Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Pharmaceutics ; 16(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794304

RESUMO

In recent decades, ionic liquids (ILs) have garnered research interest for their noteworthy properties, such as thermal stability, low or no flammability, and negligible vapour pressure. Moreover, their tunability offers limitless opportunities to design ILs with properties suitable for applications in many industrial fields. This study aims to synthetise two series of methylimidazolium ILs bearing long alkyl chain in their cations (C9, C10, C12, C14, C16, C18, C20) and with tetrafluoroborate (BF4) and the 1,3-dimethyl-5-sulfoisophthalate (DMSIP) as counter ions. The ILs were characterised using 1H-NMR and MALDI-TOF, and their thermal behaviour was investigated through DSC and TGA. Additionally, the antimicrobial, anticancer, and cytotoxic activities of the ILs were analysed. Moreover, the most promising ILs were incorporated at different concentrations (0.5, 1, 5 wt%) into polyvinyl chloride (PVC) by solvent casting to obtain antimicrobial blend films. The thermal properties and stability of the resulting PVC/IL films, along with their hydrophobicity/hydrophilicity, IL surface distribution, and release, were studied using DSC and TGA, contact angle (CA), SEM, and UV-vis spectrometry, respectively. Furthermore, the antimicrobial and cytotoxic properties of blends were analysed. The in vitro results demonstrated that the antimicrobial and antitumor activities of pure ILs against t Listeria monocytogenes, Escherichia coli, Pseudomonas fluorescens strains, and the breast cancer cell line (MCF7), respectively, were mainly dependent on their structure. These activities were higher in the series containing the BF4 anion and increased with the increase in the methylimidazolium cation alkyl chain length. However, the elongation of the alkyl chain beyond C16 induced a decrease in antimicrobial activity, indicating a cut-off effect. A similar trend was also observed in terms of in vitro biocompatibility. The loading of both the series of ILs into the PVC matrix did not affect the thermal stability of PVC blend films. However, their Tonset decreased with increased IL concentration and alkyl chain length. Similarly, both the series of PVC/IL films became more hydrophilic with increasing IL concentration and alkyl chain. The loading of ILs at 5% concentration led to considerable IL accumulation on the blend film surfaces (as observed in SEM images) and, subsequently, their higher release. The biocompatibility assessment with healthy human dermal fibroblast (HDF) cells and the investigation of antitumoral properties unveiled promising pharmacological characteristics. These findings provide strong support for the potential utilisation of ILs in biomedical applications, especially in the context of cancer therapy and as antibacterial agents to address the challenge of antibiotic resistance. Furthermore, the unique properties of the PVC/IL films make them versatile materials for advancing healthcare technologies, from drug delivery to tissue engineering and antimicrobial coatings to diagnostic devices.

2.
Foods ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540939

RESUMO

The effect of exposure of soft wheat buns to Ultraviolet-C radiation (UV-C, 253.7 nm) was studied as an alternative to conventional treatments to control fungal spoilage and prolong shelf life. To identify the most suitable operating conditions, the study included preliminary tests on the permeability of films to UV-C irradiation, and on treatment antifungal efficacy on target microorganisms (Penicillium digitatum and Saccharomycopsis fibuligera) in Petri dishes. A 125 µm T9250B film (Cryovac® Sealed Air S.r.l), commercially available for long-life bread treated with ethanol and conditioned in a modified atmosphere, was selected to pack buns before the UV-C treatment. The study was carried out along with the observation of the fungal growth of buns artificially inoculated with suspensions of P. digitatum and S. fibuligera, treated under UV-C at a distance of 25 cm between bread and the 15 W UV-C source, in comparison to untreated buns used as control. Estimation of fungal growth as well as sensory evaluation was made 2, 4, 7, 10 and 14 days after the treatment. UV-C treated buns showed a noticeable reduction of fungal spoilage and kept a tender texture for up to two weeks after packaging. UV-C treatment represents a good opportunity for the bakery industry, reducing costs and ensuring a prolonged shelf life of a commercial product, respecting the health and hedonistic expectations of the customers.

3.
Food Chem ; 425: 136474, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295215

RESUMO

Mango (Mangifera indica L.) has been an important plant in traditional medicine for over 4000 years, probably because of its remarkable antioxidant activity. In this study, an aqueous extract from mango red leaves (M-RLE) was evaluated for its polyphenol profile and antioxidant activity. The extract was used as brine replacement (at 5%, 10% and 20% v/v) in fresh mozzarella cheese for improving its functional properties. During storage (12 d at 4 ± °C), compositional analysis performed on mozzarella has shown a progressive increase of iriflophenone 3-C-glucoside and mangiferin, the compounds most present in the extract, with a noticeable preference for the benzophenone. At the same time, the antioxidant activity of mozzarella peaked at 12 d of storage, suggesting a binding action of that matrix for the M-RLE bioactive compounds. Moreover, the use of the M-RLE has not negatively influenced the Lactobacillus spp. population of mozzarella, even at the highest concentration.


Assuntos
Queijo , Mangifera , Antioxidantes , Mangifera/química , Extratos Vegetais
4.
Food Microbiol ; 108: 104100, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088115

RESUMO

Due to its nutritional characteristics, dried fruit and in particular pistachio is considered an important component in the daily diet. Unfortunately, pistachio nuts can be contaminated during storage with a wide range of pathogenic fungi, including Aspergillus flavus. The present work has evaluated how the use of two yeast strains belonging to the species Wickerhamomyces anomalus and Metschnikowia pulcherrima can inhibit the in vitro and in vivo growth of A. flavus. Both yeast strains demonstrated a good in vitro antifungal activity attributable to a specific mechanism of action, although higher efficacy was evidenced by W. anomalus strain. The production of volatile organic compounds (VOCs) and lytic enzymes was hypothesized as the main mechanisms of action exerted by W. anomalus, while the nutritional competition for iron was assumed as the main biocontrol mechanism for M. pulcherrima. Moreover, from the results of the in vivo test carried out on artificially infected pistachio seeds, it was clear as M. pulcherrima strain showed the same efficacy of W. anomalus in inhibiting the growth and sporulation of A. flavus mold, despite W. anomalus was the most effective strain during in vitro assay. Altogether, these results indicate that both strains could be considered as potential biocontrol agents against A. flavus fungal growth, notwithstanding it is always important considering the tritrophic interaction (yeast-mold- host), which could play a crucial role in determining the final results.


Assuntos
Aspergillus flavus , Pistacia , Agentes de Controle Biológico , Fungos , Nozes , Saccharomycetales , Leveduras
5.
Antioxidants (Basel) ; 11(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35883804

RESUMO

It is well recognized that functional foods rich in antioxidants and antiinflammation agents including polyphenols, probiotics/prebiotics, and bioactive compounds have been found to have positive effects on the aging process. In particular, fruits play an important role in regular diet, promoting good health and longevity. In this study, we investigated on biological properties of extract obtained from Mangifera indica L. leaves in preclinical in vitro models. Specifically, the profile and content of bioactive compounds, the antimicrobial potential toward food spoilage and pathogenic bacterial species, and the eventually protective effect in inflammation were examined. Our findings revealed that MLE was rich in polyphenols, showing a content exclusively in the subclass of benzophenone/xanthone metabolites, and these phytochemical compounds demonstrated the highest antioxidant capacity and greatest in vitro antibacterial activity toward different bacterial species such as Bacillus cereus, B. subtilis, Pseudomonas fluorescens, Staphylococcus aureus, and St. haemolyticus. Furthermore, our data showed an in vitro anti-inflammatory, antioxidant, and antifibrotic activity.

6.
Food Microbiol ; 103: 103950, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35082067

RESUMO

Table olive brines, inoculated with six different starters of lactic acid bacteria (LAB) or spontaneously fermented, have been used as isolating source of killer yeasts throughout the fermentation process (120 d). Killer yeast isolates were identified and evaluated for technological and probiotic traits. Although the count of yeast population did not markedly vary among the different vessels and over time, the killer yeast phenotype was mainly present in yeast strains isolated from spontaneous fermentation; the number of killer isolates decreased over fermentation time. Killer phenotype was found in species identified as Pichia kluyveri, Zygoascus hellenicus, Wickerhamomyces anomalus, Pichia membranifaciens, Candida boidinii, Candida diddensiae and Saccharomyces cerevisiae. Among all tested isolates, W. anomalus strains evidenced the widest spectrum of enzymatic activities and the highest ß-glucosidase and phtytase activity. These strains evidenced also the best growth at low pH and increasing bile salt concentration, when grown at 37 °C, as well as the most constant viability index (%) during in vitro digestion.


Assuntos
Olea , Probióticos , Aptidão , Fermentação , Microbiologia de Alimentos , Saccharomyces cerevisiae , Leveduras
7.
Foods ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34828950

RESUMO

Pomegranate peel and mesocarp, considered as wastes of fruit processing, are rich sources of beneficial phytochemicals, including hydrolyzable tannins and flavonoids, with proven antimicrobial and antioxidant activity, which can be employed for improving the overall quality of food products. In the present study, extracts from pomegranate peel (PPW) and mesocarp (PMW) were obtained through a water extraction method and evaluated for in vitro antimicrobial activity and polyphenol content. The two extracts were then added during the cheese-making process in order to create a new functional cheese with improved microbiological and physico-chemical characteristics. Antimicrobial in vitro assays evidenced a substantial efficacy of both extracts against Staphylococcus aureus, which often causes staphylococcal food poisoning outbreaks linked to the consumption of raw milk cheeses and artisanal cheeses. For this reason, a simulated cheese contamination was carried out in order to assess if pomegranate extracts can exert antimicrobial activity towards this pathogen even when incorporated into the cheese matrix. Milk enriched with pomegranate extracts (PPW and PMW) was used to produce two different experimental cheeses, which were then evaluated for yield, polyphenol content, and microbiological as well as physico-chemical traits throughout the refrigerated storage. Despite the low concentration of the extracts, the treated cheeses showed an increase in firmness and a slight decrease in S. aureus counts, of more than one log unit in comparison to the control cheese, for up to 12 d of cold storage. Such results support the reuse of agro-food byproducts, in substitution to chemical food preservatives, as the key to a circular economy.

8.
Foods ; 9(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867373

RESUMO

The aim of the present research was to evaluate the addition of prickly pear peel flour (PPPF) to bread dough as a source of nutrient and bioactive compounds. The PPPF's physical, chemical and nutritional composition was evaluated, as well as its content of bioactive compounds betalains, and flavonoids. The characterization evidenced high fiber and carbohydrate contents and an elevated amount of polyphenols and betalain compounds. The PPPF was then added at different concentrations (5, 10, 15, 20, 50%, w/w) to bread formulations as a potential functional ingredient. All concentrations, except 50% PPPF, evidenced good leavening dough properties and were then tested for baking. In relation to the content of added PPPF, the amount of betalains, representing bioactive compounds, remained high even after the baking process, suggesting a protective matrix effect. Among the different formulations, those containing PPPF at 10% showed the highest values in terms of the leavening dough capacity and bread specific volume and received the best sensory evaluation score.

9.
Polymers (Basel) ; 12(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630521

RESUMO

Imidazolium-based ionic liquids (ILs) have interesting antimicrobial activity and their inclusion in a flexible film is ideal to take advantage of their properties in practical applications. Poly(ether-block-amide) (Pebax®Rnew) films were prepared by solution casting, loading two synthetized ILs (1-hexadecyl-3-methylimidazolium dimethyl-5-sulfoisophthalate [Hdmim][DMSIP], IL1 and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate [OOMmim][PF6], IL2) up to 5 wt.%. The ILs were characterized by 1H NMR and MALDI-TOF spectroscopy. The films were investigated for miscibility, morphology, wettability, spectral properties and gas transport. The films display a good thermal stability (>200 °C). Differential scanning calorimetry (DSC) proves phase separation in the blends, that is consistent with FTIR analysis and with the island-like surface morphology observed in the micrographs. Gas permeability tests revealed that the IL-loaded films are dense and poreless, keeping the selectivity of the polymer matrix with a somewhat lessened permeability owing to the impermeable ILs crystals. The film antimicrobial activity, evaluated against Gram-negative and Gram-positive bacterial strains, was correlated to the structure of the incorporated ILs. The smaller IL2 salt did not modify the hydrophobic nature of the neat polymer and was readily released from the films. Instead, IL1, having a longer alkyl chain in the cation, provided a promising antimicrobial activity with a good combination of hydrophilicity, permeability and thermal stability.

10.
Foods ; 9(2)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098296

RESUMO

Consumer interest toward natural ingredients is creating a growing trend in the food industry and research for the development of natural products such as colorants, antimicrobials and antioxidants. Semi-processed frozen prickly pear (Opuntia ficus-indica (L.) Mill.) juices (PPJs), obtained from three cultivars with white, red and yellow pulp, with different harvest times ("Agostani" and "Bastardoni"), were characterized for betalains, total phenolics, flavonoids, carotenoids, antioxidant capacity (by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)) and antimicrobial potential against foodborne pathogenic bacteria. Through chemical assays, PPJs showed high contents of total polyphenols, flavonoids and betalains and marked antioxidant capacity. PPJs from the first harvest ("Agostani") revealed the significantly highest amount of polyphenols in white cultivar and of betacyanin and betaxanthin in yellow and red cultivars; antioxidant capacity was significantly higher in "Agostani" PPJs than in "Bastardoni" ones. Regarding antimicrobial potential, all PPJs revealed good antibacterial activity, particularly against Salmonella enterica as evidenced by the widest inhibition haloes. These results encourage the suitability of the first flowering prickly pear fruits, with low market value as fresh fruit but with high nutritional features, to be processed as semi-finished product. In particular, its use as ingredient in foods with high risk of Salmonella contamination may act as a natural preservative.

11.
Front Microbiol ; 10: 1760, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447807

RESUMO

Beef burger patties are a very perishable food product with a maximum shelf life of 3 days at 4°C, due to a fast decrease of quality parameters and microbial growth. Although some additives listed in the Regulation EU 601 (2014) are allowed in fresh minced beef and meat preparations with antioxidant functionality, no additive with antimicrobial activity is permitted. In this study, a prickly pear extract (PPE) was added to beef burger patty formulations both by direct application and encapsulation in alginate beads. Beef burger patties were evaluated during refrigerated storage (up to 8 days at 4°C) in terms of microbial quality, pH, texture, and color variation. At the end of storage, burger samples incorporating PPE and encapsulated PPE showed significantly (p < 0.05) lower values of mesophilic bacteria, Enterobacteriaceae, and Pseudomonas spp. when compared to control samples added with sterile distilled water (SDW) or encapsulated SDW. Samples added with encapsulated PPE showed the smallest variations of color a* values (red) during the considered storage period, followed by samples added with PPE, suggesting a protective effect of the extract toward the myoglobin oxidation process. In addition, textural parameters (hardness, cohesiveness, and springiness) reached the highest levels, after 8 days of storage, in burger samples added both with PPE and encapsulated PPE, supporting the potentiality of PPE, encapsulated or not into alginate beads, to be used as a natural preservative of beef burger patty formulations for maintaining quality parameters.

12.
Environ Sci Pollut Res Int ; 26(30): 31263-31272, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31468354

RESUMO

Food contamination by aflatoxin B1 (AFB1), produced by mycotoxigenic strains of Aspergillus spp., causes severe medical and economic implications. Essential oils (EOs) are mixtures of eco-friendly natural volatile substances. Their ability to inhibit fungal growth has been investigated, while no data are available about their efficacy in inhibition of AFB1 biosynthesis. This study investigates the efficacy of five different citrus EOs to inhibit the growth and AFB1 synthesis of A. flavus through in vitro tests for a future application in food matrices. AFB1 detection was carried out by LC-ESI-TQD analytical approach. Lemon (Citrus limon (L.) Burm. f.), bergamot (Citrus bergamia Risso), and bitter orange (Citrus aurantium L.) EOs were the most effective causing a 97.88%, 97.04%, and 96.43% reduction in mycelial growth, respectively. Sweet orange and mandarin EOs showed the lowest percentage of mycelial growth reduction. Citrus EOs showed different capacity of AFB1 inhibition (lemon > bitter orange > bergamot > sweet orange > mandarin). Our results showed a dose-dependent antifungal activity of lemon, bitter orange, and bergamot EOs which at 2% (v/v) inhibited both mycelium growth and AFB1 genesis of A. flavus. Our results show that EOs' use can be a pivotal key to recovery and reuse of citrus fruit wastes and to be used as eco-friendly fungicides for improvement of food safety. The use of EOs obtained at low cost from the residues of citric industry presents an interesting option for improving the profitability of the agriculture.


Assuntos
Aflatoxina B1/biossíntese , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Citrus/química , Óleos Voláteis/farmacologia , Antifúngicos/farmacologia , Relação Dose-Resposta a Droga , Contaminação de Alimentos , Fungicidas Industriais/farmacologia
13.
Antioxidants (Basel) ; 8(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366135

RESUMO

An olive leaf extract (OLE) has been tested in vitro for its antibacterial activity and ability to inhibit α-glucosidase enzyme. OLE was also evaluated for its potential, when added to pasteurized milk, to preserve nutritional parameters and to limit microbial growth, thus prolonging shelf life. In vitro assays demonstrated a strong antibacterial efficacy of OLE mainly against Bacillus cereus and the capacity to inhibit α-glucosidase enzyme (IC50) when used at 0.2 mg oleuropein/mL. The milk fortification with OLE at 3.6 mg of oleuropein/mL of milk reduced total mesophilic bacteria at undetectable level after 6 d (expiration date) and by 1 log CFU/mL after 10 d. Moreover, OLE addition at 1.44 and 3.6 mg of oleuropein/mL of milk significantly reduced fat and lactose losses up to 10 d. The results motivate the use of the OLE to make a new functional milk with an extended shelf life.

14.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261958

RESUMO

Natural bioactive compounds may be used in obese patients because of their ability to impact on various key mechanisms involved in the complex pathophysiological mechanisms of such condition. The aim of this study was to investigate the effect of a Mangifera indica L. leaf extract (MLE) on adipogenic differentiation of murine preadipocyte cells. 3T3-L1 cells were treated during their differentiation with various concentrations of (Mangifera indica L.) leaves extract (MLE) (750, 380, 150, 75 and 35 µg) in order to assess their lipid content, adiponectin production, expression profile of genes involved in lipid metabolism, oxidative stress and inflammation. Our results showed that MLE was particularly enriched in polyphenols (46.30 ± 0.083 mg/g) and that pharmacological treatment of cells resulted in a significant increase of adiponectin levels and reduction of intracellular lipid content. Consistently with these results, MLE resulted in a significant decrease of the expression of genes involved in lipid metabolism (FAS, PPARG, DGAT1, DGAT2, and SCD-1). In conclusion, our results suggest that MLE may represent a possible pharmacological tool for obese or metabolic syndrome patients.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia , Adiponectina/metabolismo , Antioxidantes/farmacologia , Mangifera/química , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Antioxidantes/química , Metabolismo dos Lipídeos , Camundongos , Estresse Oxidativo , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/análise , Xantonas/análise
15.
Food Microbiol ; 82: 70-74, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027821

RESUMO

The Volatile organic compounds (VOCs) produced by biocontrol yeast strains which belong to the Wickerhamomyces anomalus, Metschnikowia pulcherrima, Aureobasidium pullulans and Saccharomyces cerevisiae species were identified by solid phase microextraction (SPME) coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Alcohols (ethyl alcohol, 3-methyl-1-butanol and phenylethyl alcohol) and esters (ethyl acetate and isoamyl acetate) were found to be the main VOCs emitted by the yeast strains, which had different production rate over a 16-day period. In addition, the tested yeast strains showed a remarkable ability to consume oxygen and to produce high percentages of carbon dioxide over a 5 days incubation period in a model system. The yeast strains, which were proven to very efficiently suppress in vivo the growth of postharvest fungal by VOCs, also quickly produced high percentages of ethyl acetate and carbon dioxide. . For all these reasons, we believe that the level of yeast biocontrol efficacy through the production of volatiles could be the result of a synergistic effect between VOCs and carbon dioxide in the packaging environment.


Assuntos
Agentes de Controle Biológico/metabolismo , Compostos Orgânicos Voláteis/análise , Leveduras/metabolismo , Acetatos/análise , Álcoois/análise , Dióxido de Carbono/análise , Ésteres/análise , Frutas/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Metschnikowia/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Food Chem Toxicol ; 118: 355-360, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29787849

RESUMO

The research aimed to expand the knowledge on the use of natural bioactive compounds for food preservation. First-crop fruit of prickly pear were subjected to water extraction and evaluated for total polyphenol content, antioxidant activity, in vitro antimicrobial performance against food spoilage and pathogenic bacteria, and betacyanin and betaxanthin content. The extract was then applied by dipping technique to packed sliced beef, to evaluate its effect on physical and chemical parameters, color and texture maintenance, as well as on microbial growth during shelf life at domestic storage conditions. The in vitro antimicrobial assay of prickly pear fruit extract evidenced a wide spectrum activity, since it inhibited the growth of all Gram positive and negative targeted strains. In vivo application of extract effectively reduced microbial growth during refrigerated storage; total mesophilic count was maintained below the limit established by Commission Regulation (EC) No 2073/2005 of 5 × 106 log CFU/g of beef up to 8 d, in comparison to control sample that reached the mentioned limit after 4 d. Moreover, extract addition preserved beef color and texture over the considered storage period, supporting the potential prospect to utilize the extract to improve overall quality and to prolong domestic shelf life of sliced beef.


Assuntos
Antioxidantes/farmacologia , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Opuntia/química , Extratos Vegetais/farmacologia , Carne Vermelha/microbiologia , Animais , Betacianinas/análise , Bovinos , Contagem de Colônia Microbiana , Cor , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Concentração de Íons de Hidrogênio , Ácidos Picolínicos/análise , Polifenóis/análise
17.
Food Microbiol ; 74: 107-112, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29706324

RESUMO

This study investigated the potential use of two edible coatings, chitosan (CH) and locust bean gum (LBG), which incorporated chemically characterized water pomegranate peel extract (WPPE) or methanol pomegranate peel extract (MPPE) and the biocontrol agent (BCA) Wickerhamomyces anomalus, to control the growth of Penicillium digitatum and to reduce the postharvest decay of oranges. CH and LBG including pomegranate peel extracts (PPEs) at different concentrations were tested in vitro against P. digitatum to determine their antifungal efficacy; at the same time, the tolerance of viable cells of W. anomalus to increasing concentrations of WPPE and MPPE extracts was assessed. The potential application of selected bioactive coatings was evaluated in vivo on oranges, which had been artificially inoculated with P. digitatum, causal agent of green mold decay. CH incorporating MPPE or WPPE at all concentrations was able to inhibit in vitro P. digitatum, while LBG was active only at the highest MPPE or WPPE concentrations. W. anomalus BS91 was slightly inhibited only by MPPE-modified coatings, while no inhibition was observed by WPPE, which was therefore selected for the in vivo trials on oranges artificially inoculated with P. digitatum. The experimental results proved that the addition of 0.361 g dry WPPE/mL, both to CH and LBG coatings, significantly reduced disease incidence (DI) by 49 and 28% respectively, with respect to the relative controls. Besides the combination CH or LBG + WPPE, the addition of W. anomalus cells to coatings strengthened the antifungal effect with respect to the relative controls, as demonstrated by the significant reduction of DI (up to 95 and 75% respectively). The findings of the study contribute to the valorization of a value-added industrial byproduct and provide a significant advancement in the development of new food protectant formulations, which benefit from the synergistic effect between biocontrol agents and natural bioactive compounds.


Assuntos
Agentes de Controle Biológico/farmacologia , Citrus sinensis/microbiologia , Conservação de Alimentos/métodos , Lythraceae/química , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Leveduras/metabolismo , Antibiose , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Quitosana/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Microbiologia de Alimentos , Frutas/microbiologia , Galactanos/farmacologia , Mananas/farmacologia , Metanol/farmacologia , Pichia/química , Doenças das Plantas/microbiologia , Gomas Vegetais/farmacologia
18.
Food Microbiol ; 63: 191-198, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28040168

RESUMO

Wickerhamomyces anomalus, Metschnikowia pulcherrima, Aureobasidium pullulans and Saccharomyces cerevisiae yeasts were tested for their ability to survive and synthesize antifungal volatile organic compounds (VOCs) both in vitro and in vivo conditions when immobilized on commercial hydrogel spheres. The results showed a good survival of all yeasts on hydrogel spheres up to 10 days of incubation. Moreover, VOCs produced in vitro by tested yeasts inhibited Botrytis cinerea, Penicillium digitatum and P. italicum radial growth and conidial germination, with the highest antagonistic activity reported for W. anomalus and A. pullulans strains. Experimental in vivo trials performed on strawberry and mandarin fruits proved the ability of VOCs to reduce significantly postharvest decays on artificially wounded tissues. Comprehensively, the best efficacy was detected for W. anomalus, which totally inhibited gray mold decay on strawberry fruits and significantly reduced green mold infections on mandarin fruits. On the other hand, blue mold decay on mandarin fruits was more effectively managed by A. pullulans VOCs. Accordingly, hydrogel spheres used as a support for VOC-generating yeasts could open a new way for the employment of this polymeric material as a bio-emitter in postharvest packaging.


Assuntos
Antibiose , Antifúngicos/farmacologia , Hidrogéis , Viabilidade Microbiana , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Leveduras/fisiologia , Antifúngicos/química , Antifúngicos/metabolismo , Botrytis/efeitos dos fármacos , Células Imobilizadas , Citrus sinensis/microbiologia , Microbiologia de Alimentos , Fragaria/microbiologia , Frutas/microbiologia , Fungos/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Saccharomyces cerevisiae , Esporos Fúngicos/efeitos dos fármacos , Compostos Orgânicos Voláteis/química , Leveduras/química , Leveduras/metabolismo
19.
Microb Ecol ; 73(4): 876-884, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27816988

RESUMO

The use of yeasts, including Wickerhamomyces anomalus, as biocontrol agents of fungi responsible for postharvest diseases of fruits and vegetables has been investigated for the past two decades. Among a variety of mechanisms, the production of glucanases coded by the "killer genes" WaEXG1 and WaEXG2 have been reported to play a role in the ability of yeast to inhibit other fungi. The objective of the present study was to determine the expression of these genes by RT-qPCR, utilizing gene-specific primers, when W. anomalus was grown on grape berries and oranges that were either non-inoculated or inoculated with Botrytis cinerea or Penicillium digitatum, or in minimal media supplemented with cell walls of various plant pathogens and different amounts of glucose. Results indicated that WaEXG2 was more responsive than WaEXG1 to the nutritional environment (including the addition of glucose to cell wall-amended media) in vitro and appeared to play a greater role in the cellular metabolism of W. anomalus. WaEXG2 expression also appeared to be more responsive to the presence of cell walls of P. digitatum and B. cinerea than other fungal species, whereas the same level of induction was not seen in vivo when the yeast was grown in wounded/pathogen-inoculated fruits.


Assuntos
Antibiose/fisiologia , Agentes de Controle Biológico , Celulases/genética , Celulases/farmacologia , Saccharomycetales/enzimologia , Saccharomycetales/genética , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Parede Celular/química , Celulases/biossíntese , Celulases/classificação , Celulose 1,4-beta-Celobiosidase/biossíntese , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/farmacologia , Meios de Cultura/química , Primers do DNA , DNA Fúngico/genética , Microbiologia de Alimentos , Frutas/microbiologia , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Glucose/metabolismo , Penicillium/efeitos dos fármacos , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , RNA Fúngico/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/fisiologia , Vitis/microbiologia , Leveduras
20.
Food Microbiol ; 58: 87-94, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27217363

RESUMO

Strains belonging to Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans species were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic molds Penicillium digitatum and Penicillium italicum. Moreover, studies aimed at screening the antifungal activity of selected yeast strains in vivo conditions against P. digitatum and P. italicum, and investigated the efficacy of a polysaccharidic matrix, locust bean gum (LBG), enriched with the tested BCAs, in controlling postharvest decays in artificially inoculated mandarins. The population dynamics of BCAs on wounds and the magnitude of peroxidase (POD) and superoxide dismutase (SOD) in fruit tissues were also investigated after treatments of mandarins with antagonistic yeasts. W. anomalus BS91, M. pulcherrima MPR3 and A. pullulans PI1 provided excellent control of postharvest decays caused by P. digitatum and P. italicum on mandarins, both when the yeasts were used alone and in combination with LBG, which enhanced the yeast cell viability over time. Finally, the increased activity of POD and lower decrease in SOD activity in response to BCAs application in mandarin fruits confirmed their involvement in the biocontrol mechanism.


Assuntos
Ascomicetos/fisiologia , Citrus/microbiologia , Galactanos/farmacologia , Mananas/farmacologia , Metschnikowia/fisiologia , Penicillium/crescimento & desenvolvimento , Pichia/fisiologia , Doenças das Plantas/prevenção & controle , Gomas Vegetais/farmacologia , Antifúngicos/farmacologia , Ascomicetos/crescimento & desenvolvimento , Agentes de Controle Biológico , Citrus/enzimologia , Conservação de Alimentos , Frutas/enzimologia , Frutas/microbiologia , Proteínas Fúngicas/metabolismo , Metschnikowia/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/genética , Penicillium/efeitos dos fármacos , Peroxidase/metabolismo , Pichia/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA