Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Huntingtons Dis ; 13(2): 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968054

RESUMO

The field of Huntington's disease research covers many different scientific disciplines, from molecular biology all the way through to clinical practice, and as our understanding of the disease has progressed over the decades, a great deal of different terminology has accrued. The field is also renowned for its collaborative spirit and use of standardized reagents, assays, datasets, models, and clinical measures, so the use of standardized terms is especially important. We have set out to determine, through a consensus exercise involving basic and clinical scientists working in the field, the most appropriate language to use across disciplines. Nominally, this article will serve as the style guide for the Journal of Huntington's Disease (JHD), the only journal devoted exclusively to HD, and we lay out the preferred and standardized terminology and nomenclature for use in JHD publications. However, we hope that this article will also serve as a useful resource to the HD research community at large and that these recommended naming conventions will be adopted widely.


Assuntos
Doença de Huntington , Terminologia como Assunto , Doença de Huntington/classificação , Doença de Huntington/diagnóstico , Humanos , Pesquisa Biomédica/normas
2.
Biology (Basel) ; 13(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38666850

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expansion of the CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. This expansion leads to a polyglutamine (polyQ) tract at the N-terminal end of HTT, which reduces the solubility of the protein and promotes its accumulation. Inefficient clearance of mutant HTT (mHTT) by the proteasome or autophagy-lysosomal system leads to accumulation of oligomers and toxic protein aggregates in neurons, resulting in impaired proteolytic systems, transcriptional dysregulation, impaired axonal transport, mitochondrial dysfunction and cellular energy imbalance. Growing evidence suggests that the accumulation of mHTT aggregates and autophagic and/or lysosomal dysfunction are the major pathogenic mechanisms underlying HD. In this context, enhancing autophagy may be an effective therapeutic strategy to remove protein aggregates and improve cell function. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy, controls the expression of genes critical for autophagosome formation, lysosomal biogenesis, lysosomal function and autophagic flux. Consequently, the induction of TFEB activity to promote intracellular clearance may be a therapeutic strategy for HD. However, while some studies have shown that overexpression of TFEB facilitates the clearance of mHTT aggregates and ameliorates the disease phenotype, others indicate such overexpression may lead to mHTT co-aggregation and worsen disease progression. Further studies are necessary to confirm whether TFEB modulation could be an effective therapeutic strategy against mHTT-mediated toxicity in different disease models.

3.
Ann Hum Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563088

RESUMO

BACKGROUND: Africans are underrepresented in Huntington's disease (HD) research. A European ancestor was postulated to have introduced the mutant Huntingtin (mHtt) gene to the continent; however, recent work has shown the existence of a unique Htt haplotype in South-Africa specific to indigenous Africans. OBJECTIVE: We aimed to investigate the CAG trinucleotide repeats expansion in the Htt gene in a geographically diverse cohort of patients with chorea and unaffected controls from sub-Saharan Africa. METHODS: We evaluated 99 participants: 43 patients with chorea, 21 asymptomatic first-degree relatives of subjects with chorea, and 35 healthy controls for the presence of the mHtt. Participants were recruited from 5 African countries. Additional data were collected from patients positive for the mHtt gene; these included demographics, the presence of psychiatric and (or) cognitive symptoms, family history, spoken languages, and ethnic origin. Additionally, their pedigrees were examined to estimate the number of people at risk of developing HD and to trace back the earliest account of the disease in each region. RESULTS: HD cases were identified in all countries. Overall, 53.4% of patients with chorea were carriers for the mHTT; median tract size was 45 CAG repeats. Of the asymptomatic relatives, 28.6% (6/21) were carriers for the mHTT; median tract size was 40 CAG. No homozygous carries were identified. Median CAG tract size in controls was 17 CAG repeats. Men and women were equally affected by HD. All patients with HD-bar three who were juvenile onset of <21 years-were defined as adult onset (median age of onset was 40 years). HD transmission followed an autosomal dominant pattern in 84.2% (16/19) of HD families. In familial cases, maternal transmission was higher 52.6% (10/19) than paternal transmission 36.8% (7/19). The number of asymptomatic individuals at risk of developing HD was estimated at ten times more than the symptomatic patients. HD could be traced back to the early 1900s in most African sites. HD cases spread over seven ethnic groups belonging to two distinct linguistic lineages separated from each other approximately 54-16 kya ago: Nilo-Sahara and Niger-Congo. CONCLUSION: This is the first study examining HD in multiple sites in sub-Saharan Africa. We demonstrated that HD is found in multiple ethnic groups residing in five sub-Saharan African countries including the first genetically confirmed HD cases from Guinea and Kenya. The prevalence of HD in the African continent, its associated socio-economic impact, and genetic origins need further exploration and reappraisal.

4.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498709

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , DNA , Apoptose/genética , Proteína 1 Homóloga a MutL/genética
5.
Front Aging Neurosci ; 15: 1237018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637962

RESUMO

Introduction: Huntington's disease (HD) is caused by CAG trinucleotide repeats in the HTT gene. Selective neurodegeneration in the striatum is prominent in HD, despite widespread expression of mutant HTT (mHTT). Ras homolog enriched in the striatum (Rhes) is a GTP-binding protein enriched in the striatum, involved in dopamine-related behaviors and autophagy regulation. Growing evidence suggests Rhes plays a critical role in the selective striatal degeneration in HD, but its specific function in this context remains complex and controversial. Methods: In this study, we utilized CRISPR/Cas9 to knockdown Rhes at different disease stages through adeno-associated virus (AAV) transduction in HD knock-in (KI) mice. Immunoblotting and immunofluorescence were employed to assess the impact of Rhes depletion on mHTT levels, neuronal loss, astrogliosis and autophagy activity. Results: Rhes depletion in 22-week-old HD KI mice (representing the presymptomatic stage) led to mHTT accumulation, reduced neuronal cell staining, and increased astrogliosis. However, no such effects were observed in 36-week-old HD KI mice (representing the symptomatic stage). Additionally, Rhes deletion in 22-week-old HD KI mice resulted in increased P62 levels, reduced LC3-II levels, and unchanged phosphorylation of mTOR and beclin-1, unchanged mTOR protein level, except for a decrease in beclin-1. Discussion: Our findings suggest that knockdown Rhes promotes striatal aggregation of mutant huntingtin by reducing autophagy activity in a mTOR-independent manner. Rhes plays a protective role during the presymptomatic stage of HD KI mice.

6.
J Nucl Med ; 64(10): 1581-1587, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591545

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (CAG) trinucleotide expansion in the huntingtin (HTT) gene that encodes the mutant huntingtin protein (mHTT). Visualization and quantification of cerebral mHTT will provide a proxy for target engagement and a means to evaluate therapeutic interventions aimed at lowering mHTT in the brain. Here, we validated the novel radioligand 11C-labeled 6-(5-((5-methoxypyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one (11C-CHDI-180R) using PET imaging to quantify cerebral mHTT aggregates in a macaque model of HD. Methods: Rhesus macaques received MRI-guided intrastriatal delivery of a mixture of AAV2 and AAV2.retro viral vectors expressing an HTT fragment bearing 85 CAG repeats (85Q, n = 5), a control HTT fragment bearing 10 CAG repeats (10Q, n = 4), or vector diluent only (phosphate-buffered saline, n = 5). Thirty months after surgery, 90-min dynamic PET/CT imaging was used to investigate 11C-CHDI-180R brain kinetics, along with serial blood sampling to measure input function and stability of the radioligand. The total volume of distribution was calculated using a 2-tissue-compartment model as well as Logan graphical analysis for regional quantification. Immunostaining for mHTT was performed to corroborate the in vivo findings. Results: 11C-CHDI-180R displayed good metabolic stability (51.4% ± 4.0% parent in plasma at 60 min after injection). Regional time-activity curves displayed rapid uptake and reversible binding, which were described by a 2-tissue-compartment model. Logan graphical analysis was associated with the 2-tissue-compartment model (r 2 = 0.96, P < 0.0001) and used to generate parametric volume of distribution maps. Compared with controls, animals administered the 85Q fragment exhibited significantly increased 11C-CHDI-180R binding in several cortical and subcortical brain regions (group effect, P < 0.0001). No difference in 11C-CHDI-180R binding was observed between buffer and 10Q animals. The presence of mHTT aggregates in the 85Q animals was confirmed histologically. Conclusion: We validated 11C-CHDI-180R as a radioligand to visualize and quantify mHTT aggregated species in a HD macaque model. These findings corroborate our previous work in rodent HD models and show that 11C-CHDI-180R is a promising tool to assess the mHTT aggregate load and the efficacy of therapeutic strategies.


Assuntos
Doença de Huntington , Animais , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Macaca mulatta/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Modelos Animais de Doenças
7.
Front Aging Neurosci ; 15: 1175598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304076

RESUMO

The autophagy-lysosomal pathway (ALP) is the major biological pathway responsible for clearing intracellular protein aggregates, therefore a promising target for treating diseases featuring the accumulation of aggregation-prone proteins, such as Huntington disease (HD). However, accumulating evidence indicated that targeting ALP to treat HD is pharmacologically challenging due to the complexity of autophagy and the autophagy defects in HD cells. Here in this mini-review, we summarized the current challenges in targeting ALP in HD and discussed a number of latest findings on aggrephagy and targeted protein degradation, which we believe will provide potential new targets and new strategies for treating HD via ALP.

8.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047023

RESUMO

Huntington's disease (HD) is characterized by clinical motor impairment (e.g., involuntary movements, poor coordination, parkinsonism), cognitive deficits, and psychiatric symptoms. An inhered expansion of the CAG triplet in the huntingtin gene causing a pathogenic gain-of-function of the mutant huntingtin (mHTT) protein has been identified. In this review, we focus on known biomarkers (e.g., mHTT, neurofilament light chains) and on new biofluid biomarkers that can be quantified in plasma or peripheral blood mononuclear cells from mHTT carriers. Circulating biomarkers may fill current unmet needs in HD management: better stratification of patients amenable to etiologic treatment; the initiation of preventive treatment in premanifest HD; and the identification of peripheral pathogenic central nervous system cascades.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Doença de Huntington , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Leucócitos Mononucleares/metabolismo , Transtornos Cognitivos/etiologia , Biomarcadores , Disfunção Cognitiva/complicações , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
9.
Autophagy ; 19(2): 544-550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35635192

RESUMO

The aggregation of mutant HTT (huntingtin; mHTT) is a hallmark of Huntington disease (HD). mHTT aggregates interact and sequester dozens of proteins and affect diverse key cellular functions. Here we report that TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, is yet another protein that co-aggregates with mHTT. We also found the mHTT-TFEB co-aggregation is mediated by a prion-like domain (PrLD) near the N terminus of TFEB. Our findings point out a possible limitation for therapeutic strategies targeting TFEB to clear mHTT, and also provided a possible explanation for controversies that TFEB overexpression lowered soluble mHTT in some HD models but failed to reduce mHTT aggregates or HD pathology in others. Moreover, we found that TFE3, another MiT family transcription factor that shares overlapping functions with TFEB, lacks PrLD and does not co-aggregate with mHTT, and thus might serve as an alternative drug target for HD.


Assuntos
Doença de Huntington , Príons , Humanos , Autofagia , Doença de Huntington/metabolismo , Fatores de Transcrição , Proteína Huntingtina/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
10.
CNS Neurol Disord Drug Targets ; 22(3): 404-416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34963438

RESUMO

BACKGROUND: Neurodegenerative diseases, being rapidly increasing disorders and the seventh leading cause of death worldwide, have been a great challenge for researchers, affecting cognition, motor activity and other body functioning due to neurodegeneration. Several neurodegenerative diseases are caused by aggregation of proteins which induce the alteration of neuronal function leading to cell death. These proteins are amyloid-ß peptide, tau, α-synuclein, and mHTT, which cause Alzheimer's disease, Frontotemporal dementia, Corticobasal degeneration, Progressive supranuclear palsy, Parkinson's disease, Multiple system atrophy, Dementia with Lewy-body and Huntington's disease. Currently available treatments only reduce symptoms and increase life sustainability; however, they possess side effects and are ineffective in curing the diseases. OBJECTIVE: Literature survey of neurodegenerative diseases and immunotherapeutic approaches is used to evaluate their pharmacological effects and future endeavours. METHODS: A literature search was performed to find the relevant articles related to neurodegenerative diseases and immunotherapies. Clinical trials data were analysed from clinicaltrial.com. RESULTS: According to the literature study, it was found that researchers have explored the effect of active and passive vaccines generated against amyloid-ß, tau, α-synuclein and mHTT. Few clinical trials have shown severe side effects and terminated, despite that, few of them produced desirable effects for the treatment of AD and PD. CONCLUSION: Several immunotherapeutic trials have shown promising outcomes against amyloid-ß, tau and α-synuclein. In addition, various preclinical studies against mHTT and prion proteins are under scrutinization. These clinical outcomes indicate a promising role of immunotherapies against neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau , Peptídeos beta-Amiloides , Imunoterapia
11.
Cell Biosci ; 12(1): 167, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209136

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein encoded from extra tracts of CAG repeats in exon 1 of the HTT gene. mHTT proteins are neurotoxic to render the death of neurons and a series of disease-associated phenotypes. The mHTT is degraded through autophagy pathway and ubiquitin-proteasome system (UPS). This study identified a small molecule, J3, as an autophagy inducer by high-content screening. The results revealed that J3 could inhibit mTOR, thus promoting autophagic flux and long-lived protein degradation. Further, J3 selectively lowered the soluble and insoluble mHTT but not wild type HTT levels in cell models. The HdhQ140 mice showed reduced HD-associated activity and loss of motor functions. However, administration of J3 showed increased activity and a slight improvement in the motor function in the open-field test, balance beam test, and rotarod tests. Furthermore, in vivo studies revealed that J3 decreased T-HTT and misfolded protein levels in the striatum and increased the levels of the medium spiny neuron marker DARPP-32. In addition, J3 showed good permeability across the brain-blood barrier efficiently, suggesting that J3 was a promising candidate for the treatment of HD.

12.
Front Neurosci ; 16: 1022251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225731

RESUMO

Huntington's disease (HD) is a debilitating hereditary motor disorder caused by an expansion of the CAG triplet repeat in the Huntingtin gene. HD causes neurodegeneration particularly in the basal ganglia and neocortex. In the cortex, glutamatergic pyramidal neurons are known to be severely affected by the disease, but the involvement of GABAergic interneurons remains unclear. Here, we use a combination of immunostaining and genetic tracing to investigate histological changes in three major cortical interneuron types - parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) interneurons - in the R6/2 and zQ175DN mouse models of HD. In R6/2 mice, we find a selective reduction in SST and VIP, but not PV-positive cells. However, genetic labeling reveals unchanged cell numbers for all the interneuron types, pointing to molecular marker loss in the absence of cell death. We also observe a reduction in cell body size for all three interneuron populations. Furthermore, we demonstrate progressive accumulation of mutant Huntingtin (mHTT) inclusion bodies in interneurons, which occurs faster in SST and VIP compared to PV cells. In contrast to the R6/2 model, heterozygous zQ175DN knock-in HD mice do not show any significant histological changes in cortical cell types at the age of 12 months, apart from the presence of mHTT inclusions, which are abundant in pyramidal neurons and rare in interneurons. Taken together, our findings point to differential molecular changes in cortical interneuron types of HD mice.

13.
Methods Mol Biol ; 2482: 373-383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35610440

RESUMO

The clock neurons of the fruit fly Drosophila melanogaster have become a useful model for expressing misfolded protein aggregates that accumulate in several human neurodegenerative diseases. One advantage of such an approach is that the behavioral effects can be readily quantified on circadian locomotor rhythms, sleep or activity levels via automated, highly reliable and objective procedures. Therefore, a rapid assay is required to visualize whether these neurons develop aggregates. Here we describe a modified immunoblot method, agarose gel electrophoresis (AGERA) that has been optimized for resolving aggregates from fly clock neurons.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Ritmo Circadiano/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Eletroforese em Gel de Ágar , Neurônios/metabolismo
14.
J Neuroinflammation ; 19(1): 56, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219323

RESUMO

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in the huntingtin (HTT) gene. When the number of CAG repeats exceeds 36, the translated expanded polyglutamine-containing HTT protein (mutant HTT [mHTT]) interferes with the normal functions of many cellular proteins and subsequently jeopardizes important cellular machineries in major types of brain cells, including neurons, astrocytes, and microglia. The NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome, which comprises NLRP3, ASC, and caspase-1, is involved in the activation of IL-1ß and IL-18 and has been implicated in various biological functions. Although the existence of the NLRP3 inflammasome in the brain has been documented, the roles of the NLRP3 inflammasome in HD remain largely uncharacterized. MCC950 is a highly selective and potent small-molecule inhibitor of NLRP3 that has been used for the treatment of several diseases such as Alzheimer's disease. However, whether MCC950 is also beneficial in HD remains unknown. Therefore, we hypothesized that MCC950 exerts beneficial effects in a transgenic mouse model of HD. METHODS: To evaluate the effects of MCC950 in HD, we used the R6/2 (B6CBA-Tg[HDexon1]62Gpb/1J) transgenic mouse model of HD, which expresses exon 1 of the human HTT gene carrying 120 ± 5 CAG repeats. Male transgenic R6/2 mice were treated daily with MCC950 (10 mg/kg of body weight; oral administration) or water for 5 weeks from the age of 7 weeks. We examined neuronal density, neuroinflammation, and mHTT aggregation in the striatum of R6/2 mice vs. their wild-type littermates. We also evaluated the motor function, body weight, and lifespan of R6/2 mice. RESULTS: Systematic administration of MCC950 to R6/2 mice suppressed the NLRP3 inflammasome, decreased IL-1ß and reactive oxygen species production, and reduced neuronal toxicity, as assessed based on increased neuronal density and upregulation of the NeuN and PSD-95 proteins. Most importantly, oral administration of MCC950 increased neuronal survival, reduced neuroinflammation, extended lifespan, and improved motor dysfunction in R6/2 mice. CONCLUSIONS: Collectively, our findings indicate that MCC950 exerts beneficial effects in a transgenic mouse model of HD and has therapeutic potential for treatment of this devastating neurodegenerative disease.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Inflamassomos/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroproteção
15.
Mol Ther ; 30(4): 1500-1522, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051614

RESUMO

Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Imunização Passiva , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo
16.
Eur J Nucl Med Mol Imaging ; 49(4): 1166-1175, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651228

RESUMO

PURPOSE: As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington's disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [11C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD. METHODS: After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice. Statistical analysis was performed to evaluate temporal and genotypic differences. Cross-sectional cohorts at each longitudinal time point were included for post-mortem [3H]CHDI-626 autoradiography. RESULTS: Despite fast metabolism and kinetics, the radioligand was suitable for PET imaging of mHTT. Longitudinal quantification could discriminate between genotypes already at premanifest stage (3 M), showing an age-associated increase in signal in HET mice in parallel with mHTT aggregate load progression, as supported by the post-mortem [3H]CHDI-626 autoradiography. CONCLUSION: With clinical evaluation underway, [11C]CHDI-626 PET imaging appears to be a suitable preclinical candidate marker to monitor natural HD progression and for the evaluation of mHTT-lowering therapies.


Assuntos
Doença de Huntington , Animais , Radioisótopos de Carbono , Estudos Transversais , Modelos Animais de Doenças , Humanos , Doença de Huntington/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodos
17.
Front Neurosci ; 15: 682172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239412

RESUMO

The deposition of mutant huntingtin (mHTT) protein aggregates in neurons of patients is a pathological hallmark of Huntington's disease (HD). Previous investigations in cell-free and cell-based disease models showed mHTT exon-1 (mHTTex1) fragments with pathogenic polyglutamine (polyQ) tracts (>40 glutamines) to self-assemble into highly stable, ß-sheet-rich protein aggregates with a fibrillar morphology. HD knock-in mouse models have not been extensively studied with regard to mHTT aggregation. They endogenously produce full-length mHTT with a pathogenic polyQ tract as well as mHTTex1 fragments. Here, we demonstrate that seeding-competent, fibrillar mHTT aggregates can be readily detected in brains of zQ175 knock-in HD mice. To do this, we applied a highly sensitive FRET-based protein amplification assay that is capable of detecting seeding-competent mHTT aggregate species down to the femtomolar range. Furthermore, we show that fibrillar structures with an average length of ∼200 nm can be enriched with aggregate-specific mouse and human antibodies from zQ175 mouse brain extracts through immunoprecipitations, confirming that such structures are formed in vivo. Together these studies indicate that small, fibrillar, seeding-competent mHTT structures are prominent aggregate species in brains of zQ175 mice.

18.
J Neurosci Res ; 99(9): 2074-2090, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34031910

RESUMO

Extensive alterations in gene regulatory networks are a typical characteristic of Huntington's disease (HD); these include alterations in protein-coding genes and poorly understood non-coding RNAs (ncRNAs), which are associated with pathology caused by mutant huntingtin. Long non-coding RNAs (lncRNAs) are an important class of ncRNAs involved in a variety of biological functions, including transcriptional regulation and post-transcriptional modification of many targets, and likely contributed to the pathogenesis of HD. While a number of changes in lncRNAs expression have been observed in HD, little is currently known about their functions. Here, we discuss their possible mechanisms and molecular functions, with a particular focus on their roles in transcriptional regulation. These findings give us a better insight into HD pathogenesis and may provide new targets for the treatment of this neurodegenerative disease.


Assuntos
Encéfalo/metabolismo , Redes Reguladoras de Genes/fisiologia , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Encéfalo/patologia , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , RNA Longo não Codificante/genética
19.
Molecules ; 27(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011435

RESUMO

Huntington's disease (HD) is a rare single-gene neurodegenerative disease, which can only be treated symptomatically. Currently, there are no approved drugs for HD on the market. Studies have found that MAPK11 can serve as a potential therapeutic target for HD. Regrettably, no MAPK11 small molecule inhibitors have been approved at present. This paper presents three series of compounds that were designed and synthesized based on the structure of skepinone-L, a known MAPK14 inhibitor. Among the synthesized compounds, 13a and 13b, with IC50 values of 6.40 nM and 4.20 nM, respectively, displayed the best inhibitory activities against MAPK11. Furthermore, the structure-activity relationship (SAR) is discussed in detail, which is constructive in optimizing the MAPK11 inhibitors for better activity and effect against HD.


Assuntos
Desenho de Fármacos , Proteína Quinase 11 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 11 Ativada por Mitógeno/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Sítios de Ligação , Técnicas de Química Sintética , Humanos , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade
20.
Bioessays ; 42(6): e1900231, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236969

RESUMO

Ras homolog enriched in the striatum (Rhes) is a striatal enriched protein that promotes the formation of thin membranous tubes resembling tunneling nanotubes (TNT)-"Rhes tunnels"-that connect neighboring cell and transport cargoes: vesicles and proteins between the neuronal cells. Here the literature on TNT-like structures is reviewed, and the implications of Rhes-mediated TNT, the mechanisms of its formation, and its potential in novel cell-to-cell communication in regulating striatal biology and disease are emphasized. Thought-provoking ideas regarding how Rhes-mediated TNT, if it exists, in vivo, would radically change the way neurons communicate in the brain are discussed.


Assuntos
Corpo Estriado , Proteínas de Ligação ao GTP , Encéfalo/metabolismo , Comunicação , Corpo Estriado/metabolismo , Humanos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA