Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Sci Pollut Res Int ; 31(20): 30126-30136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602641

RESUMO

Globally, per- and polyfluoroalkyl substances (PFAS)-related research on paper products has focused on food packaging with less consideration on the presence of PFAS at different stages of the paper recycling chain. This study analysed the prevalence of PFAS in paper grades used for the manufacture of recycled paperboard. The presence of PFAS was attributed to the use of PFAS-containing additives, consumer usage, exposure to packed goods as well as contamination during mingling, sorting, collection, and recovery of paper recycling material. Q Orbitrap mass spectrometry was used to analyse the paper samples after accelerated solvent extraction and solid phase extraction. The distribution and possible propagation of 22 PFAS were determined in pre-consumer, retail and post-consumer paper products. Post-consumer samples had the highest combined average concentration (ΣPFAS) at 213 ng/g, while the ΣPFAS in retail (159 ng/g) and pre-consumer samples (121 ng/g) was detected at lower concentrations. This study showed that waste collection and recycling protocols may influence PFAS propagation and that measures must be developed to minimise and possibly eliminate exposure opportunities.


Assuntos
Fluorocarbonos , Espectrometria de Massas , Papel , Reciclagem , Fluorocarbonos/análise , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida
2.
Talanta ; 269: 125402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979510

RESUMO

The accurate analysis of ultra-trace (e.g. <10-4 ng/mL) substances in complex matrices is a burdensome but vital problem in pharmaceutical analysis, with important implications for precise quality control of drugs, discovery of innovative medicines and elucidation of pharmacological mechanisms. Herein, an innovative constant-flow perfusion nano-electrospray ionization (PnESI) technique was developed firstly features significant quantitative advantages in high-sensitivity ambient MS analysis of complex matrix sample. More importantly, double-labeled addition enrichment quantitation strategies of gas-liquid microextraction (GLME) were proposed for the first time, allowing highly selective extraction and enrichment of specific target analytes in a green and ultra-efficient (>1000-fold) manner. Using complex processed Aconitum herbs as example, PnESI-MS directly enabled the qualitative and absolute quantitative analysis of the processed Aconitum extracts and characterized the target toxic diester alkaloids with high sensitivity, high stability, wide linearity range, and strong resistance to matrix interference. Further, GLME device was applied to obtain the highly specific enrichment of the target diester alkaloids more than 1000-fold, and accurate absolute quantitation of trace aconitine, mesaconitine, and hypaconitine in the extracts of Heishunpian, Zhichuanwu and Zhicaowu was accomplished (e.g., 0.098 pg/mL and 0.143 pg/mL), with the quantitation results well below the LODs of aconitines from any analytical instruments available. This study built a systematic strategy for accurate quantitation of ultra-trace substances in complex matrix sample and expected to provide a technological revolution in many fields of pharmaceutical research.


Assuntos
Aconitum , Alcaloides , Aconitina/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Alcaloides/análise , Perfusão , Aconitum/química , Controle de Qualidade
3.
J Hazard Mater ; 452: 131338, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027912

RESUMO

Microscopic fuel fragments, so-called "hot particles", were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore National Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge.

4.
Foods ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832813

RESUMO

A new polyvalent wide-scope analytical method, valid for both raw and processed (juices) fruits, combining target and non-target strategies, has been developed and validated to determine low concentrations of 260 pesticides, as well as many potential non-target substances and metabolites. The target approach has been validated according to SANTE Guide requirements. Trueness, precision, linearity, and robustness values were validated in raw fruit (apple) and juice (apple juice) as representative solid and liquid food commodities. Recoveries were between 70-120% and two ranges of linearity were observed: 0.5-20 µg kg-1 (0.5-20 µg L-1 apple juice) and 20-100 µg kg-1 (20-100 µg L-1 apple juice). The limits of quantification (LOQs) reached were lower than 0.2 µg kg-1 in apple (0.2 µg L-1 apple juice) in most cases. The developed method, based on QuEChERS extraction followed by gas chromatography-high resolution mass spectrometry (GC-HRMS), achieves part-per-trillions lower limits, which allowed the detection of 18 pesticides in commercial samples. The non-target approach is based on a retrospective analysis of suspect compounds, which has been optimized to detect up to 25 additional compounds, increasing the scope of the method. This made it possible to confirm the presence of two pesticide metabolites which were not considered in the target screening, phtamlimide and tetrahydrophthalimide.

5.
Anal Chim Acta ; 1188: 339166, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794577

RESUMO

In this paper, a vibrating boron-doped diamond (BDD) electrode electroanalytical device and respective method for the analysis of ultralow concentrations of Cd(II) in water were studied. The enhanced mass transfer on the electrode surface was studied using Ru(NH3)6Cl3. Vibration with 133 Hz frequency enhanced the Ru(III) to Ru(II) reduction by 92.6% compared to a static electrode. The peak current of the anodic stripping voltammetry (ASV) method employed was increased by a factor of 5.3 and 4.7 for 10 and 30 µg L-1 Cd(II) concentrations, respectively, when a frequency of 200 Hz was used. A calibration plot with two linear regions was resolved between 0.01 and 1 µg L-1 and 1-30 µg L-1 with the LOD and LOQ of 0.04 µg L-1 and 0.12 µg L-1, respectively. The applicability of the device and the respective method in the analysis of real environmental samples was successfully verified by analysis of river samples and comparing the results with the ICP analysis presenting high reproducibility and trueness. According to the results of this research, the vibrating BDD electrode with the ASV method has excellent analytical performance without surface modification or regular replacement or polishing of the electrode surface. Combining the exceptional electrochemical and chemical properties of BDD with enhanced mass transfer and signal strength of vibrating electrodes makes the system especially suitable for on-site and online analysis of heavy metals.


Assuntos
Boro , Metais Pesados , Cádmio , Eletrodos , Reprodutibilidade dos Testes
6.
Anal Bioanal Chem ; 413(15): 3987-3997, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33973021

RESUMO

Plutonium is a major contributor to the radiotoxicity in a long-term nuclear waste repository; therefore, many studies have focused on interactions of plutonium with the technical, geotechnical, and geological barriers of a possible nuclear waste storage site. In order to gain new insights into the sorption on surfaces and diffusion of actinides through these complex heterogeneous materials, a highly sensitive method with spatial resolution is required. Resonant laser secondary neutral mass spectrometry (Laser-SNMS) uses the spatial resolution available in time-of-flight secondary ion mass spectrometry (TOF-SIMS) in combination with the high selectivity, sensitivity, and low background noise of resonance ionization mass spectrometry (RIMS) and is, therefore, a promising method for the study and analysis of the geochemical behavior of plutonium in long-term nuclear waste storage. The authors present an approach with a combined setup consisting of a commercial TOF-SIMS instrument and a Ti:sapphire (Ti:Sa) laser system, as well as its optimization, characterization, and improvements compared to the original proof of concept by Erdmann et al. (2009). As a first application, the spatial distributions of plutonium and other elements on the surface of a pyrite particle and a cement thin section were measured by Laser-SNMS and TOF-SIMS, respectively. These results exemplify the potential of these techniques for the surface analysis of heterogeneous materials in the context of nuclear safety research.

7.
Mass Spectrom Rev ; 40(3): 236-254, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32530096

RESUMO

Chlorinated dioxins are labeled and recognized by both the World Health Organization and the United Nations Environmental Programme (UNEP) as "persistent organic pollutants". Their potential for high toxicity is one of the primary factors behind intense public and regulatory scrutiny and the need to measure the compounds at very low limits, specifically the isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). This article highlights the early mass spectrometry methods to investigate, detect, confirm, and quantify chlorinated dioxins and the initial applications involving human biomonitoring, as attempts were made to attribute health effects to TCDD exposure. This effort represented a complex and difficult scientific response to the pressing need to investigate expected exposures and alleged subsequent medical effects, which in the case of the Viet Nam veterans was being attempted a decade or more after their exposure. It is noteworthy that this method and its development touched on delicate issues involving human subjects, war veterans, environmental contamination, and was difficult not only scientifically, but for ethical and political reasons as well. Stable-isotope dilution with analysis by gas chromatography/high-resolution mass spectrometry (GC/HRMS) became the method of choice because of its ability to monitor characteristic ions and isotope ratios to quantify and qualify/confirm the analyte in the presence of coextracting and coeluting interferences at these low levels with the highest possible confidence. This method was rigorously tested and validated before it was used to discover and monitor levels in the environment and in various populations at then unprecedented low levels. These early studies demonstrated the feasibility of monitoring dioxins in humans even decades after exposure, and led to the detection of 2,3,7,8-TCDD in the general population as well as specific overexposed populations. These studies also provided strong evidence regarding the origins of the 2,3,7,8-isomer in the environment. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Assuntos
Dioxinas/análise , Dioxinas/toxicidade , Poluentes Ambientais/análise , Espectrometria de Massas/métodos , Animais , Dioxinas/farmacocinética , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Cromatografia Gasosa-Espectrometria de Massas/métodos , Meia-Vida , Humanos , Leite Humano/química , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Dibenzodioxinas Policloradas/análise , Primatas , Veteranos , Vietnã
8.
Mar Pollut Bull ; 149: 110547, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31542592

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are a group of ubiquitous environmental pollutants among which some compounds show carcinogenic properties. The emission of PAH from anthropogenic and natural sources to the aquatic environment demands monitoring. In this study, ten different surface water samples were collected and analyzed for 48 different PAH compounds by gas chromatography-atmospheric-pressure-laser-ionization coupled to mass spectrometry (GC-APLI-MS) after liquid-liquid extraction. Results varied from 9.22 ng/L for fluoranthene in harbor water to 0.01 ng/L for 4-methylchrysene in Rhine river water. Overall low PAH concentrations were found in the samples. Toxic equivalent (TEQ) calculations were used to assess the potential environmental impact of the analyzed compounds. The results showed higher concentrations and TEQ for the samples from harbors in comparison to riverine and estuarine sampling locations. Suspected target analysis indicated the occurrence of alkylated PAH in the surface water samples.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Alquilação , Carcinógenos/análise , Estuários , Alemanha , Extração Líquido-Líquido , Rios , Sensibilidade e Especificidade
9.
Talanta ; 204: 555-560, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357333

RESUMO

In this study, carbon microparticles (CMs) as a physical carrier to enhance the analyte transport efficiency for inductively coupled plasma mass spectrometry connected with electrothermal vaporization (ETV-ICP-MS) are proposed. Carbon microparticles mixed with samples or calibration standard solutions were dosed as a slurry into the graphite furnace. The optimization of working conditions was done for the standard solution 0.5 µg L-1 of Au and Tl. The pyrolysis and vaporization temperatures were 500 and 2700 °C for Au and 400 and 1900 °C for Tl. The optimized CMs concentration was 1 g L-1 for Au and 2.5 g L-1 for Tl. For the quantification, external calibration standard solutions were used. The result obtained for Au in the digested CRM GBW 07601 (the informatory value 2.1 ±â€¯2 µg kg-1) was 2.2 ±â€¯0.1 µg kg-1. The result for Tl in the digested CRM BCR 679 (the certified value 3 ±â€¯0.3 µg kg-1) was 3.2 ±â€¯0.2 µg kg-1 and in the slurry 2.7 ±â€¯0.1 µg kg-1. The result for Tl in the CRM GBW 10052 (the certified value 57 ±â€¯11 µg kg-1) was 51 ±â€¯3 µg kg-1. The instrumental limits of detection were 0.016 ng L-1 for Au and 0.026 ng L-1 for Tl. The recoveries and repeatabilities measured on calibration standards were in the range 99-100% and 0.2-2.3% for Au and 100-111% and 2.9-6.7% for Tl.

10.
Talanta ; 189: 502-508, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30086952

RESUMO

A new sample loading procedure was developed for isotope measurements of ultra-trace amounts of Pu with thermal ionization mass spectrometry (TIMS) that is based on a polymer thin film architecture. The goals were to simplify single filament TIMS sample preparation for Pu, while preserving the sensitivity and accuracy of the resin bead loading method, and to eliminate sample losses experienced with the bead loading method. Rhenium filaments were degassed, dip-coated with a thin (~ 120 nm) hydrophobic base layer of poly(vinylbenzyl chloride) (PVBC), and spotted with an aqueous solution comprising triethylamine-quaternized PVBC and diazabicyclo[2.2.2]octane crosslinker. This procedure formed a toroidal, hydrophilic anion-exchange polymer spot surrounded by the hydrophobic base polymer. The thin film-coated filaments were direct loaded with 10 pg of New Brunswick Laboratory certified reference material (NBL CRM) 128 from a 9 M HCl matrix. Aqueous sample droplets adhered to the anion-exchange polymer spot, facilitating sample loading. Toroidal spots with a thickness of 20-30 µm generated the highest sample utilization, surpassing the sample utilization of the standard bead loading method by 175%. Measured isotopic ratios were in good agreement with the certified value of the 239Pu/242Pu ratio for NBL CRM 128. The use of dimpled filaments further aided sample loading by providing a well-shaped substrate to deposit the sample droplet. No sample losses were experienced with the thin film loading method over 65 sample analyses. Finally, polymer coatings suppressed filament aging under atmospheric conditions, enabling the bulk production of filaments with adequate shelf life for future analyses.

11.
Chemosphere ; 193: 306-312, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29145092

RESUMO

Water analysis of trace metals has been benefited by recent studies on sample preparation by liquid micro-extraction. However, there are still limitations for its application to seawater, such as the need of additives to preserve the sample or the availability of chemical extractants for the selective extraction from highly saline samples. In this work, a three phase solvent bar micro-extraction (3SBME) system containing the ionic liquid trioctylmethylammonium chloride (Aliquat® 336) has been used for isolation and pre-concentration of Cd from seawater samples, due to its ability for ionic exchange of CdCln(n-2)-. The system was optimized to work at the natural pH of seawater, and conditions for application to real samples were 0.18 M Aliquat® 336 dissolved in kerosene with 0.25 M dodecan-1-ol as organic solution, 1.5 M HNO3 as acceptor solution, 60 min extraction time, and 800 rpm stirring speed in the sample. Loss of organic solution into the sample during extraction was evaluated and revealed its dependence on stirring rate and extraction time. Under optimum conditions samples containing Cd 0.09-0.90 nM were pre-concentrated 65 times. GF-AAS was used for metal quantification with a limit of detection of 0.04 nM. Accuracy was successfully evaluated measuring Cd in a seawater certified reference material BCR-403.


Assuntos
Cádmio/análise , Líquidos Iônicos , Microextração em Fase Líquida , Água do Mar/química , Cádmio/isolamento & purificação , Íons , Compostos de Amônio Quaternário , Solventes , Oligoelementos
12.
J Chromatogr A ; 1521: 63-72, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28942996

RESUMO

In this manuscript, the application of high-resolution sampling (HRS) two-dimensional liquid chromatography (2D-LC) in the detailed analysis of key linker drug intermediate is presented. Using HRS, selected regions of the primary column eluent were transferred to a secondary column with fidelity enabling qualitative and quantitative analysis of linker drugs. The primary column purity of linker drug intermediate ranged from 88.9% to 94.5% and the secondary column purity ranged from 99.6% to 99.9%, showing lot-to-lot variability, significant differences between the three lots, and substantiating the synthetic and analytical challenges of ADCs. Over 15 impurities co-eluting with the linker drug intermediate in the primary dimension were resolved in the secondary dimension. The concentrations of most of these impurities were over three orders of magnitude lower than the linker drug. Effective peak focusing and high-speed secondary column analysis resulted in sharp peaks in the secondary dimension, improving the signal-to-noise ratios. The sensitivity of 2D-LC separation was over five fold better than conventional HPLC separation. The limit of quantitation (LOQ) was less than 0.01%. Many peaks originating from primary dimension were resolved into multiple components in the complementary secondary dimension, demonstrating the complexity of these samples. The 2D-LC was highly reproducible, showing good precision between runs with%RSD of peak areas less than 0.1 for the main component. The absolute difference in the peak areas of impurities less than 0.1% were within ±0.01% and for impurities in the range of 0.1%-0.3%, the absolute difference were ±0.02%, which are comparable to 1D-LC. The overall purity of the linker drug intermediate was determined from the product of primary and secondary column purity (HPLC Purity=%peak area of main component in the primary dimension×%peak area of main component in the secondary dimension). Additionally, the 2D-LC separation enables the determination of potential impurities that could impact the downstream process, like ADCs stability, efficacy and patient safety. Peak capacity of this magnitude, sensitivity and reproducibility of 2D-LC for resolving structurally similar impurities co-eluting with the main component has not been demonstrated to date. This application clearly demonstrates the power of 2D-LC in detailed analysis of structurally similar, co-eluting impurities from key linker drug intermediate used in ADCs that is impossible to achieve by conventional 1D-LC.


Assuntos
Química Farmacêutica/métodos , Cromatografia Líquida , Imunoconjugados/química , Anticorpos/metabolismo , Reprodutibilidade dos Testes , Razão Sinal-Ruído
13.
Int J Environ Anal Chem ; 97(3): 264-275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626294

RESUMO

Exposures to beryllium (Be), even at extremely low levels, can cause severe health effects in a percentage of those exposed; consequently, occupational exposure limits (OELs) promulgated for this element are the lowest established for any element. This work describes the advantages of using highly alkaline dye solutions for determination of Be in occupational hygiene and environmental samples by means of an optical molecular fluorescence technique after sample extraction in 1-3% (w˖w-1) aqueous ammonium bifluoride (NH4HF2). Improved attributes include the ability to further enhance the detection limits of Be in extraction solutions of high acidity with minimal dilution, which is particularly beneficial when NH4HF2 solutions of higher concentration are used for extraction of Be from soil samples. Significant improvements in Be method detection limits (MDLs) are obtained at levels many-fold below those reported previously for this methodology. Notably, MDLs for Be of <0.01 ng l-1 / 0.1 ng per sample have been attained, which are superior to MDLs routinely reported for this element by means of the most widely used ultra-trace elemental measurement technique, inductively coupled plasma mass spectrometry (ICP-MS). Very low MDLs for Be are essential in consideration of reductions in OELs for this element in workplace air by health organizations and regulatory agencies in the USA and internationally. Applications of enhanced Be measurements to air filter samples, surface wipe samples, soils and newly-designed occupational air sampler inserts are illustrated.

14.
Methods Mol Biol ; 1564: 1-7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124241

RESUMO

Brassinosteroids (BRs) are a class of steroid plant hormones that participate with other plant hormones in the regulation of numerous developmental processes, including root and shoot growth, vascular differentiation, fertility, and seed germination. A characteristic feature of all plant hormones, including BRs, is that their concentration is extremely low in plant tissues and, therefore, the methods dealing with their determination belong to ultra-trace analysis, for which very sensitive analytical tools are needed. The analysis of natural BRs is essential when their functions and roles in plant growth and development are to be elucidated. Here, we describe a reliable protocol for high-throughput extraction and purification of BRs. The procedure consists of two solid-phase extraction steps and provides selective enrichment and efficient cleanup of these compounds from complex plant extracts. The protocol is designed for sensitive liquid chromatography-tandem mass spectrometry-based method for simultaneous detection of 22 naturally occurring BRs, including their biosynthetic precursors and most of their biologically active metabolites, without need for derivatization.


Assuntos
Arabidopsis/química , Brassica napus/química , Brassinosteroides/isolamento & purificação , Reguladores de Crescimento de Plantas/isolamento & purificação , Extração em Fase Sólida/métodos , Brassinosteroides/química , Cromatografia Gasosa , Cromatografia Líquida , Espectrometria de Massas , Extratos Vegetais/química , Reguladores de Crescimento de Plantas/química
15.
Talanta ; 159: 117-121, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474287

RESUMO

Main drawbacks for silver determination in seawater are the effects of samples matrix and that Ag appears in the sub ng L(-1). Available methods for sample preparation in Ag analysis are based on solid and liquid extraction using tedious process that increase the cost of analysis and the risk of sample contamination, producing important waste amounts. Solvent bar micro-extraction (SBME) allows the pre-concentration of Ag in a micro-volume of the ionic liquid Aliquat 336® in kerosene solution. For this reason, it is considered as a green alternative to standard methods. The method has been optimized using synthetic seawater samples, offering the highest response for samples at pH=2, using 5% Aliquat 336® dissolved in kerosene containing 5% dodecan-1-ol as acceptor solution and after 1h stirring at 800rpm. The method exhibited linearity up to 50ngL(-1), with a limit of detection of 0.09ngL(-1), covering the concentration range of interest for environmental studies. Finally, it was applied for determination of Ag in real seawater samples, and the results were compared with the reference method of liquid-liquid extraction with 1-pyrrolidine-dithiocarbamate and diethylammonium-diethyldithiocarbamate, showing the applicability of ionic liquid based SBME using Aliquat 336(®) for the simple monitoring of silver ultra-traces in seawater analysis.

16.
Anal Chim Acta ; 922: 11-8, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27154827

RESUMO

Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (µg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10(-13)-10(-6) g, improving previous results of 1-3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%.

17.
Anal Bioanal Chem ; 407(30): 9105-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26493981

RESUMO

Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.


Assuntos
Ar/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plantas/química , Compostos Orgânicos Voláteis/química
18.
Anal Bioanal Chem ; 407(26): 7965-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297465

RESUMO

An ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS/MS) method has been developed for rapid and accurate measurement of perchlorate in polar snow and ice core samples in which perchlorate concentrations are expected to be as low as 0.1 ng L(-1). Separation of perchlorate from major inorganic species in snow is achieved with an ion chromatography system interfaced to an AB SCIEX triple quadrupole mass spectrometer operating in multiple reaction monitoring mode. Under optimized conditions, the limit of detection and lower limit of quantification without pre-concentration have been determined to be 0.1 and 0.3 ng L(-1), respectively, with a linear dynamic range of 0.3-10.0 ng L(-1) in routine measurement. These represent improvements over previously reported methods using similar analytical techniques. The improved method allows fast, accurate, and reproducible perchlorate quantification down to the sub-ng L(-1) level and will facilitate perchlorate measurement in the study of natural perchlorate production with polar ice cores in which perchlorate concentrations are anticipated to vary in the low and sub-ng L(-1) range. Initial measurements of perchlorate in ice core samples from central Greenland show that typical perchlorate concentrations in snow dated prior to the Industrial Revolution are about 0.8 ng L(-1), while perchlorate concentrations are significantly higher in recent (post-1980) snow, suggesting that anthropogenic sources are a significant contributor to perchlorate in the current environment.


Assuntos
Monitoramento Ambiental/métodos , Gelo/análise , Percloratos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/economia , Cromatografia por Troca Iônica/métodos , Monitoramento Ambiental/economia , Limite de Detecção , Espectrometria de Massas por Ionização por Electrospray/economia , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/métodos
19.
Anal Chim Acta ; 875: 83-91, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25937109

RESUMO

A typical, reproducible, and rugged screen printed carbon electrode, modified with dual-ion imprinted beads, was fabricated employing the "surface grafting from" approach. For this, the acyl chloride functionalized magnetic nanoparticles were first immobilized and chemically attached with a typical functional monomer (but-2-enedioic acid bis-[(2-amino-ethyl)-amide]) on the electrode surface. This was subsequently subjected to the thermal polymerization in the presence of template ions (Ce(IV) and Gd(III)), cross-linker (ethylene glycol dimethacrylate), initiator (AIBN), and multiwalled carbon nanotubes. The modified sensor was used for the simultaneous analysis of both template ions in aqueous, blood serum, and waste-water samples, using differential pulse anodic stripping voltammetry which revealed two oxidation peaks for respective templates with resolution as much as 950 mV, without any cross reactivity, interferences and false-positives. The detection limits realized by the proposed sensor, under optimized conditions, were found to be as low as 0.07 ng mL(-1) for Ce(IV) and 0.19 ng mL(-1) for Gd(III) (S/N=3) that could eventually be helpful for lanthanide estimation at stringent levels.

20.
Talanta ; 134: 732-738, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618729

RESUMO

We report rapid and ultra-sensitive detection system for 2,4,6-trinitrotoluene (TNT) using unmodified gold nanoparticles and surface-enhanced Raman spectroscopy (SERS). First, Meisenheimer complex has been formed in aqueous solution between TNT and cysteamine in less than 15 min of mixing. The complex formation is confirmed by the development of a pink colour and a new UV-vis absorption band around 520 nm. Second, the developed Meisenheimer complex is spontaneously self-assembled onto unmodified gold nanoparticles through a stable Au-S bond between the cysteamine moiety and the gold surface. The developed mono layer of cysteamine-TNT is then screened by SERS to detect and quantify TNT. Our experimental results demonstrate that the SERS-based assay provide an ultra-sensitive approach for the detection of TNT down to 22.7 ng/L. The unambiguous fingerprint identification of TNT by SERS represents a key advantage for our proposed method. The new method provides high selectivity towards TNT over 2,4 DNT and picric acid. Therefore it satisfies the practical requirements for the rapid screening of TNT in real life samples where the interim 24-h average allowable concentration of TNT in waste water is 0.04 mg/L.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA