Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049769

RESUMO

Cheese is a product of animal origin with a high nutritional value, and it is one of the most consumed dairy foods in Mexico. In addition, Chihuahua cheese is the most consumed matured cheese in Mexico. In the production process of Chihuahua cheese, maturation is carried out by adding acid lactic microorganisms, mainly of the Lactococcus genus and, in some cases, also the Streptococcus and Lactobacillus genus. As part of the metabolism of fermenting microorganisms, biogenic amines can develop in matured foods, which result from the activity of amino decarboxylase enzymes. In cheeses, histamine and tyramine are the main amines that are formed, and the consumption of these represents a great risk to the health of consumers. In this work, the presence of biogenic amines (histamine and tyramine) was determined by HPLC at different times of the shelf life of Chihuahua cheeses. In addition, the presence of genes hdc and tdc that code for the enzymes responsible for the synthesis of these compounds (histidine and tyrosine decarboxylase, or HDC and TDC) was determined by molecular techniques. A significant correlation was observed between the presence of both histamine and tyramine at the end of shelf life with the presence of genes that code for the enzymes responsible for their synthesis.


Assuntos
Queijo , Histamina , Animais , Histamina/metabolismo , Tiramina , Aminas Biogênicas/análise , Lactobacillus/metabolismo
2.
Foods ; 7(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227599

RESUMO

Chihuahua cheese is a traditional cheese produced in Northwest Mexico that is consumed shortly after production. Cheeses prepared during autumn, winter and summer were collected from five dairies, and analyzed to determine seasonal influence on proximate analysis, texture profile and the microbiological dynamic during a ripening period of 270 days. Coliforms, coagulase-positive staphylococci, molds, yeast, as well as presumptive mesophilic lactobacilli, thermophilic lactobacilli, lactococci, thermophilic cocci and enterococci, were enumerated by plate count on selective agar. Manufacturing dairy had an effect on Chihuahua cheese composition and texture profile. Seasonality influence on the microbial dynamic was observed, since the highest initial counts of coliforms (5.14 log CFU/g), coagulase-positive staphylococci (4.13 log CFU/g) and mesophilic lactobacilli (7.86 log CFU/g) were detected on summer samples. Also, ripening time affected the survival of coliforms and presumptive lactococci after 270 days (1.24 and 5.89 log CFU/g respectively) while from day 90th, coagulase-positive staphylococci were absent. Microbial changes and seasonal influence provide information on the microbiota that can influence the sensorial characteristics of Chihuahua cheese.

3.
J Dairy Sci ; 97(2): 598-608, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24290815

RESUMO

Chihuahua cheese or Mennonite cheese is one of the most popular and consumed cheeses in Mexico and by the Hispanic community in the United States. According to local producers the yield of Chihuahua cheese ranges from 9 to 9.5 kg of cheese from 100 kg of milk. Cheese yield is a crucial determinant of profitability in cheese-manufacturing plants; therefore, different methods have been developed to increase it. In this work, a miniature Chihuahua-type cheese model was used to assess the effect of a phospholipase A1 (PL-A1) and exopolysaccharide (EPS)-producing bacteria (separately and in combination) on the yield, microstructure, and texture of cheese. Four different cheeses were manufactured: cheese made with PL-A1, cheese made with EPS-producing bacteria, cheese with both PL-A1 and EPS-producing bacteria, and a cheese control without PL-A1 or EPS-producing bacteria. The compositional analysis of cheese was carried out using methods of AOAC International (Washington, DC). The actual yield and moisture-adjusted yield were calculated for all cheese treatments. Texture profile analyses of cheeses were performed using a texture analyzer. Micrographs were obtained by electron scanning microscopy. Fifty panelists carried out sensorial analysis using ranking tests. Incorporation of EPS-producing bacteria in the manufacture of cheese increased the moisture content and water activity. In contrast, the addition of PL-A1 did not increase fat retention or cheese yield. The use of EPS alone improved the cheese yield by increasing water and fat retention, but also caused a negative effect on the texture and flavor of Chihuahua cheese. The use of EPS-producing bacteria in combination with PL-A1 improved the cheese yield and increased the moisture and fat content. The cheeses with the best flavor and texture were those manufactured with PL-A1 and the cheeses manufactured with the combination of PL-A1 and EPS-producing culture.


Assuntos
Queijo/análise , Microbiologia de Alimentos , Fosfolipases A1/análise , Polissacarídeos Bacterianos/metabolismo , Animais , Bactérias/metabolismo , Queijo/microbiologia , México , Leite/química , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA