389-2394, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31412698

RESUMO

A hydrogen sensor based on plasmonic metasurfaces is demonstrated to exhibit the industry-required 10 s reaction time and sensitivity. It consists of a layer of either Y or WO3 sandwiched between a top Pd nanodisk and a Au mirror at the base. The phase change layer (Y, WO3) reacts with hydrogen, and the corresponding change of the refractive index (permittivity) is detected by the spectral shift of the resonance dip in reflectance at the IR spectral window. This direct reflectance readout of the permittivity change due to hydrogen uptake is fast and is facilitated by radiation field enhancement extending into the phase change volume. Numerical modeling was used to elucidate the effects that real and imaginary parts of the refractive index exert on the spectral shifts of resonance. The mechanism of sensor performance is outlined, and a possibility to tune its spectral range of operation by the diameter of the Pd nanodisk and thickness of the phase change material makes this design applicable to other molecular detection applications including surface-enhanced IR absorption.


Assuntos
Hidrogênio/análise , Nanotecnologia/instrumentação , Paládio/química , Fatores de Tempo
18.
Eur J Med Chem ; 179: 837-848, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299492

RESUMO

Type-1 ryanodine receptor (RyR1) is a calcium-release channel localized on sarcoplasmic reticulum (SR) of the skeletal muscle, and mediates muscle contraction by releasing Ca2+ from the SR. Genetic mutations of RyR1 are associated with skeletal muscle diseases such as malignant hyperthermia and central core diseases, in which over-activation of RyR1 causes leakage of Ca2+ from the SR. We recently developed an efficient high-throughput screening system based on the measurement of Ca2+ in endoplasmic reticulum, and used it to identify oxolinic acid (1) as a novel RyR1 channel inhibitor. Here, we designed and synthesized a series of quinolone derivatives based on 1 as a lead compound. Derivatives bearing a long alkyl chain at the nitrogen atom of the quinolone ring and having a suitable substituent at the 7-position of quinolone exhibited potent RyR1 channel-inhibitory activity. Among the synthesized compounds, 14h showed more potent activity than dantrolene, a known RyR1 inhibitor, and exhibited high RyR1 selectivity over RyR2 and RyR3. These compounds may be promising leads for clinically applicable RyR1 channel inhibitors.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Quinolonas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
19.
Sci Rep ; 9(1): 8284, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164675

RESUMO

Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff's law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff's law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.

20.
J Comput Chem ; 40(8): 925-932, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30368857

RESUMO

First principles electrodyanmics and quantum chemical simulations are performed to gain insights into the underlying mechanisms of the surface enhanced Raman spectra of 22BPY adsorbed on pure Au and Ag as well as on Au-Ag alloy nanodiscs. Experimental SERS spectra from Au and Ag nanodiscs show similar peaks, whereas those from Au-Ag alloy reveal new spectral features. The physical enhancement factors due to surface nano-texture were considered by numerical FDTD simulations of light intensity distribution for the nano-textured Au, Ag, and Au-Ag alloy and compared with experimental results. For the chemical insights of the enhancement, the DFT calculations with the dispersion interaction were performed using Au20 , Ag20 , and Au10 Ag10 clusters of a pyramidal structure for SERS modeling. Binding of 22BPY to the clusters was simulated by considering possible arrangements of vertex and planar physical as well as chemical adsorption models. The DFT results indicate that 22BPY prefers a coplanar adsorption on a (111) face with trans-conformation having close energy difference to cis-conformation. Binding to pure Au cluster is stronger than to pure Ag or Au-Ag alloy clusters and adsorption onto the alloy surface can deform the surface. The computed Raman spectra are compared with experimental data and assignments for pure Au and Ag models are well matching, indicating the need of dispersion interaction to reproduce strong Raman signal at around 800 cm-1 . This work provides insight into 3D character of SERS on nanorough surfaces due to different binding energies and bond length of nanoalloys. © 2018 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA