Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Acta Crystallogr D Struct Biol ; 80(Pt 10): 733-743, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39361356

RESUMO

ß-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Šresolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (ß/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of ß-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.


Assuntos
beta-Glucosidase , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Cristalografia por Raios X , Caldicellulosiruptor/enzimologia , Modelos Moleculares , Conformação Proteica , Proteínas de Bactérias/química , Domínio Catalítico , Glucose/metabolismo , Sequência de Aminoácidos
2.
Foods ; 12(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137288

RESUMO

Aroma is among of the most important criteria that indicate the quality of food and beverage products. Aroma compounds can be found as free molecules or glycosides. Notably, a significant portion of aroma precursors accumulates in numerous food products as nonvolatile and flavorless glycoconjugates, termed glycosidic aroma precursors. When subjected to enzymatic hydrolysis, these seemingly inert, nonvolatile glycosides undergo transformation into fragrant volatiles or volatiles that can generate odor-active compounds during food processing. In this context, microbial ß-glucosidases play a pivotal role in enhancing or compromising the development of flavors during food and beverage processing. ß-glucosidases derived from bacteria and yeast can be utilized to modulate the concentration of particular aroma and taste compounds, such as bitterness, which can be decreased through hydrolysis by glycosidases. Furthermore, oral microbiota can influence flavor perception by releasing volatile compounds that can enhance or alter the perception of food products. In this review, considering the glycosidic flavor precursors present in diverse food and beverage products, we underscore the significance of glycosidases with various origins. Subsequently, we delve into emerging insights regarding the release of aroma within the human oral cavity due to the activity of oral microbial glycosidases.

3.
J Fungi (Basel) ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132774

RESUMO

The fungus Trichoderma reesei is an essential producer of enzymes that degrade lignocellulosic biomass to produce value-added bioproducts. The cellulolytic system of T. reesei is controlled by several transcription factors (TFs) that efficiently regulate the production of these enzymes. Recently, a new TF named Azf1 was identified as a positive regulator of cellulase expression. Here, we investigated novel regulatory functions of Azf1 by its overexpression. In the mutant strain OEazf1, overexpression of azf1 was achieved under both repression and induction conditions. Although azf1 was more abundant in transcript and protein, overexpression of this TF did not activate transcription of the cellulase gene in the presence of the repressor glucose, suggesting that Azf1 may be subject to posttranslational regulation. In cellulose, the expression of swo, encoding the accessory protein swollenin, and the ß-glucosidases cel1a, cel1b, cel3b, and cel3g increases in the early stages of cultivation. The increased production of these ß-glucosidases increases the hydrolysis rate of cellobiose and sophorose, which activates carbon catabolite repression (CCR) and causes repression of cellulase genes and the regulator Xyr1 in the later stages of cultivation. Moreover, overexpression of azf1 led to increased cellulase activity in T. reesei during long-term cultivation in cellulose and sugarcane bagasse. Our results provide new insights into the mechanisms regulating Azf1 and novel genes that are important targets of this TF. This work contributes to a better understanding of the complex mechanisms regulating cellulase expression in T. reesei. It will contribute to the development of strains with higher production of these essential enzymes.

4.
Chembiochem ; 24(23): e202300480, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37715738

RESUMO

Selective covalent labelling of enzymes using small molecule probes has advanced the scopes of protein profiling. The covalent bond formation to a specific target is the key step of activity-based protein profiling (ABPP), a method which has become an indispensable tool for measuring enzyme activity in complex matrices. With respect to carbohydrate processing enzymes, strategies for ABPP so far involve labelling the active site of the enzyme, which results in permanent loss of activity. Here, we report in a proof of concept study the use of ligand-directed chemistry (LDC) for labelling glycoside hydrolases near - but not in - the active site. During the labelling process, the competitive inhibitor is cleaved from the probe, departs the active site and the enzyme maintains its catalytic activity. To this end, we designed a building block synthetic concept for small molecule probes containing iminosugar-based reversible inhibitors for labelling of two model ß-glucosidases. The results indicate that the LDC approach can be adaptable for covalent proximity labelling of glycoside hydrolases.


Assuntos
Carboidratos , Glicosídeo Hidrolases , Glicosídeo Hidrolases/metabolismo , Estudo de Prova de Conceito , Ligantes
5.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570860

RESUMO

The cultivation and enrichment of different soils in a vineyard yielded 95 yeast species. Among them, seven strains capable of producing ß-glucosidases were identified using the aescin colorimetric method. One non-Saccharomyces yeast strain was isolated from a plate containing lysine and identified using internal transcription (ITS) as Candida cf. sorbosivorans (C. cf. sorbosivorans), which was named Candida cf. sorbosivorans X1. Additionally, the enzymatic characteristics of the ß-glucosidases produced by this strain were investigated. The ß-glucosidases generated by C. cf. sorbosivorans X1 displayed high enzymatic activity and enzyme-activity retention in a pH range of 3.0 to 5.4 and at temperatures of 30 °C to 35 °C. Using non-targeted metabolomics methods, we investigated the alterations in metabolites during the fermentation of mango juice. The strain C. cf. sorbosivorans X1 demonstrated activity against phenols and terpenes. In the fermented mango juice (X1FMJ), we identified 41 differential metabolites. These included 14 esters, 4 hydrocarbons, 3 aldehydes, 5 ketones, 4 terpenoids, 4 alcohols, 1 aromatic hydrocarbon, 2 amines, 1 acid, and 3 heterocyclic compounds. The metabolic pathways of these differential metabolites were analyzed, revealing four key pathways: tyrosine metabolism, phenylpropanoid biosynthesis, monoterpene biosynthesis, and α-linolenic acid metabolism, which promoted the formation of aroma compounds in the fermented mango juice.

6.
FEBS Open Bio ; 13(5): 912-925, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906930

RESUMO

Imidazole is largely employed in recombinant protein purification, including GH1 ß-glucosidases, but its effect on the enzyme activity is rarely taken into consideration. Computational docking suggested that imidazole interacts with residues forming the active site of the GH1 ß-glucosidase from Spodoptera frugiperda (Sfßgly). We confirmed this interaction by showing that imidazole reduces the activity of Sfßgly, which does not result from enzyme covalent modification or promotion of transglycosylation reactions. Instead, this inhibition occurs through a partial competitive mechanism. Imidazole binds to the Sfßgly active site, reducing the substrate affinity by about threefold, whereas the rate constant of product formation remains unchanged. The binding of imidazole within the active site was further confirmed by enzyme kinetic experiments in which imidazole and cellobiose competed to inhibit the hydrolysis of p-nitrophenyl ß-glucoside. Finally, imidazole interaction in the active site was also demonstrated by showing that it hinders access of carbodiimide to the Sfßgly catalytic residues, protecting them from chemical inactivation. In conclusion, imidazole binds in the Sfßgly active site, generating a partial competitive inhibition. Considering that GH1 ß-glucosidases share conserved active sites, this inhibition phenomenon is probably widespread among these enzymes, and this should be taken into account when considering the characterization of their recombinant forms.


Assuntos
Glucosídeos , beta-Glucosidase , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Domínio Catalítico , Hidrólise , Imidazóis/farmacologia
7.
Proteins ; 91(6): 750-770, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607613

RESUMO

Lignocellulose is the most abundant natural biopolymer on earth and a potential raw material for the production of fuels and chemicals. However, only some organisms such as bacteria and fungi produce enzymes that metabolize this polymer. In this work we have demonstrated the presence of cellulolytic activity in the supernatant of Scenedesmus quadricauda cultures and we identified the presence of extracellular cellulases in the genome of five Scenedesmus species. Scenedesmus is a green alga which grows in both freshwater and saltwater regions as well as in soils, showing highly flexible metabolic properties. Sequence comparison of the different identified cellulases with hydrolytic enzymes from other organisms using multisequence alignments and phylogenetic trees showed that these proteins belong to the families of glycosyl hydrolases 1, 5, 9, and 10. In addition, most of the Scenedesmus cellulases showed greater sequence similarity with those from invertebrates, fungi, bacteria, and other microalgae than with the plant homologs. Furthermore, the data obtained from the three dimensional structure showed that both, their global structure and the main amino acid residues involved in catalysis and substrate binding are well conserved. Based on our results, we propose that different species of Scenedesmus could act as biocatalysts for the hydrolysis of cellulosic biomass produced from sunlight.


Assuntos
Celulases , Scenedesmus , Scenedesmus/metabolismo , Filogenia , Celulases/genética , Celulases/metabolismo , Bactérias/metabolismo , Hidrólise , Fungos/metabolismo
8.
Environ Pollut ; 309: 119709, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841992

RESUMO

Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), ß-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 µg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log2FC| > 3.0) under 100 µg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.


Assuntos
Celulases , Poluentes Ambientais , Oryza , Celulases/metabolismo , Celulases/farmacologia , Poluentes Ambientais/metabolismo , Oryza/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia
9.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807351

RESUMO

ß-Glucosidase is part of the cellulases and is responsible for degrading cellobiose into glucose, a compound that can be used to produce biofuels. However, the use of the free enzyme makes the process more expensive. Enzyme immobilization improves catalytic characteristics and supports, such as zeolites, which have physical-chemical characteristics and ion exchange capacity that have a promising application in the biotechnological industry. This research aimed to immobilize by adsorption a recombinant ß-glucosidase from Trichoderma reesei, obtained in Escherichia coli BL21 (DE3), in a commercial zeolite. A Box Behnken statistical design was applied to find the optimal immobilization parameters, the stability against pH and temperature was determined, and the immobilized enzyme was characterized by SEM. The highest enzymatic activity was determined with 100 mg of zeolite at 35 °C and 175 min. Compared to the free enzyme, the immobilized recombinant ß-glucosidase presented greater activity from pH 2 to 4 and greater thermostability. The kinetic parameters were calculated, and a lower KM value was obtained for the immobilized enzyme compared to the free enzyme. The obtained immobilization parameters by a simple adsorption method and the significant operational stability indicate promising applications in different fields.


Assuntos
Zeolitas , beta-Glucosidase , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Hidrólise , Temperatura , beta-Glucosidase/metabolismo
10.
J Fungi (Basel) ; 8(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35887465

RESUMO

The aim of this study was to investigate the effects of crude extracts of ß-glucosidase from Issatchenkia terricola SLY-4, Pichia kudriavzevii F2-24 and Metschnikowia pulcherrima HX-13 (termed as SLY-4E, F2-24E and HX-13E) on the flavor complexity and typicality of Cabernet Sauvignon wines. The grape must was fermented using Saccharomyces cerevisiae with single or mixed SLY-4E, F2-24E and HX-13E. The physicochemical characteristics, volatile aroma compounds, total anthocyanins and sensory attributes of the wines were determined. Adding SLY-4E, F2-24E and HX-13E in wines resulted in a decrease in the anthocyanin content, total acids and volatile acids in wines but an increase in the content of terpenes, benzene derivatives, higher alcohols and esters, which may enhance wine sensory qualities and result in loss of wine color. Different adding strategies of ß-glucosidase led to a variety of effects on wine aroma. S/H/F-Ew significantly increased the content of benzene derivatives, higher alcohols and long-chain fatty acid esters, which enhanced the fruity and floral flavor of wines. F2-24E significantly increased the content of short- and medium-chain fatty acid esters, acetate esters and carbonyl compounds. The results indicated that the mixed addition of non-Saccharomyces crude extracts and co-fermentation with S. cerevisiae could further improve wine flavor quality.

11.
Gene ; 822: 146345, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189252

RESUMO

Penicillium echinulatum 2HH is an ascomycete well known for its production of cellulolytic enzymes. Understanding lignocellulolytic and sugar uptake systems is essential to obtain efficient fungi strains for the production of bioethanol. In this study we performed a genome-wide functional annotation of carbohydrate-active enzymes and sugar transporters involved in the lignocellulolytic system of P. echinulatum 2HH and S1M29 strains (wildtype and mutant, respectively) and eleven related fungi. Additionally, signal peptide and orthology prediction were carried out. We encountered a diverse assortment of cellulolytic enzymes in P. echinulatum, especially in terms of ß-glucosidases and endoglucanases. Other enzymes required for the breakdown of cellulosic biomass were also found, including cellobiohydrolases, lytic cellulose monooxygenases and cellobiose dehydrogenases. The S1M29 mutant, which is known to produce an increased cellulase activity, and the 2HH wild type strain of P. echinulatum did not show significant differences between their enzymatic repertoire. Nevertheless, we unveiled an amino acid substitution for a predicted intracellular ß-glucosidase of the mutant, which might contribute to hyperexpression of cellulases through a cellodextrin induction pathway. Most of the P. echinulatum enzymes presented orthologs in P. oxalicum 114-2, supporting the presence of highly similar cellulolytic mechanisms and a close phylogenetic relationship between these fungi. A phylogenetic analysis of intracellular ß-glucosidases and sugar transporters allowed us to identify several proteins potentially involved in the accumulation of intracellular cellodextrins. These may prove valuable targets in the genetic engineering of P. echinulatum focused on industrial cellulases production. Our study marks an important step in characterizing and understanding the molecular mechanisms employed by P. echinulatum in the enzymatic hydrolysis of lignocellulosic biomass.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Penicillium/metabolismo , Substituição de Aminoácidos , Transporte Biológico , Metabolismo dos Carboidratos , Celulose/análogos & derivados , Dextrinas , Regulação Fúngica da Expressão Gênica , Anotação de Sequência Molecular , Penicillium/genética , Filogenia , Açúcares/metabolismo
12.
Prep Biochem Biotechnol ; 52(6): 701-710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34651556

RESUMO

Sugarcane bagasse is a natural source of phenolic compounds. However, these compounds are bound to lignocellulose components, reducing their ability to function as good antioxidants. These linkages are hydrolyzed by enzymes like ß-glucosidases, increasing free phenolics. Auricularia is a food-grade genus capable of producing ß-glucosidases. The aim of this work was (I) to determine naturally occurring species of Auricularia and (II) to obtain phenolic compounds through the solid-state bioprocessing of sugarcane bagasse. We have successfully isolated five strains that were assigned to the taxon A. fuscosuccinea. We determined ß-glucosidase activity by fluorescence plate assay of the five isolated strains and adjusted an optimal temperature for mycelial growth at 30 °C. A. fuscosuccinea LBM 243 was chosen for solid-state bioprocessing of sugarcane bagasse. ß-glucosidase activity (12.2 ± 0.62 U l-1) and protein content (51.58 ± 6.26 mg l-1) were highest on day 20 of culture. The maximum value of total phenolic content (507.5 ± 9.05 mg l-1) was obtained at day 20 and antioxidant capacity (34.44% ± 11.20) was highest at day 10, both in ethanolic extracts. The best performance of ethanol against methanol extraction in this work is highlighted considering ethanol to be a safe, efficient, and low-cost solvent.


Assuntos
Saccharum , Antioxidantes/metabolismo , Auricularia , Celulose/metabolismo , Etanol/metabolismo , Fenóis/metabolismo , Saccharum/metabolismo , beta-Glucosidase/metabolismo
13.
Comput Struct Biotechnol J ; 19: 6328-6342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938409

RESUMO

Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm Osedax mucofloris, and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.6%) encoding such enzymes were retrieved. The taxonomic assignation and the median identity of 72.2% to homologous proteins reflect microbial and functional novelty associated to a specialized bone-degrading marine community. Binning suggests that only one generalist hosting all ten targeted activities, working in synergy with multiple specialists hosting a few or individual activities. Collagenases were the most abundant enzyme class, representing 48% of the total hits. A total of 47 diverse enzymes, representing 8 hydrolytic activities, were produced in Escherichia coli, whereof 13 were soluble and active. The biochemical analyses revealed a wide range of optimal pH (4.0-7.0), optimal temperature (5-65 °C), and of accepted substrates, specific to each microbial enzyme. This versatility may contribute to a high environmental plasticity of bone-degrading marine consortia that can be confronted to diverse habitats and bone materials. Through bone-meal degradation tests, we further demonstrated that some of these enzymes, particularly those from Flavobacteriaceae and Marinifilaceae, may be an asset for development of new value chains in the biorefinery industry.

14.
Saudi J Biol Sci ; 28(8): 4668-4676, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354454

RESUMO

BACKGROUND: Ginsenoside Rh2(S) is a promising compound for the prevention of various kinds of cancers, inflammation, and diabetes. However, due to its low concentration (<0.02%), researchers are still trying to find an efficient glycoside hydrolase for the scaled-up production of Rh2(S). METHOD: Three glycoside hydrolases (BglBX10, Abf22-3, and BglSk) were cloned in Escherichia coli BL21 (DE3) and the expressed recombinant enzyme was used for the scaled-up production of Rh2(S) through the conversion of PPD-type (protopanaxadiol) major ginsenosides (Rb1, Rc, and Rd, except Rb2) extracted from Korean red ginseng. Specific and specialized bioconversion pathways were designed that evolved the initial bioconversion of PPD-mix â†’ Rg3(S) â†’ Rh2(S). The reaction was started with 50 mg/mL of PPD-mix, 20 mg/mL of BglBX10, Abf22-3, and BglSk in series, respectively. The process was completed in a 10 L jar fermenter with a 5 L working volume at 37 °C for 48 hrs. RESULTS: The designed bioconversion pathways show that Abf22-3 and BglBX10 were responsible for the conversion of Rb1, Rc and Rd â†’ Rg3(S), and then Rg3(S) was completely transformed to Rh2(S) by BglSk. As a result, 15.1 g of ginsenoside Rh2(S) with 98.0 ± 0.2% purity was obtained after strict purification using the Prep-HPLC system with a 100 φ diameter column. Additionally, BglSk was also investigated for its production activity with seven different kinds of PPD-mix type ginsenosides. CONCLUSION: Our pilot data demonstrate that BglSk is a suitable enzyme for the gram unit production of ginsenoside Rh2(S) at the industrial level.

15.
Front Microbiol ; 12: 723815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434184

RESUMO

In grapes, monoterpenes and norisoprenoids are in the form of non-volatile compounds, flavourless glycosides which could enhance the aroma of wines after its hydrolysis using ß- glucosidases enzymes. It is known that the use of immobilised enzymes offers advantages such as reusability and easy recuperation. In this study, a commercial ß-glucosidase was immobilised by absorption in sodium alginate. Biotechnological characteristics and terpen hydrolysis (hydrolysis aroma precursors) in muscat wines were studied after treatment with both free and immobilised commercial ß- glucosidase with two different concentrations. It was revealed that both forms shared an optimal pH (4.5) and a maximum temperature (64°C), even an increment on the activity between 40and 60°C. A similar Km value has been determined while Vmax from the immobilised enzyme was higher than the free (3.35 and 2.52 µmol min-1 mg-1, respectively). Additionally, the immobilised enzyme showed a better hydrolytic activity during 24 h, and its reusability has been proven. Regarding enzymatic hydrolysis in grape must, the best results were observed for the highest concentration of free ß-glucosidase although glucose release was also determined for the immobilised enzyme along the days. In contrast, maximum activity was reached by the immobilised ß-glucosidase in less time but in no case equalled the free ones. Finally, volatile compound liberation in wines treated with free or immobilised enzymes was analysed using HRGC-MS. Liberation for both enzymes and the greatest concentrations of some volatiles were detected when a double dose of the free ß-glucosidase was used. Nevertheless, the wines treated with the immobilised ß-glucosidase showed a high concentration of some volatile compounds such as nerol or geraniol.

16.
Int J Food Microbiol ; 350: 109242, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34044228

RESUMO

Lactic acid fermentation is a traditional process to preserve foods and to modify their organoleptic properties. This process is generally conducted in a spontaneous way, allowing indigenous lactic acid bacteria (LAB) of the matrix and of the environment to compete and grow. The aim of this study was to better characterise LAB strains ability to modify aroma profiles in fruit and vegetable matrices, by focusing on two key enzymatic activities: ß-glucosidase and alcohol dehydrogenase (ADH). Firstly, 200 LAB isolated from Cambodian and Vietnamese fermented foods were screened for their ß-glucosidase activity and duplicate isolates identified through RAPD-PCR analysis were discarded. Thereby, 40 strains were found positive for ß-glucosidase using p-nitrophenyl-ß-D-glucopyranoside as substrate. Among them, 14 displayed an activity greater than 10 nmol/min/mg dry cell. Thirteen were identified as Lactiplantibacillus (L.) plantarum and one as L. pentosus. Secondly, four strains of different phenotypes for ß-glucosidase activity were tested for ADH activity. The highest reduction ability for hexanal and (E)-2-hexenal was obtained for Limosilactobacillus (L.) fermentum V013-1A for which no ß-glucosidase activity was detectable. The three other strains (L. plantarum C022-2B, C022-3B, and V0023-4B2) exhibited a lower reduction ability and only for hexanal. Thirdly, mashed tomatoes were fermented with these four strains individually to evaluate their ability to release volatile compounds from the tomato precursors. Fifty-eight volatile compounds were identified and quantified by HS-SPME/GC-MS. Untreated tomatoes were rich in aldehydes. The tomatoes fermented with L. plantarum strains were rich in ketones whereas those with L. fermentum were rich in alcohols. However, for the generation of terpenoids that provide flower and fruit flavours, our screening of ß-glucosidase activity was not able to explain the differences among the strains. For ADH activity, L. fermentum exhibited a high activity in fermentation as most of the target aldehydes and ketones disappeared and were replaced by their corresponding alcohols. The L. plantarum strains exhibited a lower activity but with an important substrate-selectivity diversity. A better knowledge of the functionality of each LAB strain in the food matrix will permit to predict and shape the aroma profiles of fermented food.


Assuntos
Álcool Desidrogenase/metabolismo , Alimentos Fermentados/microbiologia , Frutas/microbiologia , Lactobacillales/metabolismo , Verduras/microbiologia , beta-Glucosidase/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Alimentos Fermentados/análise , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Ácido Láctico/análise , Lactobacillales/isolamento & purificação , Odorantes/análise , Técnica de Amplificação ao Acaso de DNA Polimórfico
17.
Methods Mol Biol ; 2290: 203-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009592

RESUMO

Vegetable oil-derived biodiesels have a major quality problem due to the presence of precipitates formed by steryl glucosides, which clog filters and injectors of diesel engines. An efficient, scalable, and cost-effective method to hydrolyze steryl glucosides using thermostable enzymes has been developed. Here, methods to discover, express in recombinant microorganisms and manufacture enzymes with SGase activity, as well as methods to treat biodiesel with such enzymes, and to measure the content of steryl glucosides in biodiesel samples are presented.


Assuntos
Glucosídeos/química , Fitosteróis/química , beta-Glucosidase/metabolismo , Biocombustíveis/análise , Clonagem Molecular/métodos , Enzimas/química , Hidrólise , Óleos de Plantas , beta-Glucosidase/biossíntese
18.
J Biomol Struct Dyn ; 39(5): 1621-1634, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32107974

RESUMO

ß-glucosidases (EC 3.2.1.21) have been described as essential to second-generation biofuel production. They act in the last step of the lignocellulosic saccharification, cleaving the ß - 1,4 glycosidic bonds in cellobiose to produce two molecules of glucose. However, ß-glucosidases have been described as strongly inhibited by glucose, causing an increment of cellobiose concentration. Also, cellobiose is an inhibitor of other enzymes used in this process, such as exoglucanases and endoglucanases. Hence, the engineering of thermostable and glucose-tolerant ß-glucosidases has been targeted by many studies. In this study, we performed high sampling accelerated molecular dynamics for a wild glucose-tolerant GH1 ß-glucosidase (Bgl1A), a wild non-tolerant (Bgl1B), and a set of glucose-tolerant Bgl1B's mutants: V302F, N301Q/V302F, F172I, V227M, G246S, T299S, and H228T. Our results suggest that point mutations promissory to induce glucose tolerance trend to enhance the mobility of the flexible loops around the active site. Mutations affected B and C loops regions, and an αß-hairpin motif between them. Conformational clusters and free energy landscape profiles suggest that the mobility acquired by mutants allows a higher closure of the substrate channel. This closure is compatible with a higher impedance for glucose entrance and stimulus of its withdrawal. Based on mutants' structural analyses, we inferred that both the direct stereochemical effect on the glucose path and the changes in the mobility affect glucose tolerance. We hope these results be useful for the rational design of glucose-tolerant and industrially promising enzymes.Communicated by Ramaswamy H. Sarma.


Assuntos
Celobiose , Mutação Puntual , Biocombustíveis , Glucose , Especificidade por Substrato , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
19.
Int J Biol Macromol ; 166: 1188-1196, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181222

RESUMO

It is urgent the transition from a fossil fuel-based economy to a sustainable bioeconomy based on bioconversion technologies using renewable plant biomass feedstocks to produce high chemicals, bioplastics, and biofuels. ß-Glucosidases are key enzymes responsible for degrading the plant cell wall polymers, as they cleave glucan-based oligo- and polysaccharides to generate glucose. Monosaccharide-tolerant or -stimulated ß-glucosidases have been reported in the past decade. Here, we describe a novel mechanism of ß-glucosidase stimulation by glucose and xylose. The glycoside hydrolase 1 family ß-glucosidase from Thermotoga petrophila (TpBgl1) displays a typical glucose stimulation mechanism based on an increased Vmax and decreased Km in response to glucose. Through molecular docking and dynamics analyses, we mapped putative monosaccharide binding regions (BRs) on the surface of TpBgl1. Our results indicate that after interaction with glucose or xylose at BR1 site, an adjacent loop region assumes an extended conformation, which increases the entrance to the TpBgl1 active site, improving product formation. Biochemical assays with TpBgl1 BR1 mutants, TpBgl1D49A/Y410A and TpBgl1D49K/Y410H, resulted in decreasing and abolishing monosaccharide stimulation, respectively. These mutations also impaired the BR1 looping extension responsible for monosaccharide stimulation. This study provides a molecular basis for the rational design of ß-glucosidases for biotechnological applications.


Assuntos
Monossacarídeos/metabolismo , Thermotoga/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Biocatálise , Domínio Catalítico , Glucose/metabolismo , Cinética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Xilose/metabolismo
20.
BMC Mol Cell Biol ; 21(1): 50, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611314

RESUMO

Β-glucosidases are key enzymes used in second-generation biofuel production. They act in the last step of the lignocellulose saccharification, converting cellobiose in glucose. However, most of the ß-glucosidases are inhibited by high glucose concentrations, which turns it a limiting step for industrial production. Thus, ß-glucosidases have been targeted by several studies aiming to understand the mechanism of glucose tolerance, pH and thermal resistance for constructing more efficient enzymes. In this paper, we present a database of ß-glucosidase structures, called Glutantßase. Our database includes 3842 GH1 ß-glucosidase sequences collected from UniProt. We modeled the sequences by comparison and predicted important features in the 3D-structure of each enzyme. Glutantßase provides information about catalytic and conserved amino acids, residues of the coevolution network, protein secondary structure, and residues located in the channel that guides to the active site. We also analyzed the impact of beneficial mutations reported in the literature, predicted in analogous positions, for similar enzymes. We suggested these mutations based on six previously described mutants that showed high catalytic activity, glucose tolerance, or thermostability (A404V, E96K, H184F, H228T, L441F, and V174C). Then, we used molecular docking to verify the impact of the suggested mutations in the affinity of protein and ligands (substrate and product). Our results suggest that only mutations based on the H228T mutant can reduce the affinity for glucose (product) and increase affinity for cellobiose (substrate), which indicates an increment in the resistance to product inhibition and agrees with computational and experimental results previously reported in the literature. More resistant ß-glucosidases are essential to saccharification in industrial applications. However, thermostable and glucose-tolerant ß-glucosidases are rare, and their glucose tolerance mechanisms appear to be related to multiple and complex factors. We gather here, a set of information, and made predictions aiming to provide a tool for supporting the rational design of more efficient ß-glucosidases. We hope that Glutantßase can help improve second-generation biofuel production. Glutantßase is available at http://bioinfo.dcc.ufmg.br/glutantbase .


Assuntos
Biocombustíveis/microbiologia , Bases de Dados de Compostos Químicos , beta-Glucosidase , Sequência de Aminoácidos , Bactérias/genética , Bactérias/metabolismo , Celobiose/química , Genes Bacterianos , Glucose/efeitos adversos , Glucose/química , Lignina/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Conformação Proteica , Streptomyces/genética , Streptomyces/metabolismo , beta-Glucosidase/síntese química , beta-Glucosidase/química , beta-Glucosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA