Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Bioorg Chem ; 153: 107789, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39250850

RESUMO

Recently, P218, a new flexible antifolate targeting Plasmodium falciparum dihydrofolate reductase (PfDHFR), has entered its clinical trial with good safety profile and effective Pf infection prevention. However, it carries a free carboxyl terminal, which is hydrophilic and prone to metabolic glucuronidation. Here, a new series of P218 analogues carrying butyrolactone has been synthesized with the purpose of enhancing lipophilicity and minimizing metabolic instability. The inhibition constants against the mutant PfDHFR enzymes are in sub-nanomolar level and the antimalarial activity against antifolate-resistant parasites are in the low micromolar range. The crystal structure of the most potent analogue LA1 bound enzyme complex indicates interaction with multiple residues, including Arg122 and Phe116 in the active site. In vitro log D7.4 and kinetic solubility confirmed a higher lipophilicity of this butyrolactone series as compared to P218. These outcomes suggest the possibility to further develop butyrolactone derivatives as non-carboxyl antiplasmodial antifolates.

2.
Acta Trop ; 258: 107360, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142549

RESUMO

A new superior bacteria complementation model was achieved for testing antifolate compounds and investigating antifolate resistance in the dihydrofolate reductase (DHFR) enzyme of the malaria parasite. Earlier models depended on the addition of trimethoprim (TMP) to chemically suppress the host Escherichia coli (Ec) DHFR function. However, incomplete suppression of EcDHFR and potential interference of antibiotics needed to maintain plasmids for complementary gene expression can complicate the interpretations. To overcome such limitations, the folA (F) and thyA (T) genes were genetically knocked out (Δ) in E. coli BL21(DE3). The resulting EcΔFΔT cells were thymidine auxotroph where thymidine supplementation or functional complementation with heterologous DHFR-thymidylate synthase (TS) is needed to restore the loss of gene functions. When tested against pyrimethamine (PYR) and its analogs designed to target Plasmodium falciparum (Pf) DHFR-TS, the 50 % inhibitory concentration values obtained from EcΔFΔT surrogates expressing wildtype (PfTM4) or double mutant (PfK1) DHFR-TS showed strong correlations to the results obtained from the standard in vitro P. falciparum growth inhibition assay. Interestingly, while TMP had little effect on the susceptibility to PYR and analogs in EcΔFΔT expressing PfDHFR-TS, it hypersensitized the chemically knockdown E. coli BL21(DE3) expressing PfTM4 DHFR-TS but desensitized the one carrying PfK1 DHFR-TS. The low intrinsic expression level of PfTM4 in E. coli BL21(DE3) by western blot analysis may explain the hypersensitive to antifolates of chemical knockdown bacteria surrogate. These results demonstrated the usefulness of EcΔFΔT surrogate as a new tool for antifolate antimalarial screening with potential application for investigation of antifolate resistance mechanism.


Assuntos
Escherichia coli , Antagonistas do Ácido Fólico , Técnicas de Inativação de Genes , Plasmodium falciparum , Pirimetamina , Tetra-Hidrofolato Desidrogenase , Timidilato Sintase , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Antagonistas do Ácido Fólico/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Antimaláricos/farmacologia , Concentração Inibidora 50 , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Resistência a Medicamentos/genética , Teste de Complementação Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos
3.
RSC Med Chem ; 15(7): 2496-2507, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39026651

RESUMO

As pregnant women and young children remain the first victims of malaria worldwide, the search for new antimalarials has been focusing on compounds with a high safety profile and extended efficacy. In a previous study, a rigid biphenyl PfDHFR inhibitor was developed by fragment-based screening, displaying sub nM enzyme inhibition but poor antiparasitic activity, presumably due to its low flexibility. Here, we report a new series of compounds that combines the biphenyl fragment with a flexible linker. Interestingly, their mode of binding differs from previously reported compounds, taking advantage of strong hydrophobic interaction. The new flexible biphenyl compounds show overall improved antiparasitic activity compared to rigid ones, with the best compound displaying a 2 nM antiplasmodial IC50 and suitable drug-like properties. This confirms the importance of compound flexibility for antimalarial activity and opens the way to new opportunities for antimalarial drug design.

4.
RSC Med Chem ; 14(9): 1755-1766, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731689

RESUMO

Plasmodium falciparum dihydrofolate reductase (PfDHFR), a historical target for antimalarials, has been considered compromised due to resistance inducing mutations caused by pyrimethamine (PYR) overexposure. The clinical candidate P218 has demonstrated that inhibitors could efficiently target both PYR-sensitive and PYR-resistant parasites through careful drug design. Yet, P218 clinical development has been limited by its pharmacokinetic profile, incompatible with single dose regimen. Herein, we report the design of new PfDHFR inhibitors using fragment-based design, aiming at improved lipophilicity and overall drug-like properties. Fragment-based screening identified hits binding in the pABA site of the enzyme. Using structure-guided design, hits were elaborated into leads by fragment linking with 2,4-diaminopyrimidine. Resulting compounds display nM range inhibition of both drug-sensitive and resistant PfDHFR, high selectivity against the human isoform, drug-like lipophilicity and metabolic stability. Compound 4 and its ester derivative 3 kill blood stage TM4/8.2 parasite at nM concentrations while showing no toxicity against Vero cells.

5.
Int J Antimicrob Agents ; 62(1): 106838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160237

RESUMO

A major threat to the goal of eliminating malaria, particularly in Southeast Asia, is the spread of Plasmodium falciparum resistant to artemisinin-based combination therapies. P218 is a drug candidate designed to combat antifolate-sensitive and -resistant parasites. However, there is no evidence that P218 is effective against artemisinin-resistant P. falciparum. This report investigated the susceptibilities of 10 parasite isolates from Southeast Asia to P218 and other antimalarial drugs. All isolates with different levels of artemisinin resistance were genetically distinct from one another, although common haplotypes associated with antimalarial resistance were identified. All isolates were highly resistant to pyrimethamine, and none of them were significantly less sensitive to P218 than the pyrimethamine-resistant laboratory strain V1/S. Significant differences in sensitivity to other types of antimalarials (mefloquine, atovaquone and chloroquine) compared with V1/S were found for some isolates, although the differences were not clinically relevant. P218 is thus efficacious against multi-drug (including artemisinin-resistant P. falciparum.


Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum , Pirimetamina/farmacologia
6.
J Biomol Struct Dyn ; 41(12): 5728-5743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35815526

RESUMO

Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) is an important target enzyme in malarial chemotherapy. An understanding of how novel inhibitors interact with wild-type (wtPfDHFR), quadruple-mutant (qmPfDHFR), and human (hDHFR) enzymes is required for the development of these compounds as antimalarials. This study is focused on a series of des-Cl and m-Cl phenyl analogs of pyrimethamine with various flexible 6-substituents. The interactions of these compounds with DHFR enzymes were investigated by 3 D-QSAR, MD simulations, MM-PBSA, and DFT calculations. CoMFA and CoMSIA models were developed with good predictive abilities for wtPfDHFR and qmPfDHFR. For hDHFR, CoMSIA models combined with clogP descriptor were successfully derived. Binding free energy using MM-PBSA and comparison of per residue decomposition energy analyses with the DFT method at M06-2X/6-31G ++(d,p) level of theory indicated that Asp54 and Phe58 play important roles in the binding of the most potent compound in the series (compound 27) with both wtPfDHFR and qmPfDHFR, whereas Arg59 and Arg122 were additionally found to interact with this inhibitor in qmPfDHFR. For hDHFR, the residues Glu30 and Phe34 but not Arg70, equivalent to Asp54, Phe58, and Arg122 in PfDHFR, also play role in compound 27 binding through strong hydrophobic interactions (Phe34) and hydrogen bond network with Glu30, Ile7, and Val115. From the key interactions identified in the DHFR-inhibitor complexes, a general scheme is proposed for designing new inhibitors selective for PfDHFR that is important for the development of novel antifolate antimalarials.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Humanos , Pirimetamina/farmacologia , Pirimetamina/química , Antimaláricos/química , Relação Quantitativa Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Plasmodium falciparum , Antagonistas do Ácido Fólico/química
7.
ChemMedChem ; 17(22): e202200418, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36193872

RESUMO

A series of 5-[(phenethylamino)methyl]pyrimidine-2,4-diamines were assessed in silico as potential inhibitors of Plasmodium falciparum dihydrofolate reductase (PfDHFR), synthesised and tested for inhibitory activity against PfDHFR in vitro. The compounds displayed promising inhibitory activity against both wild-type (Ki 1.3-243 nM) and quadruple mutant (Ki 13-208 nM) PfDHFR in the biochemical enzyme assay, but were less potent in the whole-cell P. falciparum assay (IC50 (TM4/8.2) 0.4-28 µM; IC50 (V1S) 3.7-54 µM). Further investigation into the pharmacokinetic properties of these compounds may guide the development of more potent analogues.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Tetra-Hidrofolato Desidrogenase/química , Plasmodium falciparum , Simulação de Acoplamento Molecular , Antagonistas do Ácido Fólico/farmacologia , Antimaláricos/farmacologia , Antimaláricos/química , Diaminas/farmacologia , Pirimidinas/farmacologia
8.
ACS Chem Biol ; 17(7): 1691-1702, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35715223

RESUMO

Pyrimethamine (Pyr), a known dihydrofolate reductase (DHFR) inhibitor, has long been used to treat toxoplasmosis caused by Toxoplasma gondii (Tg) infection. However, Pyr is effective only at high doses with associated toxicity to patients, calling for safer alternative treatments. In this study, we investigated a series of Pyr analogues, previously developed as DHFR inhibitors of Plasmodium falciparum bifunctional DHFR-thymidylate synthase (PfDHFR-TS), for their activity against T. gondii DHFR-TS (TgDHFR-TS). Of these, a set of compounds with a substitution at the C6 position of the pyrimidine ring exhibited high binding affinities (in a low nanomolar range) against TgDHFR-TS and in vitro T. gondii inhibitory activity. Three-dimensional structures of TgDHFR-TS reported here include the ternary complexes with Pyr, P39, or P40. A comparison of these structures showed the minor steric strain between the p-chlorophenyl group of Pyr and Thr83 of TgDHFR-TS. Such a conflict was relieved in the complexes with the two analogues, P39 and P40, explaining their highest binding affinities described herein. Moreover, these structures suggested that the hydrophobic environment in the active-site pocket could be used for drug design to increase the potency and selectivity of antifolate inhibitors. These findings would accelerate the development of new antifolate drugs to treat toxoplasmosis.


Assuntos
Antagonistas do Ácido Fólico , Toxoplasma , Toxoplasmose , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase , Toxoplasmose/tratamento farmacológico
9.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684452

RESUMO

In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds' binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.


Assuntos
Antimaláricos , Difosfotransferases , Plasmodium falciparum , Antimaláricos/química , Difosfotransferases/antagonistas & inibidores , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos
10.
Antimicrob Agents Chemother ; 66(2): e0153821, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930029

RESUMO

Antifolates targeting dihydrofolate reductase (DHFR) are antimalarial compounds that have long been used for malaria treatment and chemoprevention (inhibition of infection from mosquitoes to humans). Despite their extensive applications, a thorough understanding of antifolate activity against hepatic malaria parasites, especially resistant parasites, has yet to be achieved. Using a transgenic Plasmodium berghei harboring quadruple mutant dhfr from Plasmodium falciparum (Pb::Pfdhfr-4M), we demonstrated that quadruple mutations on Pfdhfr confer complete chemoprevention resistance to pyrimethamine, the previous generation of antifolate, but not to a new class of antifolate designed to overcome the resistance, such as P218. Detailed investigation to pinpoint stage-specific chemoprevention further demonstrated that it is unnecessary for the drug to be present throughout hepatic development. The drug is most potent against the developmental stages from early hepatic trophozoite to late hepatic trophozoite, but it is not effective at inhibiting sporozoite and early hepatic stage development from sporozoite to early trophozoite. Our data show that P218 also inhibited the late hepatic-stage development, from trophozoite to mature schizonts to a lesser extent. With a single dose of 15 mg/kg of body weight, P218 prevented infection from up to 25,000 pyrimethamine-resistant sporozoites, a number equal to thousands of infectious mosquito bites. Additionally, the hepatic stage of malaria parasite is much more susceptible to antifolates than the asexual blood stage. This study provides important insights into the activity of antifolates as a chemopreventive therapeutic which could lead to a more efficient and cost-effective treatment regime.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética
11.
Int J Parasitol ; 51(8): 635-642, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713651

RESUMO

Antimalarial drugs capable of targeting multiple parasite stages, particularly the transmissible stages, can be valuable tools for advancing the malaria elimination agenda. Current antifolate drugs such as pyrimethamine can inhibit replicative parasite stages in both humans and mosquitoes, but antifolate resistance remains a challenge. The lack of reliable gametocyte-producing, antifolate-resistant Plasmodium falciparum laboratory strain hinders the study of new antifolate compounds that can overcome antifolate resistance including development stages in the mosquito. We used clustered regularly interspaced short palindromic repeats-Cas9 genome editing to develop a transgenic gametocyte-producing strain of P. falciparum with quadruple mutations (N51I, C59R, S108N, I164L) in the dihydrofolate reductase (dhfr) gene, using NF54 as a parental strain. The transgenic parasites exhibited pyrimethamine resistance while maintaining their gametocyte-producing activity. We then demonstrated that pyrimethamine could no longer inhibit male gametocyte exflagellation in the transgenic parasite. In contrast, P218, the novel antifolate, designed to overcome antifolate resistance, potently inhibited exflagellation. The exflagellation IC50 of P218 was five times lower than the asexual stage half maximal inhibitory concentration (IC50), suggesting a strong barrier for transmission of P218-resistant parasites. The transgenic gametocyte-producing, pyrimethamine-resistant parasite is a robust system for evaluating novel antifolate compounds against non-asexual stage development.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Preparações Farmacêuticas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Mutação , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética
12.
J Enzyme Inhib Med Chem ; 36(1): 198-206, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33530764

RESUMO

In various malaria-endemic regions, the appearance of resistance has precluded the use of pyrimidine-based antifolate drugs. Here, a three-step fragment screening was used to identify new non-pyrimidine Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors. Starting from a 1163-fragment commercial library, a two-step differential scanning fluorimetry screen identified 75 primary fragment hits. Subsequent enzyme inhibition assay identified 11 fragments displaying IC50 in the 28-695 µM range and selectivity for PfDHFR. In addition to the known pyrimidine, three new anti-PfDHFR chemotypes were identified. Fragments from each chemotype were successfully co-crystallized with PfDHFR, revealing a binding in the active site, in the vicinity of catalytic residues, which was confirmed by molecular docking on all fragment hits. Finally, comparison with similar non-hit fragments provides preliminary input on available growth vectors for future drug development.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/síntese química , Antimaláricos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Plasmodium falciparum/enzimologia , Proguanil/síntese química , Proguanil/química , Proguanil/farmacologia , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Pirimetamina/síntese química , Pirimetamina/química , Pirimetamina/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/isolamento & purificação , Tetra-Hidrofolato Desidrogenase/metabolismo , Triazinas/síntese química , Triazinas/química , Triazinas/farmacologia
13.
RSC Adv ; 11(61): 38691-38693, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493228

RESUMO

Decagram scale synthesis of favipiravir was performed in 9 steps using diethyl malonate as cheap starting material. Hydrogenation and bromination steps were achieved by employing a continuous flow reactor. The synthetic process provided a total of 16% yield and it is suitable for larger-scale synthesis and production.

14.
Eur J Med Chem ; 195: 112263, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294614

RESUMO

A series of flexible diaminodihydrotriazines or cycloguanil (Cyc) analogues are developed and shown to inhibit P. falciparum dihydrofolate reductase (PfDHFR) of the wild type or those carrying either single (S108N), double (C59R + S108N and A16V + S108T), triple (N51I + C59R + S108N and C59R + S108N + I164L) or quadruple (N51I + C59R + S108N + I164L) mutations, responsible for antifolate resistance. The flexibility of the side chain at position N1 has been included in the design so as to avoid unfavourable steric interaction with the side chain of residue 108 of the resistant mutants. The inhibition constants of many inhibitors for the mutant enzymes are in the low nanomolar region. Regaining of drug binding efficacies was achieved with both A16V and S108N series of mutants. X-ray studies of some enzyme-inhibitor complexes designed for optimal interaction with the mutant enzymes reveal the modes of binding in line with the Ki values. A number of these compounds show excellent antimalarial activities against resistant P. falciparum bearing the mutant enzymes, and exhibit low cytotoxicity to mammalian cells, making them good candidates for further development as antimalarial drugs.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Triazinas/química , Triazinas/farmacologia , Antimaláricos/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Triazinas/metabolismo
15.
FEBS J ; 287(15): 3273-3297, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31883412

RESUMO

The clinical efficacy of sulfa drugs as antimalarials has declined owing to the evolution of resistance in Plasmodium falciparum (Pf) malaria parasites. In order to understand the basis of this resistance and to design more effective antimalarials, we have solved 13 structures of the bifunctional enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)-dihydropteroate synthase (DHPS) from wild-type (WT) P. falciparum and sulfa-resistant mutants, both as apoenzyme and as complexes with pteroate (PTA) and sulfa derivatives. The structures of these complexes show that PTA, which effectively inhibits both the WT and mutants, stays in active sites without steric constraint. In contrast, parts of the sulfa compounds situated outside of the substrate envelope are in the vicinity of the resistance mutations. Steric conflict between compound and mutant residue along with increased flexibility of loop D2 in the mutants can account for the reduced compound binding affinity to the mutants. Kinetic data show that the mutants have enhanced enzyme activity compared with the WT. These PfDHPS structural insights are critical for the design of novel, substrate envelope-compliant DHPS inhibitors that are less vulnerable to resistance mutations. DATABASES: The data reported in this paper have been deposited in the Protein Data Bank, www.wwpdb.org. PDB ID codes: 6JWQ for apoWT; 6JWR, 6JWS, and 6JWT for PTA complexes of WT, A437G (3D7), and V1/S; 6JWU, 6JWV, and 6JWW for STZ-DHP complexes of WT, 3D7, and V1/S; 6JWX, 6JWY, and 6JWZ for SDX-DHP complexes of WT, 3D7, and W2; 6KCK, 6KCL, and 6KCM for Pterin/pHBA complexes of WT, TN1, and W2.


Assuntos
Di-Hidropteroato Sintase/química , Difosfotransferases/química , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Antimaláricos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/metabolismo , Difosfotransferases/metabolismo , Humanos , Malária Falciparum/parasitologia , Conformação Proteica , Homologia de Sequência
16.
Bioorg Med Chem ; 27(24): 115158, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685330

RESUMO

The series of des-Cl (unsubstituted) and m-Cl phenyl analogues of PYR with various flexible 6-substituents were synthesized and studied for the binding affinities with highly resistant quadruple mutant (QM) DHFR. The derivatives carrying 4 atoms linker with a terminal carboxyl substituted on the aromatic ring exhibited good inhibition to the QM enzyme and also showed effective antimalarial activities against resistant P. falciparum bearing the mutant enzymes with relatively low cytotoxicity to mammalian cells. The X-ray crystallographic analysis of the enzyme-inhibitor complexes suggested that the hydrophobic substituent at 6-position was accommodated well in the hydrophobic pocket and the optimal length of the flexible linker could effectively promote the binding of the terminal carboxyl group to the key amino acid residues, Arg59 and Arg122.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/análogos & derivados , Animais , Antimaláricos/química , Chlorocebus aethiops , Desenho de Fármacos , Resistência a Medicamentos , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Pirimetamina/química , Pirimetamina/farmacologia , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Células Vero
17.
Arch Biochem Biophys ; 667: 6-13, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31002765

RESUMO

Plasmodium falciparum (Pf), a malarial pathogen, can only synthesize purine nucleotides employing a salvage pathway because it lacks de novo biosynthesis. Adenosine deaminase (ADA), one of the three purine salvage enzymes, catalyzes the irreversible hydrolytic deamination of adenosine to inosine, which is further converted to GMP and AMP for DNA/RNA production. In addition to adenosine conversion, Plasmodium ADA also catalyzes the conversion of 5'-methylthioadenosine, derived from polyamine biosynthesis, into 5'-methylthioinosine whereas the human enzyme is not capable of this function. Here we report the crystal structure of a surface engineered PfADA at a resolution of 2.48 Å, together with results on kinetic studies of PfADA wild-type and active site variants. The structure reveals a novel inosine binding pocket linked to a distinctive PfADA substructure (residues 172-179) derived from a non-conserved gating helix loop (172-188) in Plasmodium spp. and other ADA enzymes. Variants of PfADA and human (h) ADA active site amino acids were generated in order to study their role in catalysis, including PfADA- Phe136, -Thr174, -Asp176, and -Leu179, and hADA-Met155, equivalent to PfADA-Asp176. PfADA-Leu179His showed no effect on kinetic parameters. However, kinetic results of PfADA-Asp176Met/Ala mutants and hADA-Met155Asp/Ala showed that the mutation reduced adenosine and 5'-methylthioadenosine substrate affinity in PfADA and kcat in hADA, thereby reducing catalytic efficiency of the enzyme. Phe136Leu mutant showed increased Km (>10-fold) for both substrates whereas Thr174Ile/Ala only affected 5'-methylthioadenosine binding affinity. Together, the structure with the novel inosine binding pocket and the kinetic data provide insights for rational design of inhibitors against PfADA.


Assuntos
Adenosina Desaminase/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Inibidores de Adenosina Desaminase/química , Inibidores de Adenosina Desaminase/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Inosina/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Parasitol Int ; 67(6): 787-792, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30114522

RESUMO

Malaria caused by an infection of Plasmodium knowlesi can result in high parasitemia and deaths. Therefore, effective and prompt treatment is necessary to reduce morbidity and mortality. The study aims to characterize P. knowlesi dihydrofolate reductase-thymidylate synthase enzyme (PkDHFR-TS) and its sensitivity to antifolates. The putative Pkdhfr gene was PCR amplified from field isolates collected from the Southern Thailand. Molecular analysis showed 11 polymorphisms in the dhfr domain of the bifunctional dhfr-ts gene. Of these, 1 polymorphism was a non-synonymous substitution (R34L) that had previously been reported but not associated with antifolate resistance. The recombinant PkDHFR-TS enzyme was found to be sensitive to standard antifolates-pyrimethamine and cycloguanil-as well as P218, a registered candidate drug currently first in human clinical trial. Results suggest that antifolates class of compounds should be effective against P. knowlesi infection.


Assuntos
Antimaláricos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Plasmodium knowlesi/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Timidilato Sintase/antagonistas & inibidores , Sequência de Bases , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Plasmodium knowlesi/genética , Proguanil/farmacologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirimetamina/farmacologia , Alinhamento de Sequência , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Triazinas/farmacologia
19.
ACS Med Chem Lett ; 9(12): 1235-1240, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613332

RESUMO

The S108N mutation of dihydrofolate reductase (DHFR) renders Plasmodium falciparum malaria parasites resistant to pyrimethamine through steric clash with the rigid side chain of the inhibitor. Inhibitors with flexible side chains can avoid this clash and retain effectiveness against the mutant. However, other mutations such as N108S reversion confer resistance to flexible inhibitors. We designed and synthesized hybrid inhibitors with two structural types in a single molecule, which are effective against both wild-type and multiple mutants of P. falciparum through their selective target binding, as demonstrated by X-ray crystallography. Furthermore, the hybrid inhibitors can forestall the emergence of new resistant mutants, as shown by selection of mutants resistant to hybrid compound BT1 from a diverse PfDHFR random mutant library expressed in a surrogate bacterial system. These results show that it is possible to develop effective antifolate antimalarials to which the range of parasite resistance mutations is greatly reduced.

20.
Org Biomol Chem ; 14(33): 7899-911, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27477595

RESUMO

The design, synthesis and biological evaluation of a series of 6-aryl-1,6-dihydro-1,3,5-triazine-2,4-diamines is described. These compounds exhibited in vitro antiplasmodial activity in the low nanomolar range against both drug sensitive and drug resistant strains of P. falciparum, with 1-(3-(2,4-dichlorophenoxy)propyl)-6-phenyl-1,6-dihydro-1,3,5-triazine-2,4-diamine hydrochloride identified as the most potent compound from this series against the drug resistant FCR-3 strain (IC50 2.66 nM). The compounds were not toxic to mammalian cells at therapeutic concentrations and were shown to be inhibitors of parasitic DHFR in a biochemical enzyme assay.


Assuntos
Antimaláricos/farmacologia , Diaminas/farmacologia , Desenho de Fármacos , Antagonistas do Ácido Fólico/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triazinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Diaminas/síntese química , Diaminas/química , Relação Dose-Resposta a Droga , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA